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Abstract

An analysis is presented of a sparse distributed memory (SDM) inspired by that described by
Kanerva (1988) but modified to facilitate an implementation based on spiking neurons. The mem-
ory presented here employs sparse bifgnyf-M codes, unipolar binary synaptic weights and a
simple Hebbian learning rule. It is a two-layer network, the first (fixed) layer being similar to the
‘address decoder’ in Jaeckel’'s (1989) ‘hyperplane’ variant of Kanerva’s SDM and the second
(writeable) ‘data store’ layer being a correlation matrix memory as first proposed by Willshaw et
al (1969). The resulting network is shown to have good storage efficiency and is scalable. The anal-
ysis is supported by numerical simulations and gives results that enable the configuration of the

memory to be optimised for a range of noiseless and noisy environments.

Keywords: Neural networks; Spiking neurons; Sparse distributed memory; Associative memory;

Correlation matrix memory; Unipolar weightd:of-M codes.
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Mathematical Symbols

A — the number of bits in the input address.

A — thei-of-A sparse binary input address (cue) vector.

A — the binary-valued\ x W  address decoder matrix (with fixed weights).

a— the number of 1s in each row of the address decoder; each address decoder is programmed

with ana-of-A code mask that sele@wits from the input address.

Cp — the combinatorial operatorb-—!m

D — the number of bits in a data word.

D — the binary-valuedV x D data storage matrix (with updatable weights).

d — the number of 1s in a data word (formingd-af-D sparse binary code).

D, — thed-of-D sparse binary input (write) data vector.

Doyt — thed-of-D sparse binary output (read) data vector.

E(x) — the expected value »f

E. — the expected number of data words read out without error (in a sequence of reads where
other words do contain errors).

f —the number of errors (1s in an incorrect position) dhod-D data output code.

h — occupancy; the proportion of data storage matrix bits set to 1 by a series of write operations.

| — the recoverable information content of the memory, in bits.

I —the number of 1s in an input address; each input addressa-Arsparse binary code.

k—a scaling factor used in the analysis of the address decoder under erroneous input conditions.

n — the number of misplaced 1s in a noisy input (read-out) address.

P. — the probability that every data word written into the memory is read out without error.

p(X) — the probability ok.
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T — the address decoder threshold, applied to each row of the address decoder to determine
whether or not it is active.

W —the number of address decoder rows and the number of word locations in the data memory.

W — thew-of-W sparse binary vector output by the address decoder indicatiivgdlogve ad-
dress decoder rows.

w — the number of active rows of the address decoder; also the number of locations in the data
memory that each data word is written into.

W — the expected, or mean, valueaof

w' — a particular value of.

ws— the number of address decoder rows that are active in a read operation (with input cue er-
rors) that were also active in the corresponding write operation - the ‘signal’ compoWént of

w,, — the number of address decoder rows that are active in a read operation (with input cue er-
rors) that werenot active in the corresponding write operation - the ‘noise’ componeét of

Xy (X;) —the activation levels, during a read operation, of a data output that was written as 0 (1)
in the corresponding write operation.

X; — the threshold activation level in a read operation that determines whether a particular data
output bit should deliver a 0 or a 1.

Z — the number of data words written into the memory.

n —the storage efficiency of the memory, expressed as the ratio of the number of bits of infor-
mation stored successfully (so that they can be retrieved) to the number of bits needed to realise the
adjustable weights (in the array of data storage cells).

oz(x) — the variance of.
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1. Introduction

Associative memories based on neural structures have been studied for many years. In this pa-
per we investigate a form of sparse distributed memory (SDM) that has takes its inspiration from
Kanerva’s (1988) SDM, but is substantially modified to support an implementation based on spik-
ing neurons. The resulting memory can be viewed as combining an address decoder layer similar
to that in Jaeckel’s (1989) ‘hyperplane’ variant of Kanerva’s SDM with a data store layer that is a
binary correlation matrix memory as first described by Willshaw et al (1969).

Conventional (dense) binary codes as used in Kanerva’s SDM are ill-suited to spiking neural
implementations. If a spike represents a 1 then a neuron can readily detect the 1s in the input code,
but it has no simple way to detect the 0s. This problem is avoided if the code has a fixed number of
1s, since once the 1s have been detected the Os are located implicitly. This leads us to tine use of
of-M codes, where in a population bf neurons exactli fire for each symbol. The suitability of
N-of-M codes for spiking neural implementations is closely related to their self-timing properties
(Verhoeff, 1998) — the completeness of the data is implicit in the coding — so consecutive layers of
neurons ‘know’ when they have complete input information and can use this to trigger the genera-
tion of their outputs.

N-of-M codes have been studied extensively in the context of neural network coding, both in
their precise form wherdl is fixed, generally as a result of &ftmax algorithm, and in their ap-
proximate form wheré\N is subject to statistical variation, for example as a result of each neuron
firing independently with probabilitf\/M. In most cases the coding is sparbke<< M) and this
results in a constant low average neural activity.

We employN-of-M codes throughout the SDM presented in this paper to yield a memory that

retains the principal feature of Kanerva’'s memory — an address decoder layer that casts the input
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symbols into a high-dimensional space in order to enhance their separability — whilst enabling a
straightforward implementation based on spiking neurons. The memory is characterized both ana-
lytically and numerically to reveal its capacity and tolerance to noisy inputs, and these results indi-
cate how the performance and noise-immunity may be optimized under various operating

conditions.

1.1.N-of-M memories

Correlation Matrix Memories (CMMs) have been subject to extensive study (Willshaw et al,
1969; Schwenker et al, 1996, Casasent & Telfer, 1992; Kohonen, 1972; Lomas, 1996; Turner &
Austin, 1997), and we observe that the data store layer in our memory is just a CMN{\oftiv
input and output encoding. The distinctive feature of the work described here is the preprocessing
of the inputs into a high-dimension&lof-M space using an ‘address decoder’ layer, giving the
memory a capacity that can scale independenthy.of

N-of-M coding has been considered previously for various forms of associative processing.
Casasent and Telfer (1992) looked at several configurations of associative processor based on a sin-
gle matrix with various training algorithms and binary or analogue, unipolar or bipolar weights.
They conclude, amongst other results, thaif-M codes (which they call-maxencoding) are ad-
vantageous. Nadal and Toulouse (1990) studied the storage capacity of singleNvativk asso-
ciative memories. Davidson (1999) also considered single-matrix memoriesNisifiyl codes,
presenting theoretical analyses of memory capacity and redundancy, and backing these up with nu-
merical simulations. In this paper we apply similar techniques to analyse a memory comprising two
matrices, considering only unipolar binary weights, as outlined in Section 4.

Aleksander and Stonham’s (197Bl}tuple memories employ a binary-encoded addressing

mechanism. The address itself is a delMisbit binary code from which aN-bit random sample of
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bits is presented to a conventional RAM, where those bits are fully decoded. The outputs from sev-
eral such RAMs (each using a different random sample of address bits) are summed, the output with
the highest score determining the classification of the input address. The system can also be viewed
as a single binary correlation matrix memory whose row inputs are generated by an address decoder
that produces an output comprising a number of 1&@des. This approach has a lot in common
with the one presented here, but it targets a different implementation technology — conventional
RAMs instead of spiking neurons — and therefore ends up with a different address decoder struc-
ture.

The ‘hyperplane’ variant of Kanerva’s memory (Jaeckel, 1989) also emeysM codes,

and is closely related to the memory we analyse here. It is discussed further at the end of Section 3.

1.2. Outline of paper

Section 2 presents the relevant propertiedlaif-M codes. Section 3 presents a summary of
Kanerva’s original sparse distributed memory (which employs binary codes) and the ‘hyperplane’
variant that makes some useMof-M codes. Section 4 describes the structure and presents the
theoretical analysis of thd-of-M variant of Kanerva’s memory under error-free conditions, ending
with a comparison of the theoretical results with numerical simulations. Section 5 extends the re-
sults to include the effects of input and data errors, and Section 6 covers the efficiency of the pro-
posed memory. Section 7 introduces an implementation of the memory based on spiking neurons.
Section 8 summarizes the paper and draws some conclusions, including a discussion of the rele-

vance of the model to the understanding of biological systems.
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2. N-of-M code properties
When comparing two randoid-of-M codes, oné\;-of-M and the otheN,-of-M, the statistics
of the likely match are of interest. The probability that two such rantbai-M codes sharg 1s

follows the hypergeometric distribution (Feller, 1950):

M =N,

p(X) = C, ' [y, _ "

./ Cy. L)

al
whereCj, is the combinatorial operam

The number of matching 1%, will be between 0 and mif;, N,), and the probability distribu-

tion defined by equation 1 has a mean given by:

N, [N,
E(X) = ——= 2
(%) =~ @
Figure 1 shows some typical distributions for cases wiéye= N, = N . Note that there are

two distinct modes of matching distribution, depending on whetNeH:L()2 is greater than or less
thanM+2; in the latter case the peak of the distribution is at zero. (This can be established by com-
paringp(0) with p(1) in equation 1).

A key observation that will be important in what follows is that the distributions for the sparse
cases (e.g. N = 30 in figure 1) are not at all smooth. The number of matchingcks) take only
integer values, and so the probability of meeting a matching threshold can be controlled only

coarsely by adjusting that threshold.

3. Kanerva’s sparse distributed memory
Kanerva (1988) proposed an organization for a two-layer sparse distributed memory based
upon a high-dimensional binary space. A binary address of, say, 1,000 bits is presented to a large

set of fixed ‘address decoders’ that form the first layer of the memory. Each address decoder re-
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sponds to any input within a specified Hamming distance of a particular input code. If the memory
has a million address decoders, each could be assigned a random 1,000-bit code and the distance
defined so that any input address activates approximately 1,000 decoders.

The second layer of the memory, the data store, is a matrix of up/down counters. When infor-
mation is to be stored in the memory it is presented on the data store columns in binary form. The
address decoder outputs connect to the data store rows. All of the counters on rows driven by active
address decoders either increment their count if the column data input is 1 or decrement it if the
data column input is 0. The counters on inactive rows are unchanged. Each data item stored in the
memory is thereby distributed across the 1,000 locations activated by the input address.

When information is to be retrieved, an address ‘close’ to the address used to store the required
information must be presented. All of the counts in each column that are connected to an active ad-
dress decoder row are summed, and those column sums that exceed a thresholel @érariiut.

The key property endowed by the 1000-dimensional binary space is that a very high proportion of
the space differs from any given point by over 400 bits. The ‘critical distance’ that defines the term
‘close’ used above can therefore be hundreds of (but fewer than 400) bits, decreasing as the number
of stored patterns increases.

The ‘hyperplane’ variant of Kanerva'’s sparse distributed memory (Jaeckel, 1989) employs an
input address with a fixed small number of 1s (for example, a 100-0f-1000 code) and the address
decoder rows are set to 3-0f-1000 codes. An address decoder is active if its three 1s correspond to
1s in the input address. The data store comprises up/down counters as with the original Kanerva
design. In our design we apply a threshold match criterion to each address decoder row rather than
requiring a full overlap between the 1s in the input address and the decoder row, and for the data

store layer we use a binary correlation matrix memory in place of the matrix of up/down counters.
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The replacement of up/down counters with binary weights greatly simplifies the data store and has
very little adverse effect on performance, as has been noted before (Schwenker et al, 1996; Palm &

Sommer, 1996).

4. An N-of-M coded sparse distributed memory

In this section we present a sparse distributed memory that emigtojv codes. The organ-

ization of the memory is illustrated in figure 2. The memory comprises two matrix layers:

 the ‘address decoder’ layer is a matAxconnectingA address inputs tdV outputs, with fixed
binary weights initialised to a randoaof-A code in each row, and with a threshdldet to con-
trol the number of active hard location selector outpwtsThe address decoder firing pattern is
then aw-of-W code though, as we shall see, it is generally impractical to avoid allowing some

variation inw.

 the ‘data memory’ layer is a matr@ with W hard location selector inputs, initialised with zero
weights. The write function simply sets each weight with an active hard location selector input
and an active write data input to 1. The output functiomistax’ — thed columns with the high-

est activation levels are selected and the remainder inhibited — to gieii[a code.

The *address’ input to the memork, employs an-of-A code, where the number of 1i$ (hay
or may not be equal to the number of 1s in each address decodea).de shall see that there is
a (small) advantage in allowingo be independent from

The resulting memory system is an associative memory with similarities to other neural asso-
ciative memories (Austin 1995). The principal differentiating feature is the use of a first layer to
cast the inputs into a high-dimensional space (as with Kanerva’s memory), the outputs of which are

then processed through a correlation matrix memory (unlike Kanerva’s memory). Other associative
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memories have generally employed application-specific input layers configured as feature extrac-

tors (e.g. Austin & Stonham, 1987).

4.1. Data memory efficiency

The data memory layer is a form of correlation matrix memory that has been studied extensive-
ly in the past (Nadal & Toulouse, 1990; Willshaw et al, 1969; Schwenker et al, 1996; Casasent &
Telfer, 1992; Kohonen, 1972; Lomas, 1996; Palm & Sommer, 1996; Turner & Austin, 1997). We
present an analysis of this store again here as it forms the basis for what follows.

We assume that address and data inputs are uniformly distributed over their respet#ive
andd-of-D sparse binary spaces. The data memory initially contains 0s, and we use the measure of
occupancyh, which represents the probability of an arbitrary bit in the data store being set to 1 at
some point in the write process. Aftémwrite operations the expected occupancy of the data store

is given by:

_ w _d7?
h = 1—[1—WD[—)} 3)
his initially 0, and tends monotonically towards 1 as more data is stored in the memory.

Rewriting equation 3:
|n(1-h)=zun[1-ﬂ d} @
w

With sparse codes the tem[d/ (WD) is small, so the number of stored data items (with

no consideration yet of whether or not these stored items can be recovered) is closely approximated

by:

Z = —In(1-h)

=

EFd_) (®)
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The total information stored in the memory afiewrite operations may be identified by con-

sidering the number of symbols that can be representedHoy-B code:
1(Z) = Zog,[Cq] bits 6)

If we compare this capacity with the number of binary storage locations in the data array we

can get an idea of the storage efficiency of the memory:

n(z) = [I)(é/)v - DZDN

fog,[Cq] @)

For largeD, the combinatorial term can be approximated by:

Dy _ d d do dr
log [Cq] =-D E[B DngBJ'%l_BDDng%_BD} (8)
(The term on the right-hand side of the equation in square brackets is the Shannon entropy for

p =d/D.) For a sparse memory a combination of equations 5, 7 and 8 yields, after simplification:

_ 1 [, D
n(2) = —og,(1-h) = E[Ina 4 1} ©)

This shows that the most efficient memory, at a given level of occupancy and ignoring errors,
is the most sparse — a unary 1{dfeode — and operates with the smallest number of firing address
decodersyw = 1. However, these choices adversely affect the robustness of the memory since errors
will arise as soon as the number of patterns written exceeds the number of storage lovgtians (

which point the occupancy is still very low £ 1D).

4.2. Data memory robustness

We consider the retrieval of a single data word following the writing data words, where the
retrieval address is presented without error. The hard address selector Wecial, be the same

for both the write and the corresponding read operation. If a data bit value was written as a 1, then
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every activated weight will be set and the expected activation level of the data output colDmn in

will be given by:
E(X) =w (10)

If, on the other hand, the data value was written as a 0, the expected activation level of the col-

umn inD will be given by:
E(Xp) = wih (11)

So, sinceh < 1, the memory can reasonably be expected to recover the written data. However,
the activation level of the 0 output is subject to statistical variation, and with some probability all
the weights activated will have been set by other data writes, in which case the activation level of
an output that should be 0 will be the same as that of one that should be 1, leading to the possibility
of a ‘false 1’ error. (In the absence of input errors there is no possibility of a ‘false 0’ error.) This
only happens if every weight contributing to the O output is set, so the probability of a O data bit

being read correctly is:
p(X,<w) = 1-h" 12)

Thus the probability of a complete data value being read correctly, which requires that every O

data bit is read correctly, is:

p(data word corregt= [1—h"] P-d (13)

and the probability that every stored data word can be read corfgily,

p, = [1-n"" P79 (14)
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Clearly, as the occupantyincreases the probability of the error-free recovery of all of the writ-

ten data decreases towards zero. The reliability of the memory is also a steep function of the number

of active address decoder rowg @s we shall see.
Rewriting equation 14 yields:
In(P,) = Z(D-d) On(1-h") (15)

Again,h"is very small (whenv is significantly greater than 1 arids not too close to 1) so the

first term of the Taylor series gives a good approximation:
In(P,) = —Z(D-d)h" (16)
To identify the optimum configuration of the data memory we consider the principal dimen-
sions W andD) and the data codingl{of-D) to be fixed. To maximise the probability of correct
recovery of all of the dataR.) for a given number of entrie€) we observe from equation 14 that

this means minimizing" or, equivalentlyw In h. Thus we seek a solution where

d _ w dh _

d—W(WIn h) = Inh+ h DdTv =0 17)

Equation 5 can be rewritten as:
Z[d _
WEWD = —ln(l—h) (18)

Differentiating with respect tar and substituting the value éffrom equation 5 yields:

dh . (1-h)0n(1-h) (19)

dw w

Substituting this result into equation 17 gives the following formulé:for

hOnh=(1—h) On(1—h) = 0 20)
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This has the solutioh = 0.5, agreeing with previous results that show that an occupancy of 0.5
gives the maximum recoverable information content in a correlation matrix memory (Willshaw et
al, 1969).

Substituting the expression fdrfrom equation 5 into equation 16 yields:

In(1=h)

) [W[P (D —d) 1)

h™w =

Equation 21 can be used (with= 0.5) to determine the optimum number of active address de-
coder words\{) for a given choice of data memory dimensiol¥, © andd) and an acceptable
probability of error-free recovery of all written da®.).

It can be argued, however, that totally error-free data recovery is too restrictive a requirement
for this style of memory. An alternative definition of capacity is to establish the maximum number
of data items that can be recovered correctly, allowing that other items may be recovered with er-
rors. The expected number of correctly recoverable data words in the presence of errors is (from

equation 13):
E = zg1-h"" " (22)

For a given number of stored value§ (ve can vary the number of active address decoder rows
(w) to maximize the expected number of correctly recoverable data weglarid, as before, we
find the maximum corresponds to occupahey0.5.

If we continue writing entries until every new entry causes one or more additional read-out er-
rors we have reached the maximum useful capacity of the data memory. This pointis reached when

dE./dz = 0. Differentiating the natural logarithm of equation 22 gives:

1 dE. 1 D-d
= DE—Z—l_hWEInhEh Dg—z 0 23)
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At constant occupandyequation 5 implies thatZis constant, saw/dZ = —-w/ Z . Substitut-

ing into equation 23 yields:

h"_1
W

= —«(D—d) Onh (24)

This gives a value for the number of active address decoder nowhét is smaller than that
given by equation 21, reflecting the fact that a higivagives a memory that has fewer errors but
lower capacity. A lowew results in more errors, but gives a higher capacity as each written entry
sets fewer weights. In both cases, the maximum extractable information occurs when the occupan-
cyh=0.5.

Note that neither equation 22 nor equation 24 depends on the number of locations in the mem-
ory (W). This shows that the memory is linearly scalable; the maximum capacity is achieved when
the occupancy = 0.5, at which point the number of active address decoder nawis, given by
Equation 24. Then, the proportion of values that are recoverable without Egdj (s given by
Equation 22. Finally, the number of entries that must be written to achieve the maximum recover-
able number of data values scales linearly with the number of localié(Squation 5). Hence the
maximum recoverable data also scales linearly With

The behaviour of the memory is most clear when a typical plot of equation 22 is viewed. Such
a plot is shown in 3-D in figure 3 and in contour form in figure 4. The example system has 4096
memory locations\W/) and stores data using an 11-o0f-256 code; the choicka$fD code is dis-
cussed further in Section 5.2.

Referring to figure 4, the closed contours indicate how the expected number of correct words
(Eo) varies with the number of stored entrieg @nd the number of active address decoder rows

(w). The maximum is &E. = 5,332, and the error rate there (the relative frequency of stored patterns
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that are recovered with some error) is just over 11%. Note that this maximum capacity is greater
than 4,096, the number of storage locations; this is possible because the data is sparse in both di-
mensions of the storage matrix. The central contourks. &t 5,000, and the contours then go down

in steps of 500. The south face of the ‘hill’ is very nearly planar, with very few recovery eggrs (

is very close t@), except at the west end where the number of active address decodemjaw/s (
small. Performance falls off rapidly if eitheris too small orZ is too large, as shown by the steep
slopes on the west and north sides of the ‘hill’ respectivelyv i§ too small there is insufficient
redundancy in the way the data is stored and even a low level of interference from other stored val-
ues causes errors; if Z is too large then the interference from other stored values is sufficient to
cause errors whatever the level of redundancy.

Superimposed on the contours in figure 4 are two other sets of data. The hyperbolae show where
the occupancyh, has values 0.2 (to the south-west), 0.5 (centre) and 0.8 (to the north-east). Con-
stanth lines correspond to constanZ; see equation 5. Note holw= 0.5 passes directly through
the summit of the ‘hill". On the south face are curves showing where the probability of error-free
read-out Py) has values 0.1, 0.5 and 0.9 (from equation 14, with the 0.1 value higher up the slope,
0.5 in the middle, and 0.9 lower down). The maxima of these curves also he=dh5. Note how
close together these curves are, indicating that the maximum capacity with a high probability of er-
ror-free read-out is relatively insensitive to the interpretation of ‘high probability’.

As a final observation, note that the optimum value for the number of active address decoder
rows () for capacity with errors (at the summit of the *hill’) is around 11, whereas the optimum
value for error-free recovery (wheRg = 0.5 crosses = 0.5) is around 20, and the capacity with

errors is about twice the error-free capacity. Any practical use of the memory will operate some-



N-of-M Sparse Distributed Memory 18

where in this range, the particular operating position being chosen to achieve an appropriate bal-

ance between capacity and error rate.

4.3. Address decoder analysis

The address decoder threshdldan be related to the number of active address decoder rows,
w. The active address decoder rows include all those that havanore 1s in common with the
input address. From equation 1, the probability that a row has T or more bits in common with the

input address is:

1 a [ A—i
Pa= —20) G Cak (25)
Ca k=T
The expected number of active address decoder rows is then:
W = W Op, (26)

The relationship between the number of active address decoderwpwbg number of 1s in
each address decoder roa) &énd the address decoder threshdldg¢ shown in figure 5 for a mem-
ory with W = 4096 locations using an 11-o0f-256 input address. The useful part of this function is
plotted in more detail in figure 6. This shows that the optimum number of active address decoder
rows can be achieved by using one of several different combinations of the address decoder thresh-
old and the number of 1s in each address decoder row.

If the memory is operating with error-free input the same address decoders will always fire, but
the number that fire is subject to statistical variation from one input address to anoth&\¥.ifihe
dependent address decoder rows result in a binomial distributiovviith mean given by equation

26 and variance given by:

02 = WOp, ((1-p,) (27)
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In particular, the probability of taking a particular value’ is given by:

by = (1-p)" W p, " T (28)

Equation 14, which gives the probability that all of the stored data values can be recovered with-

out error, now becomes:

Z Op,, (D —d)
P, = [[1-h"] (29)
w

Similarly equation 22, which gives the expected number of correctly recoverable data items (ig-

noring those recovered with error) becomes:

D-d
E, = ;pw Z 01-h"] (30)

The result of the statistical variation of the number of active address decoderwpigsl(us-
trated in figure 7, which shows the performance of the same memory as used for figure 4 but with
the spread now taken into account. The summit is lowdtcat 4,445, where the number of stored
valuesZ = 5,440 andv = 15; it has also moved off the occuparty 0.5 curve, and corresponds
to h=0.575. The error-free performance is poor at leybut the general shape of the ‘hill’ is un-
affected. It is clear, though, that for optimal performance (however defined) the address decoder
threshold T) must be set to give a mean valueoomewhat higher than that which would be cho-
sen without taking the spread into account.

It might be thought that the variation of the number of active address decoderwdwsuld
be reduced (or even eliminated) by imposingrnamax’ mechanism similar to that used to select
the ‘d-max’ data outputs. However, as noted at the end of Section 2, the activation of the address
decoder rows is quantized and t@ctive outputs are dominated by decoders that exactly meet the

threshold. It is not possible, therefore, to discriminate between the outputs that fire to select the
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same number each time, and some spread fimust be accepted. The statistical independence of

the individual decoders inevitably leads to the binomial distribution used above.

4.4. Numerical simulations

Numerical simulations were carried out to confirm the validity of the analytical results shown
in figure 7. This process is not as straightforward as might at first be assumed, since the expected
number of active address decodg@rs is hard to control smoothly over the desired range as it is a
rather complex function of the address decoder parameters (see equation 25). The number of stored
values g) is straightforward to control, but the desired coverage ofithe  values was achieved by
selecting rathead hoccombinations of values for the number of 1s in the input addigssdch
address decoder rowa)(and the address decoder threshdld The contour-plotting software re-
quired a uniform distribution of points along the horizontal axis, and this was obtained by linear
interpolation of the results computed by a single simulation at each ofith&)(points. A similar
procedure was used later to produce figure 12; Section 5.1 includes more detail on the precise data
points used there.

The numerical simulations of the error-free memory are shown in figure 8 and confirm the an-
alytical results presented in figure 7. The differences between the figures are mainly due to inter-
polating the contour values from the coarse grid used for the base simulation cases, the coarseness
of the grid being itself an unavoidable consequence of the highly quantized behaviour of the ad-

dress decoders noted above.

5. Error recovery

Now we consider the case where the memory has been written with correct address and data

values, but an attempt is made to recover a data value with a corrupt address.
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In the simplest case, the corrupt address is a vadidA code but it has a numbenm)(of bits set
in incorrect positions; that is, some of the bits that should be 1 are 0, and an equal number that
should be 0 are 1. The effect of this will be to cause some of the address decoder rows that were
active during the write operation to be inactive during the corresponding read operation, and con-
versely some that were inactive to be active. We denote the number of address decoder rows that
are active during both read and write operations\gys indicating ‘signal’), and the number that
are active only during read by, (n denoting ‘noise’). It is clear that these two parameters fully
characterize the operation of the memory under noisy input conditions.

On the basis that most of the active address decoder rows exactly meet the threshold during the
write operation, they will also be active during a read operation with the address input containing
errors provided that those errors do not coincide with any of the address input bits that contribute
to meeting that threshold. To a first approximation the number of address decoders that are active

both during write and during read with abit input error is therefore given by:
_g_1
w, = %— =0 O (31)

Numerical simulation results illustrating this dependency are shown in figure 9, whére
is plotted against the address decoder threshDldof 1 to 5 input bit errors using an 11-o0f-256
input code to the address decoder. (These results agree reasonably well with equation 31 for small
values ofT, but the approximation is poor for values Digreater than 3.) The best performance,
with the highest value fow,/w , is obtained by selecting a small valug feeping the number
of active address decoder rows) close to an optimal value requires a small value to be chosen for
the number of 1s in each address decoder eo{see figure 6). This is why it is desirable to be able

to choosea independently from the number of 1s in each input address,
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The correct address decoder rows active during a read operation (numhgnivitibe a subset
of thew that fired in the corresponding write operation and the undesired active address decoder
rows (numberingv,) will be a subset of th&V/ — w that were inactive during the write operation.

Under am-bit input error, to a first approximation, is given by:

- 33w

Note that, unlikevg which is proportional tav, to a first approximatiom,, is independent ofv.
Thus a data value that is written to a small number of hard locations will be disproportionately af-
fected by address-input noise.

In the presence of more input errors the proportion of undesired active address decoder rows
will increase, but the performance of the memory is still fully determined by the variaglasd
Wi,

The expected activation level of a data output that was written as a 1 (formed as the sum of those

elements of the data memory matrix column that connect to an active word line) is now:
E(X;) = wg+w,[h (33)
The expected activation level of a data output that was written as a O is:
E(Xy) = (wg+w,) [h (34)

Both activation levels are subject to statistical variation following binomial distributions. The

respective variances are given by:

0,° = w,[h{1-h) (35)

0,° = (Wy+w,) Ch(1—h) (36)
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The data memory output distribution is bimodal, havehgutputs with expected valug(X,)
andD —d outputs with expected vali£X,). Thed-of-D code output from the data memory se-
lects the highest scoringd outputs. The threshold for selection is the lew§l, where the same
number ofX, outputs exceed; asX, outputs fall belowX;. That is, the expected number of erro-

neous ‘noise’ data outputd,, is given by:

E(d,) = d Dp(X, < X,) = (D —d) Op( X, = X,) 37)

This is sufficient to determin; and, hencefz(d,)). The convergence requirement for an auto-
associative memory (where theof-A andd-of-D codes are the same) is that the output errors are
fewer than the input errorg(d,,) < a,. Where the input and output codes differ the convergence
requirement is harder to define, but should probably be based on a consideration of the information
content of the input and output codes.

An example plot of the (binomial) output distributions &yandX, is shown in figure 10. Here
the outputd-of-D code is 11-o0f-256wg = 20,w,, = 10, andh = 0.5. The plot shows the frequency
distribution of activation levels in th¥, (‘0’) and X, (‘*+’) outputs. Although the distributions do
overlap, the expected number of output errors is less than 1 in this case (in fact, it is close to 0.6).
As the occupanch increases the mean of tig distribution (equation 34) moves to the right, the
overlap between the distributions increases, and the output error rate rises.

The optimization of the error-recovery properties of the memory is complex. The ratigtof
W, is optimised by the choice of address decoder parameters, but it is easy to increase them both
proportionately. This will have the effect of reducing the ratio of variance to mean of both distribu-
tions (equations 35 and 36) and thereby reducing the overlap. However, it will alsolcause

crease (equation 3), thereby moving the distributions closer together and increasing the overlap.
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To estimate the overall effect of increasiwgandw,, let us assume that they are both scaled

by a factork. The difference between the distribution means, from equations 33 and 34, is:

E(X,) —E(Xy) = w, {1-h) (38)

Both variances scale similarly by a factorkpfind the ratio of the difference between the means

to the standard deviation gives an estimate of the distribution overlap:

E(X;) —E(Xp) 1 [k=h)

N ; (39)
wherei = 0 or 1. Now equation 5 can be rewritten:
D
h=1-e (40)
With this, and noting thaw is proportional t&k, we obtain:
E(X,) —E(X
( 1) ( o) 0 k (1)
Gi 1

whereA = Z[{w,d/(WD)) andvgis some baseline value of Equation 41 is a monotonic de-
creasing function dkfor positivek values, showing that increasinghas a generally adverse effect
on the error performance of the memory.

Clearly this result should not be taken as indicating thahould be made as small as possible.
All the factors considered in the error-free memory still apply. It simply demonstrates, perhaps
counter-intuitively, that increasing the redundancy under error conditions may have no net benefit

as the gains are more than outweighed by the concomitant increase in occupancy.

5.1. Numerical simulations
A range of memories with different address decoder parameters was simulated numerically, un-

der single-bit input error conditions. As with figure 8 (see Section 4.4), the range of values for the
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expected number of active address decoders  was achieved by simulating memories with a range
of values for the number of 1s in each address decoderapand a range of address decoder
thresholdsT. The values used are shown in figure 11, which is a partial confirmation by numerical
simulation of figure 6. For each of these configurations the memory was simulated with the number
of stored values4) equal to 100, 250, then in increments of 250 to 4,000, 4,500, 5,000 and then in
increments of 1,000 to 10,000. The contour plotting program required a uniform horizontal distri-
bution of input points, and this was again obtained by linear interpolation.

The results, shown in figure 12, confirm that the optimum memory configuration operates with
the number of active address decoder rawgery close to the optimal values for the error-free
memory. This is similar to the demonstration by Kristoferson that varying the number of active ad-
dress decoder rows between read and write operations has no benefit in improving error tolerance
(Kristoferson, 2001).

The maximum number of recoverable error-free valggappears to be about 4,300vat 14
and with the number of stored valu&s being about 5,400. The loss of useful capacity, from 4,445
in the error-free case to 4,300 with single-bit input errors (which is one bit in eleven) is, perhaps,

lower than might be expected.

5.2. Data error recovery

We can further extend the tolerance of the memory to errors if we use a subset of the full data
d-of-D space as valid symbols, resolving each output to the nearest valid symbol. For example, we
could allowf-bit error recovery by mapping evedyof-D code with at leastl— f 1s in common
with a valid symbol to that symbol. With such a mapping there must be fewer valid symbols and
the information content of each symbol is diminished accordingly. Since the great majority of the

mapped symbols will be at the maximum distance from the valid symbol, equation 6 becomes:
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1) = Zog [Cy/(CS Ty ~%)] bits (42)

Now to a first approximation the value @ that gives maximum capacity varies asl {¢ee
equation 5; the optimum number of active address decodedepends only very weakly ath—
see equation 24), so we can identify thef-D code that gives the highest information content un-

der assumed error conditions. We wish to solve:

(11 D d __.D-d., U
1 Hog,[Cq /(Cy [y )]E: 0 (43)

d
ddd
The combinatorial terms can be approximated closely using:

In(x!) = %In(an) + xInx— X (44)

Carrying out the differentiation yields, fdr<<D:

d  (d°+f?)
2(d—f) 2D

- Y 1) 1. g2mpo
d = f(In(DOd- f))-1)-2In(f!) + Ind + S == -1+

(45)

Numerical solutions of equation 43 for a 256-bit code with 1-, 2-, 3- and 4-bit erro=a6
14, 20 and 25 respectively. Equation 45 gives the same result for these cases, and it also serves to
indicate the general trend of the solution which das f CInD as its dominant term.

Throughout this paper we have been concerned only with maximizing the number of data val-
ues recovered without any error, so we have treated a single-bit error as invalidating a complete
output value. Many of the erroneous outputs that occur at the summit of the hill, 20% in figure 12
for example, will have only single-bit errors and therefore contain significant information that we
have neglected but that could be recovered using a suitable nearest-valid-symbol scheme as de-

scribed above.
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The choice of whichd-of-D code should be employed in any application is a matter of deter-
mining the required number of unique codes and the required resilience to errors. The 11-0f-256
code used for the examples throughout this paper is an arbitrary choice, with no identified proper-

ties that make it optimal in any respect.

6. Memory efficiency
We now return to the issue of the efficiency of thkef-M memory operating without data error
correction. Referring back to equation 7, we can base the efficiency measure on the recoverable

data stored:

I(E) _ E
DOW ~ DIW

N(E,) = fog,[Cq] (46)

With an 11-of-256 data code, each stored value contains 62 bits of information. For the example
discussed earlier, with no address errors 4,445 values can be recovered without error (from a total
of 5,440 values written into the memory) from the 4,096 word memory (th&¥rs4,096). This
gives an efficiency of 0.26 bits of information per bit of writeable data store.

Palm and Sommer (1996) presented an extensive analysis the efficiency of various configura-
tions of associative binary network operating under similar (though not identical) conditions to the
data store analysed here. They demonstrated an asymptotic efficiency of 0.69 bits of information
per synapse for very large, sparse binary networks with error-free addressing and the same Hebbian
learning algorithm that we have employed. The efficiency of finite memories of a size comparable
to ours is significantly lower, in a similar range to the 0.26 bits per synapse we have found, though

direct comparison is not straightforward as their definition of capacity is different from ours.
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7. Neural implementation

Kanerva'’s sparse distributed memory has been implemented directly in hardware in various
forms (Flynn et al, 1988), but these implementations have required dedicated units for the address
decoder Hamming distance computations and the data memory matrix of up-down counters. In con-
trast, theN-of-M sparse distributed memory can readily be implemented using conventional leaky
integrate-and-fire spiking neurons with binary synaptic weights and a local Hebbian learning algo-
rithm. The ‘leaky’ property is only required here in order that all neurons in the system will settle
down into inactive states between ‘waves’ of activity. This section gives a brief overview of the
operation of such an implementation.

The memory is activated when &of-A address input pattern arrives. This means that spikes
arrive on exactly of the A input neurons at (roughly) the same time. (We are also interested in an
extension taN-of-M coding where the order of arrival carries additional information — a form of
rank order codingThorpe et al, 2001) — but that is not the subject of this paper.)

The address decoder (see figure 2) compN8egurons. The connections and weights between
the input neurons and the address decoder neurons are fixed, as are the thresholds of the address
decoder neurons. One can view the connection matrix as being complete — that is, every input con-
nects to every address decoder neuron — and the weights are such that each address decoder neuron
hasaweights setto 1 and—a weights set to 0. Alternatively, since a 0 weight is equivalent to no
connection, one can view each address decoder neuron as being connecteddftheinput neu-
rons. In either case, theels or input connections are selected at random for each address decoder

neuron.
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With this configuration, and with an appropriate threshold set for the address decoder neurons,
firing i-of-A inputs will causev-of-W address decoders to fire, withsubject to some variation as
described in Section 4.3.

The data memory compris&sneurons each of which has slladdress decoder neurons as in-
puts. In addition, each data neuron has a unique write data input. Initially, all of the synaptic con-
nections from the address decoder neurons have weights set to 0. The synaptic connections from
the write data inputs have weights whose numerical strength is irrelevant, but whenever a write data
input neuron fires it must force its respective data memory neuron into a Hebbian learning mode
that persists throughout the associated incident wave of firing address decoder neurons.

A write cycle now proceeds as follows. Firstly, thef-D write data input is signalled tyof
the write data neurons firing, in turn puttigof the data memory neurons into Hebbian learning
mode. Then the address inputs fire, causirayldress decoders to fire. Wherever an address decod-
er output spike meets a data memory neuron that is in Hebbian learning mode the corresponding
synaptic connection is set to 1. Once the wave of incident address decoder neuron spikes has
passed, the ‘leaky’ aspect of all of the neurons causes the activation levels of all neurons to settle
back to zero and the data memory neurons cease to be in Hebbian learning mode. After a suitable
delay the memory is ready for its next read or write cycle.

(It could be argued that it is more biologically plausible for the address decoder inputs to fire
before rather than after the data inputs. The write cycle could operate this way, but then each data
neuron would have to record each firing address decoder input, requiring each synapse rather than
just each neuron to be able to perform a short-term memory function.)

The write data inputs are inactive during a read cycle. The read operation is initiated by the ad-

dress inputs firing which, in turn, causeaddress decoder neurons to fire. These then cause the
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activation levels on the data memory neurons to rise (assuming that previous write cycles have set
at least some of the relevant synaptic weights). A generaligeder-takes-al(d-WTA) style of
output logic selects thé data memory neurons with the highest activation levels and these issue
spikes which encode the data output. Again, a suitable delay is required to allow all neurons to settle
back into their idle states before the memory is ready for its next read or write cycle.

Here we do not provide details of the implementation of dH&TA neural circuit that is re-
quired to generate tha-of-D output code, but merely note that such circuits, generally based on
laterally connected inhibitory neurons that discourage other neurons from firing once the required

number of outputs has fired, have been studied extensively in the past (Maass, 2000).

8. Summary and conclusions

An architecture for a sparse distributed memory based upon the use of sparseNsofavy/
codes has been presented. Theoretical analysis of the memory allows its performance to be predict-
ed and optimised by careful selection of its parameters. Numerical simulations confirm the validity
of the theoretical analysis.

The memory is well-suited to implementation using spiking neurons, requiring only unipolar
binary synaptic weights with a simple Hebbian learning algorithm and yielding a constant, low, av-
erage neural activity level.

OurN-of-M memory may have relevance to the understanding of biological neural systems; for
example, activity in the brain is sparse and distributed, as is the activity in this memory. In addition,
it has been observed that the cerebellum has an organization similar to Kanerva’'s memory, but the
‘address decoder’ neurons in the cerebellum (the granule cells) have very few synaptic inputs — typ-
ically 3 to 5 (Marr, 1969) — whereas Kanerva’'s memory requires address decoders with very large

numbers of inputs. In our analysis, we observed that noise immunity is optimised by using an ad-
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dress decoder with a low threshold (equations 31 and 32) aneb&\ code with a low value for

a, in the same range as that observed in the cerebellum. This property is shared by the ‘hyperplane’
variant of Kanerva’s memory (Jaeckel, 1989) to which our memory is closely related. #&Malue

also minimizes cost in an implementation where each synaptic input has to be grown.

The N-of-M memory shows many similarities to Marr’'s description of the cerebellar cortex
(Marr, 1969), the major difference being the absence of the inhibitory interneurons that Marr sur-
mises regulate activity. Such regulation is implicit whiaf-M codes are used.

The memory combines features of the ‘hyperplane’ variant of Kanerva’'s memory with the stor-
age efficiency of a binary correlation matrix memory to yield a design that can readily be imple-
mented using spiking neurons and a simple Hebbian learning rule. The analysis presented in this
paper enables an implementation of the memory to be optimised for a particular application and

provides insights into its likely performance and characteristic modes of failure.
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Figure captions.

Figure 1: The hypergeometric probability distributions for the number of ‘hits’ (1s in matching posi-

tions) between a pair of random  N-of- M codes for various values of N, and M=1000.

Figure 2: A sparse distributed memory using N-of- M codes.

Figure 3: The expected number of correctly recovered data items ( E,) as a function of the number of
stored items ( 2) and the number of locations each data item is stored in ( w). The data

memory has 4096 locations and the data uses an 11-0f-256 encoding.

Figure 4: The expected number of correctly recovered data items ( E,). the occupancy ( h) and the
probability of all recovered data items being error-free ( Po), as functions of the number of
stored items ( 2) and the number of locations each data item is stored in ( w). The data
memory has 4096 locations and the data uses an 11-of-256 encoding. The maximum value

of E;is 5332, occurringat h =0.5.

Figure 5: The relationship between the address decoder threshold ( T), the number of 1s in each
address decoder ( a) and the number of address decoder rows that fire ( w). The input

address uses an 11-o0f-256 code and the memory has 4096 hard locations ( W = 4096).

Figure 6: Detail view of the area of figure 5 near to the origin.

Figure 7: The expected number of correctly recovered data items ( E.), the occupancy ( h) and the
probability of all recovered data items being error-free ( Po) as functions of the number of
stored items ( 2) and the mean number of locations each data item is stored in ( w). The
data memory has 4096 locations and the data uses an 11-0f-256 encoding. This differs
from figure 4 in that allowance is made here for the variation in w resulting from the statis-
tical properties of the address decoder. The maximum value of E. is reduced to 4445 and

now occurs at h =0.575.



Figure 8: The results of numerical simulations of the memory for which analytical results were pre-

sented in figure 7. The correspondence with the analytical results is very close, the differ-
ences being due to the coarse grid used for the base simulations from which the contours

were calculated by interpolation.

Figure 9: Effect of variations of the address decoder threshold ( T) on the proportion of address

Figure 10:

Figure 11:

Figure 12:

decoders that fire in both the write and the read phases ( WS),/Wr various numbers of

error bits ( n) in the read address. For each value of T two adjacent values for the number
of 1s in the address decoder ( a) were chosen to give values of  \&bove and below 30,

and the results interpolated to W = 3@he lower value of  afor T=2...11 was 3, 10, 20,

33, 48, 65, 85, 107, 132, 165.

Example distributions for the activation level of a data output written as 0 ( Xp - “0”), and
the activation level of a data output writtenas 1 ( Xj - “+"). Output errors will occur where

these two distributions have significant overlap.

The address decoder configurations — the number of 1s in each address decoder row ( a)
and the address decoder threshold ( 7) — used in the numerical simulations to produce the
values used in figure 12 for the mean number of active address decoder rows (). Tk
address decoder has 4096 rows and the input address uses an 11-o0f-256 encoding in

every case.

The performance of the memory with single-bit input errors. The expected number of cor-
rectly recovered data items ( E.) and the occupancy ( h) are plotted as functions of the
number of stored items ( 2) and the mean number of locations each data item is stored in

(W). The data memory has 4096 locations and the data uses an 11-0f-256 encoding.
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