
N-of-M Sparse Distributed Memory 1
Sparse Distributed Memory usingN-of-M Codes

Steve B. Furber, W. John Bainbridge, J. Mike Cumpstey and Steve Temple

Department of Computer Science,
The University of Manchester,

Oxford Road,
Manchester M13 9PL UK

Corresponding author:

Professor S B Furber

Department of Computer Science,

The University of Manchester

Oxford Road

Manchester M13 9PL, UK

tel: (+44) 161 275 6129

fax: (+44) 161 275 6236

email: sfurber@cs.man.ac.uk

Running title. N-of-M Sparse Distributed Memory

N-of-M Sparse Distributed Memory 2

ed by

mem-

a

the

cond

w et

anal-

of the

ory;
Abstract

An analysis is presented of a sparse distributed memory (SDM) inspired by that describ

Kanerva (1988) but modified to facilitate an implementation based on spiking neurons. The

ory presented here employs sparse binaryN-of-M codes, unipolar binary synaptic weights and

simple Hebbian learning rule. It is a two-layer network, the first (fixed) layer being similar to

‘address decoder’ in Jaeckel’s (1989) ‘hyperplane’ variant of Kanerva’s SDM and the se

(writeable) ‘data store’ layer being a correlation matrix memory as first proposed by Willsha

al (1969). The resulting network is shown to have good storage efficiency and is scalable. The

ysis is supported by numerical simulations and gives results that enable the configuration

memory to be optimised for a range of noiseless and noisy environments.

Keywords: Neural networks; Spiking neurons; Sparse distributed memory; Associative mem

Correlation matrix memory; Unipolar weights;N-of-M codes.

N-of-M Sparse Distributed Memory 3

ammed

where

tions.

ditions.

r.
Mathematical Symbols

A – the number of bits in the input address.

A – the i-of-A sparse binary input address (cue) vector.

A – the binary-valued address decoder matrix (with fixed weights).

a – the number of 1s in each row of the address decoder; each address decoder is progr

with ana-of-A code mask that selectsa bits from the input address.

 – the combinatorial operator = .

D – the number of bits in a data word.

D – the binary-valued data storage matrix (with updatable weights).

d – the number of 1s in a data word (forming ad-of-D sparse binary code).

Din – thed-of-D sparse binary input (write) data vector.

Dout – thed-of-D sparse binary output (read) data vector.

E(x) – the expected value ofx.

Ec – the expected number of data words read out without error (in a sequence of reads

other words do contain errors).

f – the number of errors (1s in an incorrect position) in ad-of-D data output code.

h – occupancy; the proportion of data storage matrix bits set to 1 by a series of write opera

I – the recoverable information content of the memory, in bits.

i – the number of 1s in an input address; each input address is ani-of-A sparse binary code.

k – a scaling factor used in the analysis of the address decoder under erroneous input con

n – the number of misplaced 1s in a noisy input (read-out) address.

Pc – the probability that every data word written into the memory is read out without erro

p(x) – the probability ofx.

A W×

Cb
a a!

b! a b–()!

W D×

N-of-M Sparse Distributed Memory 4

ermine

mory.

e data

ue er-

ue er-

0 (1)

r data

infor-

lise the
T – the address decoder threshold, applied to each row of the address decoder to det

whether or not it is active.

W– the number of address decoder rows and the number of word locations in the data me

W – thew-of-Wsparse binary vector output by the address decoder indicating thew active ad-

dress decoder rows.

w – the number of active rows of the address decoder; also the number of locations in th

memory that each data word is written into.

 – the expected, or mean, value ofw.

 – a particular value ofw.

ws – the number of address decoder rows that are active in a read operation (with input c

rors) that were also active in the corresponding write operation - the ‘signal’ component ofW.

wn – the number of address decoder rows that are active in a read operation (with input c

rors) that werenot active in the corresponding write operation - the ‘noise’ component ofW.

X0 (X1) – the activation levels, during a read operation, of a data output that was written as

in the corresponding write operation.

Xt – the threshold activation level in a read operation that determines whether a particula

output bit should deliver a 0 or a 1.

Z – the number of data words written into the memory.

– the storage efficiency of the memory, expressed as the ratio of the number of bits of

mation stored successfully (so that they can be retrieved) to the number of bits needed to rea

adjustable weights (in the array of data storage cells).

 – the variance ofx.

ŵ

w'

η

σ2
x()

N-of-M Sparse Distributed Memory 5

his pa-

from

spik-

similar

t is a

eural

t code,

ber of

se of

rties

ers of

nera-

th in

ron

that

e input
1. Introduction

Associative memories based on neural structures have been studied for many years. In t

per we investigate a form of sparse distributed memory (SDM) that has takes its inspiration

Kanerva’s (1988) SDM, but is substantially modified to support an implementation based on

ing neurons. The resulting memory can be viewed as combining an address decoder layer

to that in Jaeckel’s (1989) ‘hyperplane’ variant of Kanerva’s SDM with a data store layer tha

binary correlation matrix memory as first described by Willshaw et al (1969).

Conventional (dense) binary codes as used in Kanerva’s SDM are ill-suited to spiking n

implementations. If a spike represents a 1 then a neuron can readily detect the 1s in the inpu

but it has no simple way to detect the 0s. This problem is avoided if the code has a fixed num

1s, since once the 1s have been detected the 0s are located implicitly. This leads us to the uN-

of-M codes, where in a population ofM neurons exactlyN fire for each symbol. The suitability of

N-of-M codes for spiking neural implementations is closely related to their self-timing prope

(Verhoeff, 1998) – the completeness of the data is implicit in the coding – so consecutive lay

neurons ‘know’ when they have complete input information and can use this to trigger the ge

tion of their outputs.

N-of-M codes have been studied extensively in the context of neural network coding, bo

their precise form whereN is fixed, generally as a result of anN-max algorithm, and in their ap-

proximate form whereN is subject to statistical variation, for example as a result of each neu

firing independently with probabilityN/M. In most cases the coding is sparse (N << M) and this

results in a constant low average neural activity.

We employN-of-M codes throughout the SDM presented in this paper to yield a memory

retains the principal feature of Kanerva’s memory – an address decoder layer that casts th

N-of-M Sparse Distributed Memory 6

ling a

h ana-

indi-

rating

t al,

ner &

essing

he

sing.

n a sin-

hts.

ith nu-

g two

ing
symbols into a high-dimensional space in order to enhance their separability – whilst enab

straightforward implementation based on spiking neurons. The memory is characterized bot

lytically and numerically to reveal its capacity and tolerance to noisy inputs, and these results

cate how the performance and noise-immunity may be optimized under various ope

conditions.

1.1.N-of-M memories

Correlation Matrix Memories (CMMs) have been subject to extensive study (Willshaw e

1969; Schwenker et al, 1996; Casasent & Telfer, 1992; Kohonen, 1972; Lomas, 1996; Tur

Austin, 1997), and we observe that the data store layer in our memory is just a CMM withN-of-M

input and output encoding. The distinctive feature of the work described here is the preproc

of the inputs into a high-dimensionalN-of-M space using an ‘address decoder’ layer, giving t

memory a capacity that can scale independently ofM.

N-of-M coding has been considered previously for various forms of associative proces

Casasent and Telfer (1992) looked at several configurations of associative processor based o

gle matrix with various training algorithms and binary or analogue, unipolar or bipolar weig

They conclude, amongst other results, thatN-of-M codes (which they callL-maxencoding) are ad-

vantageous. Nadal and Toulouse (1990) studied the storage capacity of single matrixN-of-M asso-

ciative memories. Davidson (1999) also considered single-matrix memories usingN-of-M codes,

presenting theoretical analyses of memory capacity and redundancy, and backing these up w

merical simulations. In this paper we apply similar techniques to analyse a memory comprisin

matrices, considering only unipolar binary weights, as outlined in Section 4.

Aleksander and Stonham’s (1979)N-tuple memories employ a binary-encoded address

mechanism. The address itself is a denseM-bit binary code from which anN-bit random sample of

N-of-M Sparse Distributed Memory 7

sev-

ut with

viewed

ecoder

n

tional

struc-

tion 3.

of

lane’

the

ng

he re-

e pro-

urons.

e rele-
bits is presented to a conventional RAM, where those bits are fully decoded. The outputs from

eral such RAMs (each using a different random sample of address bits) are summed, the outp

the highest score determining the classification of the input address. The system can also be

as a single binary correlation matrix memory whose row inputs are generated by an address d

that produces an output comprising a number of 1-of-2N codes. This approach has a lot in commo

with the one presented here, but it targets a different implementation technology – conven

RAMs instead of spiking neurons – and therefore ends up with a different address decoder

ture.

The ‘hyperplane’ variant of Kanerva’s memory (Jaeckel, 1989) also employsN-of-M codes,

and is closely related to the memory we analyse here. It is discussed further at the end of Sec

1.2. Outline of paper

Section 2 presents the relevant properties ofN-of-M codes. Section 3 presents a summary

Kanerva’s original sparse distributed memory (which employs binary codes) and the ‘hyperp

variant that makes some use ofN-of-M codes. Section 4 describes the structure and presents

theoretical analysis of theN-of-M variant of Kanerva’s memory under error-free conditions, endi

with a comparison of the theoretical results with numerical simulations. Section 5 extends t

sults to include the effects of input and data errors, and Section 6 covers the efficiency of th

posed memory. Section 7 introduces an implementation of the memory based on spiking ne

Section 8 summarizes the paper and draws some conclusions, including a discussion of th

vance of the model to the understanding of biological systems.

N-of-M Sparse Distributed Memory 8

e are

com-

rse

only

based

a large

er re-
2. N-of-M code properties

When comparing two randomN-of-M codes, oneN1-of-M and the otherN2-of-M, the statistics

of the likely match are of interest. The probability that two such randomN-of-M codes sharex 1s

follows the hypergeometric distribution (Feller, 1950):

 (1)

where is the combinatorial operator .

The number of matching 1s,x, will be between 0 and min(N1, N2), and the probability distribu-

tion defined by equation 1 has a mean given by:

 (2)

Figure 1 shows some typical distributions for cases where . Note that ther

two distinct modes of matching distribution, depending on whether (N+1)2 is greater than or less

thanM+2; in the latter case the peak of the distribution is at zero. (This can be established by

paringp(0) with p(1) in equation 1).

A key observation that will be important in what follows is that the distributions for the spa

cases (e.g. N = 30 in figure 1) are not at all smooth. The number of matching 1s,x, can take only

integer values, and so the probability of meeting a matching threshold can be controlled

coarsely by adjusting that threshold.

3. Kanerva’s sparse distributed memory

Kanerva (1988) proposed an organization for a two-layer sparse distributed memory

upon a high-dimensional binary space. A binary address of, say, 1,000 bits is presented to

set of fixed ‘address decoders’ that form the first layer of the memory. Each address decod

p x() C= x
N1 CN2 x–

M N1–
CN2

M⁄⋅

Cb
a a!

b! a b–()!

E x()
N1 N2⋅

M
------------------=

N1 N2 N= =

N-of-M Sparse Distributed Memory 9

mory

distance

infor-

. The

active

if the

in the

quired

ive ad-

ion of

term

number

ys an

dress

pond to

anerva

er than

e data

ters.
sponds to any input within a specified Hamming distance of a particular input code. If the me

has a million address decoders, each could be assigned a random 1,000-bit code and the

defined so that any input address activates approximately 1,000 decoders.

The second layer of the memory, the data store, is a matrix of up/down counters. When

mation is to be stored in the memory it is presented on the data store columns in binary form

address decoder outputs connect to the data store rows. All of the counters on rows driven by

address decoders either increment their count if the column data input is 1 or decrement it

data column input is 0. The counters on inactive rows are unchanged. Each data item stored

memory is thereby distributed across the 1,000 locations activated by the input address.

When information is to be retrieved, an address ‘close’ to the address used to store the re

information must be presented. All of the counts in each column that are connected to an act

dress decoder row are summed, and those column sums that exceed a threshold generate a 1 output.

The key property endowed by the 1000-dimensional binary space is that a very high proport

the space differs from any given point by over 400 bits. The ‘critical distance’ that defines the

‘close’ used above can therefore be hundreds of (but fewer than 400) bits, decreasing as the

of stored patterns increases.

The ‘hyperplane’ variant of Kanerva’s sparse distributed memory (Jaeckel, 1989) emplo

input address with a fixed small number of 1s (for example, a 100-of-1000 code) and the ad

decoder rows are set to 3-of-1000 codes. An address decoder is active if its three 1s corres

1s in the input address. The data store comprises up/down counters as with the original K

design. In our design we apply a threshold match criterion to each address decoder row rath

requiring a full overlap between the 1s in the input address and the decoder row, and for th

store layer we use a binary correlation matrix memory in place of the matrix of up/down coun

N-of-M Sparse Distributed Memory 10

d has

alm &

is

ome

o

input

asso-

r to

ch are

iative
The replacement of up/down counters with binary weights greatly simplifies the data store an

very little adverse effect on performance, as has been noted before (Schwenker et al, 1996; P

Sommer, 1996).

4. An N-of-M coded sparse distributed memory

In this section we present a sparse distributed memory that employsN-of-M codes. The organ-

ization of the memory is illustrated in figure 2. The memory comprises two matrix layers:

• the ‘address decoder’ layer is a matrixA connectingA address inputs toW outputs, with fixed

binary weights initialised to a randoma-of-A code in each row, and with a thresholdT set to con-

trol the number of active hard location selector outputs,w. The address decoder firing pattern

then aw-of-W code though, as we shall see, it is generally impractical to avoid allowing s

variation inw.

• the ‘data memory’ layer is a matrixD with W hard location selector inputs, initialised with zer

weights. The write function simply sets each weight with an active hard location selector

and an active write data input to 1. The output function is ‘d-max’ – thed columns with the high-

est activation levels are selected and the remainder inhibited – to yield ad-of-D code.

The ‘address’ input to the memory,A, employs ani-of-A code, where the number of 1s (i) may

or may not be equal to the number of 1s in each address decoder row (a). We shall see that there is

a (small) advantage in allowingi to be independent froma.

The resulting memory system is an associative memory with similarities to other neural

ciative memories (Austin 1995). The principal differentiating feature is the use of a first laye

cast the inputs into a high-dimensional space (as with Kanerva’s memory), the outputs of whi

then processed through a correlation matrix memory (unlike Kanerva’s memory). Other assoc

N-of-M Sparse Distributed Memory 11

xtrac-

sive-

ent &

. We

sure of

1 at

ore

(with

imated
memories have generally employed application-specific input layers configured as feature e

tors (e.g. Austin & Stonham, 1987).

4.1. Data memory efficiency

The data memory layer is a form of correlation matrix memory that has been studied exten

ly in the past (Nadal & Toulouse, 1990; Willshaw et al, 1969; Schwenker et al, 1996; Casas

Telfer, 1992; Kohonen, 1972; Lomas, 1996; Palm & Sommer, 1996; Turner & Austin, 1997)

present an analysis of this store again here as it forms the basis for what follows.

We assume that address and data inputs are uniformly distributed over their respectivei-of-A

andd-of-D sparse binary spaces. The data memory initially contains 0s, and we use the mea

occupancy,h, which represents the probability of an arbitrary bit in the data store being set to

some point in the write process. AfterZ write operations the expected occupancy of the data st

is given by:

 (3)

h is initially 0, and tends monotonically towards 1 as more data is stored in the memory.

Rewriting equation 3:

 (4)

With sparse codes the term is small, so the number of stored data items

no consideration yet of whether or not these stored items can be recovered) is closely approx

by:

 (5)

h 1 1
w
W
----- d

D
----⋅–

Z
–=

1 h–() Z 1
w
W
----- d

D
----⋅–ln⋅=ln

w d W D⋅()⁄⋅

Z 1 h–() W
w
----- D

d
----⋅ ⋅ln–=

N-of-M Sparse Distributed Memory 12

-

y we

py for

tion:

rrors,

ess

errors

(

, then
The total information stored in the memory afterZ write operations may be identified by con

sidering the number of symbols that can be represented by ad-of-D code:

 bits (6)

If we compare this capacity with the number of binary storage locations in the data arra

can get an idea of the storage efficiency of the memory:

 (7)

For largeD, the combinatorial term can be approximated by:

 (8)

(The term on the right-hand side of the equation in square brackets is the Shannon entro

p = d/D.) For a sparse memory a combination of equations 5, 7 and 8 yields, after simplifica

 (9)

This shows that the most efficient memory, at a given level of occupancy and ignoring e

is the most sparse – a unary 1-of-D code – and operates with the smallest number of firing addr

decoders,w = 1. However, these choices adversely affect the robustness of the memory since

will arise as soon as the number of patterns written exceeds the number of storage locationsW), at

which point the occupancy is still very low (h = 1/D).

4.2. Data memory robustness

We consider the retrieval of a single data word following the writing ofZ data words, where the

retrieval address is presented without error. The hard address selector vector,W, will be the same

for both the write and the corresponding read operation. If a data bit value was written as a 1

I Z() Z
2

Cd
D[]log⋅=

η Z() I Z()
D W⋅
--------------=

Z
D W⋅

2
Cd

D[]log⋅=

2
Cd

D[] D
d
D

2

d
D
---- 1 d

D
----– 

 
2

1 d
D
----– 

 log⋅+log⋅⋅–=log

η Z() 2log 1 h–() 1
w
---- D

d
---- 1+ln⋅ ⋅–=

N-of-M Sparse Distributed Memory 13

in

e col-

ever,

y all

vel of

sibility

his

a bit

ery 0
every activated weight will be set and the expected activation level of the data output columnD

will be given by:

 (10)

If, on the other hand, the data value was written as a 0, the expected activation level of th

umn inD will be given by:

 (11)

So, sinceh < 1, the memory can reasonably be expected to recover the written data. How

the activation level of the 0 output is subject to statistical variation, and with some probabilit

the weights activated will have been set by other data writes, in which case the activation le

an output that should be 0 will be the same as that of one that should be 1, leading to the pos

of a ‘false 1’ error. (In the absence of input errors there is no possibility of a ‘false 0’ error.) T

only happens if every weight contributing to the 0 output is set, so the probability of a 0 dat

being read correctly is:

 (12)

Thus the probability of a complete data value being read correctly, which requires that ev

data bit is read correctly, is:

 (13)

and the probability that every stored data word can be read correctly,Pc, is:

 (14)

E X1() w=

E X0() w h⋅=

p X0 w<() 1 h
w

–=

p data word correct() 1 h
w

–[]
D d–

=

Pc 1 h
w

–[]
Z D d–()⋅

=

N-of-M Sparse Distributed Memory 14

it-

umber

en-

t

t

Clearly, as the occupancyh increases the probability of the error-free recovery of all of the wr

ten data decreases towards zero. The reliability of the memory is also a steep function of the n

of active address decoder rows (w) as we shall see.

Rewriting equation 14 yields:

 (15)

Again,hw is very small (whenw is significantly greater than 1 andh is not too close to 1) so the

first term of the Taylor series gives a good approximation:

 (16)

To identify the optimum configuration of the data memory we consider the principal dim

sions (W andD) and the data coding (d-of-D) to be fixed. To maximise the probability of correc

recovery of all of the data (Pc) for a given number of entries (Z) we observe from equation 14 tha

this means minimizinghw or, equivalently,w ln h. Thus we seek a solution where

 (17)

Equation 5 can be rewritten as:

 (18)

Differentiating with respect tow and substituting the value ofZ from equation 5 yields:

 (19)

Substituting this result into equation 17 gives the following formula forh:

 (20)

Pc() Z D d–() 1 h
w

–()ln⋅ ⋅=ln

Pc()ln Z D d–() h
w⋅ ⋅–=

wd
d

w hln() h
w
h
---- hd

wd
------- 0=⋅+ln=

w
Z d⋅
W D⋅
--------------⋅ 1 h–()ln–=

hd
wd

------- 1 h–() 1 h–()ln⋅
w

---–=

h h 1 h–() 1 h–() 0=ln⋅–ln⋅

N-of-M Sparse Distributed Memory 15

f 0.5

w et

e-

ment

ber

ith er-

(from

ws

ut er-

when
This has the solutionh = 0.5, agreeing with previous results that show that an occupancy o

gives the maximum recoverable information content in a correlation matrix memory (Willsha

al, 1969).

Substituting the expression forZ from equation 5 into equation 16 yields:

 (21)

Equation 21 can be used (withh = 0.5) to determine the optimum number of active address d

coder words (w) for a given choice of data memory dimensions (W, D andd) and an acceptable

probability of error-free recovery of all written data (Pc).

It can be argued, however, that totally error-free data recovery is too restrictive a require

for this style of memory. An alternative definition of capacity is to establish the maximum num

of data items that can be recovered correctly, allowing that other items may be recovered w

rors. The expected number of correctly recoverable data words in the presence of errors is

equation 13):

 (22)

For a given number of stored values (Z) we can vary the number of active address decoder ro

(w) to maximize the expected number of correctly recoverable data words (Ec) and, as before, we

find the maximum corresponds to occupancyh = 0.5.

If we continue writing entries until every new entry causes one or more additional read-o

rors we have reached the maximum useful capacity of the data memory. This point is reached

. Differentiating the natural logarithm of equation 22 gives:

 (23)

h
w–

w⋅ 1 h–()ln
Pc()ln

---------------------- W
D
d
---- D d–()⋅ ⋅ ⋅=

Ec Z 1 h
w

–[]⋅
D d–

=

Ec Zd⁄d 0=

1
Ec

Ecd

Zd
--------- 1

Z

D d–

1 h
w

–
--------------- h h

w wd
Zd

------- 0=⋅ ⋅ln⋅–=⋅

N-of-M Sparse Distributed Memory 16

ut

ntry

cupan-

mem-

when

over-

Such

096

ords

ws

erns
At constant occupancyh equation 5 implies thatwZ is constant, so . Substitut-

ing into equation 23 yields:

 (24)

This gives a value for the number of active address decoder rows (w) that is smaller than that

given by equation 21, reflecting the fact that a higherw gives a memory that has fewer errors b

lower capacity. A lowerw results in more errors, but gives a higher capacity as each written e

sets fewer weights. In both cases, the maximum extractable information occurs when the oc

cy h = 0.5.

Note that neither equation 22 nor equation 24 depends on the number of locations in the

ory (W). This shows that the memory is linearly scalable; the maximum capacity is achieved

the occupancyh = 0.5, at which point the number of active address decoder rows,w, is given by

Equation 24. Then, the proportion of values that are recoverable without error (Ec/Z) is given by

Equation 22. Finally, the number of entries that must be written to achieve the maximum rec

able number of data values scales linearly with the number of locations,W (Equation 5). Hence the

maximum recoverable data also scales linearly withW.

The behaviour of the memory is most clear when a typical plot of equation 22 is viewed.

a plot is shown in 3-D in figure 3 and in contour form in figure 4. The example system has 4

memory locations (W) and stores data using an 11-of-256 code; the choice ofd-of-D code is dis-

cussed further in Section 5.2.

Referring to figure 4, the closed contours indicate how the expected number of correct w

(Ec) varies with the number of stored entries (Z) and the number of active address decoder ro

(w). The maximum is atEc = 5,332, and the error rate there (the relative frequency of stored patt

w Zd⁄ w Z⁄–=d

h
w–

1–
w

----------------- D d–()– hln⋅=

N-of-M Sparse Distributed Memory 17

reater

both di-

n

(

(

p

d val-

ent to

where

Con-

-free

lope,

of er-

coder

um

h

ome-
that are recovered with some error) is just over 11%. Note that this maximum capacity is g

than 4,096, the number of storage locations; this is possible because the data is sparse in

mensions of the storage matrix. The central contour is atEc = 5,000, and the contours then go dow

in steps of 500. The south face of the ‘hill’ is very nearly planar, with very few recovery errorsEc

is very close toZ), except at the west end where the number of active address decoder rowsw) is

small. Performance falls off rapidly if eitherw is too small orZ is too large, as shown by the stee

slopes on the west and north sides of the ‘hill’ respectively. Ifw is too small there is insufficient

redundancy in the way the data is stored and even a low level of interference from other store

ues causes errors; if Z is too large then the interference from other stored values is suffici

cause errors whatever the level of redundancy.

Superimposed on the contours in figure 4 are two other sets of data. The hyperbolae show

the occupancy,h, has values 0.2 (to the south-west), 0.5 (centre) and 0.8 (to the north-east).

stanth lines correspond to constantwZ; see equation 5. Note howh = 0.5 passes directly through

the summit of the ‘hill’. On the south face are curves showing where the probability of error

read-out (Pc) has values 0.1, 0.5 and 0.9 (from equation 14, with the 0.1 value higher up the s

0.5 in the middle, and 0.9 lower down). The maxima of these curves also lie onh = 0.5. Note how

close together these curves are, indicating that the maximum capacity with a high probability

ror-free read-out is relatively insensitive to the interpretation of ‘high probability’.

As a final observation, note that the optimum value for the number of active address de

rows (w) for capacity with errors (at the summit of the ‘hill’) is around 11, whereas the optim

value for error-free recovery (wherePc = 0.5 crossesh = 0.5) is around 20, and the capacity wit

errors is about twice the error-free capacity. Any practical use of the memory will operate s

N-of-M Sparse Distributed Memory 18

te bal-

ws,

h the

n is

coder

thresh-

, but
where in this range, the particular operating position being chosen to achieve an appropria

ance between capacity and error rate.

4.3. Address decoder analysis

The address decoder thresholdT can be related to the number of active address decoder ro

w. The active address decoder rows include all those that haveT or more 1s in common with the

input address. From equation 1, the probability that a row has T or more bits in common wit

input address is:

 (25)

The expected number of active address decoder rows is then:

 (26)

The relationship between the number of active address decoder rows (w), the number of 1s in

each address decoder row (a) and the address decoder threshold (T) is shown in figure 5 for a mem-

ory with W = 4096 locations using an 11-of-256 input address. The useful part of this functio

plotted in more detail in figure 6. This shows that the optimum number of active address de

rows can be achieved by using one of several different combinations of the address decoder

old and the number of 1s in each address decoder row.

If the memory is operating with error-free input the same address decoders will always fire

the number that fire is subject to statistical variation from one input address to another. TheW in-

dependent address decoder rows result in a binomial distribution forw with mean given by equation

26 and variance given by:

 (27)

pa
1

Ca
A

--------- Ck
i

Ca k–
A i–⋅

k T=

a

∑⋅=

ŵ W pa⋅=

σa
2

W pa 1 pa–()⋅ ⋅=

N-of-M Sparse Distributed Memory 19

with-

s (ig-

t with

d

s

-

coder

o-

ct

dress

t the

ct the
In particular, the probability ofw taking a particular value w’ is given by:

 (28)

Equation 14, which gives the probability that all of the stored data values can be recovered

out error, now becomes:

 (29)

Similarly equation 22, which gives the expected number of correctly recoverable data item

noring those recovered with error) becomes:

 (30)

The result of the statistical variation of the number of active address decoder rows (w) is illus-

trated in figure 7, which shows the performance of the same memory as used for figure 4 bu

the spread now taken into account. The summit is lower, atEc= 4,445, where the number of store

valuesZ = 5,440 andw = 15; it has also moved off the occupancyh = 0.5 curve, and correspond

to h = 0.575. The error-free performance is poor at loww, but the general shape of the ‘hill’ is un

affected. It is clear, though, that for optimal performance (however defined) the address de

threshold (T) must be set to give a mean value ofw somewhat higher than that which would be ch

sen without taking the spread into account.

It might be thought that the variation of the number of active address decoder rows (w) could

be reduced (or even eliminated) by imposing a ‘w-max’ mechanism similar to that used to sele

the ‘d-max’ data outputs. However, as noted at the end of Section 2, the activation of the ad

decoder rows is quantized and thew active outputs are dominated by decoders that exactly mee

threshold. It is not possible, therefore, to discriminate between the outputs that fire to sele

pw' 1 pa–()W w'–
pa

w'
Cw'

W⋅ ⋅=

Pc 1 h
w'

–[]
w'
∏

Z pw' D d–()⋅ ⋅
=

Ec p
w'
∑ w' Z 1 h

w'
–[]⋅ ⋅

D d–
=

N-of-M Sparse Distributed Memory 20

of

own

pected

it is a

f stored

d by

near

se data

e an-

inter-

rseness

e ad-

d data
same number each time, and some spread inw must be accepted. The statistical independence

the individual decoders inevitably leads to the binomial distribution used above.

4.4. Numerical simulations

Numerical simulations were carried out to confirm the validity of the analytical results sh

in figure 7. This process is not as straightforward as might at first be assumed, since the ex

number of active address decoders is hard to control smoothly over the desired range as

rather complex function of the address decoder parameters (see equation 25). The number o

values (Z) is straightforward to control, but the desired coverage of the values was achieve

selecting ratherad hoccombinations of values for the number of 1s in the input address (i), each

address decoder row (a) and the address decoder threshold (T). The contour-plotting software re-

quired a uniform distribution of points along the horizontal axis, and this was obtained by li

interpolation of the results computed by a single simulation at each of the (,Z) points. A similar

procedure was used later to produce figure 12; Section 5.1 includes more detail on the preci

points used there.

The numerical simulations of the error-free memory are shown in figure 8 and confirm th

alytical results presented in figure 7. The differences between the figures are mainly due to

polating the contour values from the coarse grid used for the base simulation cases, the coa

of the grid being itself an unavoidable consequence of the highly quantized behaviour of th

dress decoders noted above.

5. Error recovery

Now we consider the case where the memory has been written with correct address an

values, but an attempt is made to recover a data value with a corrupt address.

ŵ

ŵ

ŵ

N-of-M Sparse Distributed Memory 21

r that

t were

con-

ws that

t

lly

ing the

ining

ribute

active

r small

e,

for

le
In the simplest case, the corrupt address is a validi-of-A code but it has a number (n) of bits set

in incorrect positions; that is, some of the bits that should be 1 are 0, and an equal numbe

should be 0 are 1. The effect of this will be to cause some of the address decoder rows tha

active during the write operation to be inactive during the corresponding read operation, and

versely some that were inactive to be active. We denote the number of address decoder ro

are active during both read and write operations byws (s indicating ‘signal’), and the number tha

are active only during read bywn (n denoting ‘noise’). It is clear that these two parameters fu

characterize the operation of the memory under noisy input conditions.

On the basis that most of the active address decoder rows exactly meet the threshold dur

write operation, they will also be active during a read operation with the address input conta

errors provided that those errors do not coincide with any of the address input bits that cont

to meeting that threshold. To a first approximation the number of address decoders that are

both during write and during read with ann-bit input error is therefore given by:

 (31)

Numerical simulation results illustrating this dependency are shown in figure 9, where

is plotted against the address decoder threshold (T) for 1 to 5 input bit errors using an 11-of-256

input code to the address decoder. (These results agree reasonably well with equation 31 fo

values ofT, but the approximation is poor for values ofT greater than 3.) The best performanc

with the highest value for , is obtained by selecting a small value forT. Keeping the number

of active address decoder rows (w) close to an optimal value requires a small value to be chosen

the number of 1s in each address decoder row,a (see figure 6). This is why it is desirable to be ab

to choosea independently from the number of 1s in each input address, i.

ws 1 T
i
---– 

  n
w⋅=

ws w⁄

ws w⁄

N-of-M Sparse Distributed Memory 22

coder

on.

ly af-

r rows

f those

he
The correct address decoder rows active during a read operation (numberingws) will be a subset

of thew that fired in the corresponding write operation and the undesired active address de

rows (numberingwn) will be a subset of the that were inactive during the write operati

Under ann-bit input error, to a first approximationwn is given by:

 (32)

Note that, unlikews which is proportional tow, to a first approximationwn is independent ofw.

Thus a data value that is written to a small number of hard locations will be disproportionate

fected by address-input noise.

In the presence of more input errors the proportion of undesired active address decode

will increase, but the performance of the memory is still fully determined by the variablesws and

wn.

The expected activation level of a data output that was written as a 1 (formed as the sum o

elements of the data memory matrix column that connect to an active word line) is now:

 (33)

The expected activation level of a data output that was written as a 0 is:

 (34)

Both activation levels are subject to statistical variation following binomial distributions. T

respective variances are given by:

 (35)

 (36)

W w–

wn 1 1 T
i
---– 

  n
– 

  ŵ⋅=

E X1() ws wn h⋅+=

E X0() ws wn+() h⋅=

σ1
2

wn h 1 h–()⋅ ⋅=

σ0
2

ws wn+() h 1 h–()⋅ ⋅=

N-of-M Sparse Distributed Memory 23

-

-

o-

are

ce

ation

y

0.6).

e

m both

ribu-

erlap.
The data memory output distribution is bimodal, havingd outputs with expected valueE(X1)

and outputs with expected valueE(X0). Thed-of-D code output from the data memory se

lects the highest scoringd outputs. The threshold for selection is the level,Xt, where the same

number ofX0 outputs exceedXt asX1 outputs fall belowXt. That is, the expected number of erro

neous ‘noise’ data outputs,dn, is given by:

 (37)

This is sufficient to determineXt and, hence,E(dn). The convergence requirement for an aut

associative memory (where thea-of-A andd-of-D codes are the same) is that the output errors

fewer than the input errors,E(dn) < an. Where the input and output codes differ the convergen

requirement is harder to define, but should probably be based on a consideration of the inform

content of the input and output codes.

An example plot of the (binomial) output distributions forX0 andX1 is shown in figure 10. Here

the outputd-of-D code is 11-of-256,ws = 20,wn = 10, andh = 0.5. The plot shows the frequenc

distribution of activation levels in theX0 (‘o’) and X1 (‘+’) outputs. Although the distributions do

overlap, the expected number of output errors is less than 1 in this case (in fact, it is close to

As the occupancyh increases the mean of theX0 distribution (equation 34) moves to the right, th

overlap between the distributions increases, and the output error rate rises.

The optimization of the error-recovery properties of the memory is complex. The ratio ofws to

wn is optimised by the choice of address decoder parameters, but it is easy to increase the

proportionately. This will have the effect of reducing the ratio of variance to mean of both dist

tions (equations 35 and 36) and thereby reducing the overlap. However, it will also causeh to in-

crease (equation 3), thereby moving the distributions closer together and increasing the ov

D d–

E dn() d= p X1 Xt≤() D d–() p X0 Xt≥()⋅=⋅

N-of-M Sparse Distributed Memory 24

ed

ns

-

t

e.

haps

enefit

ly, un-

r the
To estimate the overall effect of increasingws andwn, let us assume that they are both scal

by a factork. The difference between the distribution means, from equations 33 and 34, is:

 (38)

Both variances scale similarly by a factor ofk, and the ratio of the difference between the mea

to the standard deviation gives an estimate of the distribution overlap:

 (39)

wherei = 0 or 1. Now equation 5 can be rewritten:

 (40)

With this, and noting thatw is proportional tok, we obtain:

 (41)

where andw0 is some baseline value ofw. Equation 41 is a monotonic de

creasing function ofk for positivek values, showing that increasingw has a generally adverse effec

on the error performance of the memory.

Clearly this result should not be taken as indicating thatw should be made as small as possibl

All the factors considered in the error-free memory still apply. It simply demonstrates, per

counter-intuitively, that increasing the redundancy under error conditions may have no net b

as the gains are more than outweighed by the concomitant increase in occupancy.

5.1. Numerical simulations

A range of memories with different address decoder parameters was simulated numerical

der single-bit input error conditions. As with figure 8 (see Section 4.4), the range of values fo

E X1() E X0() ws 1 h–()⋅=–

E X1() E X0()–

σi
------------------------------------- k 1 h–()

h
-------------------∝

h 1 e
Z

wd
WD
--------- 

 –

–=

E X1() E X0()–

σi
------------------------------------- k

e
Ak

1–
-----------------∝

A Z w0d WD()⁄()⋅=

N-of-M Sparse Distributed Memory 25

range

er

rical

mber

en in

istri-

with

e

e ad-

erance

45

aps,

l data

le, we

and

f the

es:
expected number of active address decoders was achieved by simulating memories with a

of values for the number of 1s in each address decoder row,a, and a range of address decod

thresholds,T. The values used are shown in figure 11, which is a partial confirmation by nume

simulation of figure 6. For each of these configurations the memory was simulated with the nu

of stored values (Z) equal to 100, 250, then in increments of 250 to 4,000, 4,500, 5,000 and th

increments of 1,000 to 10,000. The contour plotting program required a uniform horizontal d

bution of input points, and this was again obtained by linear interpolation.

The results, shown in figure 12, confirm that the optimum memory configuration operates

the number of active address decoder rowsw very close to the optimal values for the error-fre

memory. This is similar to the demonstration by Kristoferson that varying the number of activ

dress decoder rows between read and write operations has no benefit in improving error tol

(Kristoferson, 2001).

The maximum number of recoverable error-free valuesEc appears to be about 4,300 atw = 14

and with the number of stored values,Z, being about 5,400. The loss of useful capacity, from 4,4

in the error-free case to 4,300 with single-bit input errors (which is one bit in eleven) is, perh

lower than might be expected.

5.2. Data error recovery

We can further extend the tolerance of the memory to errors if we use a subset of the ful

d-of-D space as valid symbols, resolving each output to the nearest valid symbol. For examp

could allowf-bit error recovery by mapping everyd-of-D code with at least 1s in common

with a valid symbol to that symbol. With such a mapping there must be fewer valid symbols

the information content of each symbol is diminished accordingly. Since the great majority o

mapped symbols will be at the maximum distance from the valid symbol, equation 6 becom

ŵ

d f–

N-of-M Sparse Distributed Memory 26

n-

erves to

a val-

plete

e 12

t we

as de-
 bits (42)

Now to a first approximation the value ofZ that gives maximum capacity varies as 1/d (see

equation 5; the optimum number of active address decoders,w, depends only very weakly ond –

see equation 24), so we can identify thed-of-D code that gives the highest information content u

der assumed error conditions. We wish to solve:

 (43)

The combinatorial terms can be approximated closely using:

 (44)

Carrying out the differentiation yields, ford << D:

 (45)

Numerical solutions of equation 43 for a 256-bit code with 1-, 2-, 3- and 4-bit errors ared = 8,

14, 20 and 25 respectively. Equation 45 gives the same result for these cases, and it also s

indicate the general trend of the solution which has as its dominant term.

Throughout this paper we have been concerned only with maximizing the number of dat

ues recovered without any error, so we have treated a single-bit error as invalidating a com

output value. Many of the erroneous outputs that occur at the summit of the hill, 20% in figur

for example, will have only single-bit errors and therefore contain significant information tha

have neglected but that could be recovered using a suitable nearest-valid-symbol scheme

scribed above.

I Z() Z
2

Cd
D

Cf
d

Cf
D d–⋅()⁄[]log⋅=

dd
d 1

d

2
C

D
d Cf

d
Cf

D d–⋅()⁄[]log⋅
 
 
 

0=

x!()ln
1
2
--- 2πx() x x x–ln+ln=

d f D d f–()⋅() 1–ln() 2 f !() d
1
2
--- 2π

d f–
------------ 

  1– d
2 d f–()
-------------------- d

2
f

2
+()

2D
----------------------–+ln+ln+ln–=

d f Dln⋅=

N-of-M Sparse Distributed Memory 27

ter-

f-256

roper-

r

erable

mple

a total

igura-

o the

ation

ebbian

rable

ough
The choice of whichd-of-D code should be employed in any application is a matter of de

mining the required number of unique codes and the required resilience to errors. The 11-o

code used for the examples throughout this paper is an arbitrary choice, with no identified p

ties that make it optimal in any respect.

6. Memory efficiency

We now return to the issue of the efficiency of theN-of-M memory operating without data erro

correction. Referring back to equation 7, we can base the efficiency measure on the recov

data stored:

 (46)

With an 11-of-256 data code, each stored value contains 62 bits of information. For the exa

discussed earlier, with no address errors 4,445 values can be recovered without error (from

of 5,440 values written into the memory) from the 4,096 word memory (that is,W= 4,096). This

gives an efficiency of 0.26 bits of information per bit of writeable data store.

Palm and Sommer (1996) presented an extensive analysis the efficiency of various conf

tions of associative binary network operating under similar (though not identical) conditions t

data store analysed here. They demonstrated an asymptotic efficiency of 0.69 bits of inform

per synapse for very large, sparse binary networks with error-free addressing and the same H

learning algorithm that we have employed. The efficiency of finite memories of a size compa

to ours is significantly lower, in a similar range to the 0.26 bits per synapse we have found, th

direct comparison is not straightforward as their definition of capacity is different from ours.

η Ec()
I Ec()
D W⋅
--------------=

Ec

D W⋅

2
Cd

D[]log⋅=

N-of-M Sparse Distributed Memory 28

rious

ddress

n con-

eaky

algo-

ettle

f the

kes

n an

of

en

address

ut con-

er neuron

o no

coder
7. Neural implementation

Kanerva’s sparse distributed memory has been implemented directly in hardware in va

forms (Flynn et al, 1988), but these implementations have required dedicated units for the a

decoder Hamming distance computations and the data memory matrix of up-down counters. I

trast, theN-of-M sparse distributed memory can readily be implemented using conventional l

integrate-and-fire spiking neurons with binary synaptic weights and a local Hebbian learning

rithm. The ‘leaky’ property is only required here in order that all neurons in the system will s

down into inactive states between ‘waves’ of activity. This section gives a brief overview o

operation of such an implementation.

The memory is activated when ani-of-A address input pattern arrives. This means that spi

arrive on exactlyi of theA input neurons at (roughly) the same time. (We are also interested i

extension toN-of-M coding where the order of arrival carries additional information – a form

rank order coding(Thorpe et al, 2001) – but that is not the subject of this paper.)

The address decoder (see figure 2) comprisesWneurons. The connections and weights betwe

the input neurons and the address decoder neurons are fixed, as are the thresholds of the

decoder neurons. One can view the connection matrix as being complete – that is, every inp

nects to every address decoder neuron – and the weights are such that each address decod

hasa weights set to 1 and weights set to 0. Alternatively, since a 0 weight is equivalent t

connection, one can view each address decoder neuron as being connected to justaof the input neu-

rons. In either case, thea 1s or input connections are selected at random for each address de

neuron.

A a–

N-of-M Sparse Distributed Memory 29

urons,

n-

con-

s from

e data

mode

g

od-

onding

es has

settle

uitable

fire

h data

er than

e ad-

the
With this configuration, and with an appropriate threshold set for the address decoder ne

firing i-of-A inputs will causew-of-Waddress decoders to fire, withw subject to some variation as

described in Section 4.3.

The data memory comprisesD neurons each of which has allWaddress decoder neurons as i

puts. In addition, each data neuron has a unique write data input. Initially, all of the synaptic

nections from the address decoder neurons have weights set to 0. The synaptic connection

the write data inputs have weights whose numerical strength is irrelevant, but whenever a writ

input neuron fires it must force its respective data memory neuron into a Hebbian learning

that persists throughout the associated incident wave of firing address decoder neurons.

A write cycle now proceeds as follows. Firstly, thed-of-D write data input is signalled byd of

the write data neurons firing, in turn puttingd of the data memory neurons into Hebbian learnin

mode. Then the address inputs fire, causingw address decoders to fire. Wherever an address dec

er output spike meets a data memory neuron that is in Hebbian learning mode the corresp

synaptic connection is set to 1. Once the wave of incident address decoder neuron spik

passed, the ‘leaky’ aspect of all of the neurons causes the activation levels of all neurons to

back to zero and the data memory neurons cease to be in Hebbian learning mode. After a s

delay the memory is ready for its next read or write cycle.

(It could be argued that it is more biologically plausible for the address decoder inputs to

before rather than after the data inputs. The write cycle could operate this way, but then eac

neuron would have to record each firing address decoder input, requiring each synapse rath

just each neuron to be able to perform a short-term memory function.)

The write data inputs are inactive during a read cycle. The read operation is initiated by th

dress inputs firing which, in turn, causew address decoder neurons to fire. These then cause

N-of-M Sparse Distributed Memory 30

ve set

ssue

settle

on

uired

predict-

lidity

olar

, av-

s; for

ition,

but the

– typ-

large

n ad-
activation levels on the data memory neurons to rise (assuming that previous write cycles ha

at least some of the relevant synaptic weights). A generalisedwinner-takes-all(d-WTA) style of

output logic selects thed data memory neurons with the highest activation levels and these i

spikes which encode the data output. Again, a suitable delay is required to allow all neurons to

back into their idle states before the memory is ready for its next read or write cycle.

Here we do not provide details of the implementation of thed-WTA neural circuit that is re-

quired to generate thed-of-D output code, but merely note that such circuits, generally based

laterally connected inhibitory neurons that discourage other neurons from firing once the req

number of outputs has fired, have been studied extensively in the past (Maass, 2000).

8. Summary and conclusions

An architecture for a sparse distributed memory based upon the use of sparse binaryN-of-M

codes has been presented. Theoretical analysis of the memory allows its performance to be

ed and optimised by careful selection of its parameters. Numerical simulations confirm the va

of the theoretical analysis.

The memory is well-suited to implementation using spiking neurons, requiring only unip

binary synaptic weights with a simple Hebbian learning algorithm and yielding a constant, low

erage neural activity level.

OurN-of-M memory may have relevance to the understanding of biological neural system

example, activity in the brain is sparse and distributed, as is the activity in this memory. In add

it has been observed that the cerebellum has an organization similar to Kanerva’s memory,

‘address decoder’ neurons in the cerebellum (the granule cells) have very few synaptic inputs

ically 3 to 5 (Marr, 1969) – whereas Kanerva’s memory requires address decoders with very

numbers of inputs. In our analysis, we observed that noise immunity is optimised by using a

N-of-M Sparse Distributed Memory 31

rplane’

tex

r sur-

stor-

ple-

in this

n and
dress decoder with a low threshold (equations 31 and 32) and ana-of-A code with a low value for

a, in the same range as that observed in the cerebellum. This property is shared by the ‘hype

variant of Kanerva’s memory (Jaeckel, 1989) to which our memory is closely related. A lowavalue

also minimizes cost in an implementation where each synaptic input has to be grown.

The N-of-M memory shows many similarities to Marr’s description of the cerebellar cor

(Marr, 1969), the major difference being the absence of the inhibitory interneurons that Mar

mises regulate activity. Such regulation is implicit whenN-of-M codes are used.

The memory combines features of the ‘hyperplane’ variant of Kanerva’s memory with the

age efficiency of a binary correlation matrix memory to yield a design that can readily be im

mented using spiking neurons and a simple Hebbian learning rule. The analysis presented

paper enables an implementation of the memory to be optimised for a particular applicatio

provides insights into its likely performance and characteristic modes of failure.

N-of-M Sparse Distributed Memory 32

6396

. The

av-

n. We

o the
Acknowledgements

The authors gratefully acknowledge the support of EPSRC through ROPA grant GR/M4

(which supported WJB) and funding from Cogniscience Ltd (which supported JMC and ST)

use ofN-of-M codes in this work was strongly influenced by Simon Davidson’s PhD thesis (D

idson, 1999), and the authors are grateful to Peter Ivey for drawing this thesis to their attentio

are also grateful to Jim Austin for his helpful comments on an early draft of this paper, and t

journal referees who were exceptionally thorough and helpful in their comments.

N-of-M Sparse Distributed Memory 33

ccess

R.

and

ssors.

,

(ed.).
References

Aleksander, I. and Stonham, T.J. (1979). Guide to Pattern Recognition using Random-A

Memories.Computer and Digital Techniques, 2, 29-40.

Austin, J. (1995). Associative Memories and the Application of Neural Networks to Vision. In

Beale (Ed.),Handbook of Neural Computation. Oxford University Press.

Austin, J. and Stonham, T.J. (1987). An Associative Memory for Use in Image Recognition

Occlusion Analysis.Image and Vision Computing,5, 251-261.

Casasent, D. and Telfer, B. (1992). High Capacity Pattern Recognition Associative Proce

Neural Networks, 5, 687-698.

Davidson, S. (1999).On the Application of Neural Networks to Symbolic Systems. PhD Thesis,

University of Sheffield, UK.

Feller, W. (1950).An Introduction to Probability Theory and its Applications, volume 1. Wiley,

New York, 33-39.

Flynn, M.J., Kanerva, P., Ahanin, B., Bhadkamkar, N. Flaherty, P. and Hickey, P. (1988).Sparse

Distributed Memory Prototype: Principles of Operation. Technical Report CSL-TR-87-338

Computer Systems Laboratory, Stanford University.

Jaeckel, L.A. (1989).A Class of Designs for a Sparse Distributed Memory. RIACS Technical

Report 89.30, NASA Ames Research Centre.

Kanerva, P. (1988).Sparse Distributed Memory. Cambridge MA: MIT Press.

Kanerva, P. (1993). Sparse Distributed Memory and Related Models. In Hassoun, M.H.

Associative Neural Memories: Theory and Implementation. Oxford University Press.

Kohonen, T. (1972). Correlation Matrix Memories.IEEE Transactions on Computers,C-21, 353-

359.

N-of-M Sparse Distributed Memory 34

ry. In

.

ks. In

socia-

ssing.

ies.

ative
Kristoferson, J. (2001). Some Results on Activation and Scaling of Sparse Distributed Memo

Uesaka, Y., Kanerva, P. and Asoh, H. (eds.).Foundations of Real-World Intelligence. Stanford:

CSLI Publications, 283-289.

Lomas, D. (1996).Improving Automated Postal Address Recognition.MSc dissertation, Univer-

sity of York, UK.

Maass, W. (2000). On the Computational Power of Winner-Take-All.Neural Computation,12,

2519-2535.

Marr, D. (1969). A Theory of Cerebellar Cortex. Journal of Physiology, 202, 437-470.

Nadal, J-P. and Toulouse, G. (1990). Information Storage in Sparsely Coded Memory NetsNet-

work,1, 61-74.

Palm, G. and Sommer, F.T. (1996). Associative Data Storage and Retrieval in Neural Networ

Domany, E., van Hemmen, J.L. and Schulten, K. (eds.).Models of Neural Networks III: Asso-

ciation, Generalization and Representation. New York: Springer-Verlag.

Schwenker, F., Sommer, F.T. and Palm, G. (1996). Iterative Retrieval of Sparsely Coded As

tive Memory Patterns.Neural Networks,9, 445-455.

Thorpe, S., Delorme, A. and Van Rullen, R. (2001). Spike-based Strategies for Rapid Proce

Neural Networks, 14, 715-725.

Turner, M. and Austin, J. (1997). Matching Performance of Binary Correlation Matrix Memor

Neural Networks,10, 1637-1648.

Verhoeff, T. (1998). Delay-Insensitive Codes – an Overview.Distributed Computing,3, 1-8.

Willshaw, D. J., Buneman, O.P. and Longuet-Higgins, H.C. (1969). Non-Holographic Associ

Memory.Nature, 222, 960-962.

Figure captions.

Figure 1: The hypergeometric probability distributions for the number of ‘hits’ (1s in matching posi-

tions) between a pair of random N-of-M codes for various values of N, and M=1000.

Figure 2: A sparse distributed memory using N-of-M codes.

Figure 3: The expected number of correctly recovered data items (Ec) as a function of the number of

stored items (Z) and the number of locations each data item is stored in (w). The data

memory has 4096 locations and the data uses an 11-of-256 encoding.

Figure 4: The expected number of correctly recovered data items (Ec), the occupancy (h) and the

probability of all recovered data items being error-free (Pc), as functions of the number of

stored items (Z) and the number of locations each data item is stored in (w). The data

memory has 4096 locations and the data uses an 11-of-256 encoding. The maximum value

of Ec is 5332, occurring at h = 0.5.

Figure 5: The relationship between the address decoder threshold (T), the number of 1s in each

address decoder (a) and the number of address decoder rows that fire (w). The input

address uses an 11-of-256 code and the memory has 4096 hard locations (W = 4096).

Figure 6: Detail view of the area of figure 5 near to the origin.

Figure 7: The expected number of correctly recovered data items (Ec), the occupancy (h) and the

probability of all recovered data items being error-free (Pc) as functions of the number of

stored items (Z) and the mean number of locations each data item is stored in (w). The

data memory has 4096 locations and the data uses an 11-of-256 encoding. This differs

from figure 4 in that allowance is made here for the variation in w resulting from the statis-

tical properties of the address decoder. The maximum value of Ec is reduced to 4445 and

now occurs at h = 0.575.

Figure 8: The results of numerical simulations of the memory for which analytical results were pre-

sented in figure 7. The correspondence with the analytical results is very close, the differ-

ences being due to the coarse grid used for the base simulations from which the contours

were calculated by interpolation.

Figure 9: Effect of variations of the address decoder threshold (T) on the proportion of address

decoders that fire in both the write and the read phases (), for various numbers of

error bits (n) in the read address. For each value of T two adjacent values for the number

of 1s in the address decoder (a) were chosen to give values of above and below 30,

and the results interpolated to . The lower value of a for T = 2...11 was 3, 10, 20,

33, 48, 65, 85, 107, 132, 165.

Figure 10: Example distributions for the activation level of a data output written as 0 (X0 - “o”), and

the activation level of a data output written as 1 (X1 - “+”). Output errors will occur where

these two distributions have significant overlap.

Figure 11: The address decoder configurations – the number of 1s in each address decoder row (a)

and the address decoder threshold (T) – used in the numerical simulations to produce the

values used in figure 12 for the mean number of active address decoder rows (). The

address decoder has 4096 rows and the input address uses an 11-of-256 encoding in

every case.

Figure 12: The performance of the memory with single-bit input errors. The expected number of cor-

rectly recovered data items (Ec) and the occupancy (h) are plotted as functions of the

number of stored items (Z) and the mean number of locations each data item is stored in

(). The data memory has 4096 locations and the data uses an 11-of-256 encoding.

ws ŵ⁄

ŵ

ŵ 30=

ŵ

ŵ

0

0.1

0.2

0.3

0.4

0 5 10 15 20 25 30 35 40 45 50

Pr
ob

ab
ili

ty
 o

f
x

H
its

Number of Hits (x)

N = 30

N = 60

N = 100

N = 160 N = 200

M = 1000 for all curves

address
decoder data

memory

addressA
(i-of-A)

write dataDin
(d-of-D)

hard

(w-of-W)

read dataDout
(d-of-D)

(each row
A

is a-of-A)
D

location

W

selectors

0

10

20

30

40

50

0

2000

4000

6000

8000

10000

0

1000

2000

3000

4000

5000

6000

Z
w

E
c

Z

w

Ec

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 15 20 25 30 35 40 45 50 5
0

2000

1000

4000
4500

5000

0.2
0.8

E
Pc

c

h

w

0.5
5332

Z

a

11

8

54
T=1 32

9 10
7

6

w

4000

0

500

250200150100500

1000

3500

3000

2500

2000

1500

3

w

a

87

6

5

4

T=2
40

50454035302515
0

5

10

15

20

25

30

35

45

50

0 5 10 20

4000

3000

1000

2000

ŵ

0.8

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35 40 45 50

E c
P
h

c

0.5

0.2

4445
Z

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35 40 45 50

4460

h
E c

0.8
3000

4000

2000

1000

0.5

0.2

ŵ

Z

n

T

0

1

2

3

4
5

s
^w /w

7 8 9

1.0

10 11

0.2

2 6543

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.1

0

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

Activation level

N
um

be
r

of
 o

ut
pu

ts

a

T=2

T=3

T=4

30

Simulation Points

ŵ

1614121086420

60

50

40

0

20

10

0.5

1000

0.2

0.8

2000

4000

ŵ
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35 40 45 50

h
Ec

4300

3000

Z

	Sparse Distributed Memory using N-of-M Codes
	Corresponding author:
	tel:
	fax:
	email:
	Running title

	Abstract
	Keywords:

	Mathematical Symbols
	1. Introduction
	1.1. N-of-M memories
	1.2. Outline of paper

	2. N-of-M code properties
	(1)
	(2)

	3. Kanerva’s sparse distributed memory
	4. An N-of-M coded sparse distributed memory
	4.1. Data memory efficiency
	(3)
	(4)
	(5)
	bits (6)
	(7)
	(8)
	(9)

	4.2. Data memory robustness
	(10)
	(11)
	(12)
	(13)
	(14)
	(15)
	(16)
	(17)
	(18)
	(19)
	(20)
	(21)
	(22)
	(23)
	(24)

	4.3. Address decoder analysis
	(25)
	(26)
	(27)
	(28)
	(29)
	(30)

	4.4. Numerical simulations

	5. Error recovery
	(31)
	(32)
	(33)
	(34)
	(35)
	(36)
	(37)
	(38)
	(39)
	(40)
	(41)
	5.1. Numerical simulations
	5.2. Data error recovery
	bits (42)
	(43)
	(44)
	(45)

	6. Memory efficiency
	(46)

	7. Neural implementation
	8. Summary and conclusions
	Acknowledgements
	References
	Figure captions
	Figure 1: The hypergeometric probability distributions for the number of ‘hits’ (1s in matching p...
	Figure 2: A sparse distributed memory using N-of-M codes.
	Figure 3: The expected number of correctly recovered data items (Ec) as a function of the number ...
	Figure 4: The expected number of correctly recovered data items (Ec), the occupancy (h) and the p...
	Figure 5: The relationship between the address decoder threshold (T), the number of 1s in each ad...
	Figure 6: Detail view of the area of figure 5 near to the origin.
	Figure 7: The expected number of correctly recovered data items (Ec), the occupancy (h) and the p...
	Figure 8: The results of numerical simulations of the memory for which analytical results were pr...
	Figure 9: Effect of variations of the address decoder threshold (T) on the proportion of address ...
	Figure 10: Example distributions for the activation level of a data output written as 0 (X0 - “o”...
	Figure 11: The address decoder configurations – the number of 1s in each address decoder row (a) ...
	Figure 12: The performance of the memory with single-bit input errors. The expected number of cor...

