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The conventional solution to the problem is shown in
Fig. 10. A few moments of study will indicate that it
does in fact perform the required operation. The Flow
Table Logic solution is shown in Fig. 11. Again the
problem is easily checked for correct performance.
The simplicity of the wiring and the regularity of the

circuit are quite apparent. Such an approach should
certainly prove valuable when batch-fabricated devices
become a reaility. As was stated earlier, when applied
to one such technology (EL-PC) the design anid fabri-
cation of circuits is greatly simplified. An early model
of an EL-PC combination lock is shown in Fig. 12.

CONCLUSION

The Flow Table Logic technique for circuit design
presented here was intended for use with batch-fabri-
cated (or perhaps micro-miniature) devices, hence the
emphasis on simplicity and regularity. These are ob-
tained in some cases at the expense of actual compo-
nent count. The exchange was felt to be acceptable,
however, since minimizing the number of active ele-
ments is not guarantee of minimum cost. An interesting
point that should be considered is the logical delay as-

sociated with circuits designed by the Flow Table Logic
technique. The circuit can go from one state to any
other state in approximately two logical delays. Thus
one has not sacrificed speed in the quest for regularity.
The ease of circuit designi should also be an advanitage
of this technique.
As is true in most developments, there are some

problem areas that still require investigation. The cod-
ing of the input lines and, in fact, the coding of the
states of the flow table are far from optimum. Only fur-
ther work can reveal whether this can be improved
without sacrificing the simplicity of the circuit. In addi-
tion, the necessary delay required is not found in all
technologies and thus Imlust be carefully considered in
the solution of a problem.
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Cyclic Codes for Error Detection*
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Summary-Cyclic codes are defined and described from a new
viewpoint involving polynomials. The basic properties of Hamming
and Fire codes are derived. The potentialities of these codes for
error detection and the equipment required for implementing error
detection systems using cyclic codes are described in detail.

INTRODUCTION

F THE many developments in the area of error-
detection and error-correcting codes during the
past three years, probably the most important

have pertained to cyclic codes. Since their introduction
by Prange,I very attractive burst-error correcting cyclic
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codes have been found by Abramson,2,3 Fire,4 Melas,5
and Reiger.! Cyclic codes for correcting random errors
have been found by Prange,' Green and San Soucie,7 8

Bose and Ray-Chaudhuri,9 and Melas.'0 Encoding anid
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Mountain View, Calif., Rept. No. RSL-E-2; March, 1959.
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errors in data transmission," IBM f. Res. Dev., vol. 4, pp. 58-65;
January, 1960.
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1960.
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error correcting procedures for these codes are relatively
easily implemented using shift-registers with feedback
connections. 11""2
The first function of this paper is to introduce cyclic

codes from a niew viewpoint requiring only elementary
mathematics and to derive the basic properties of
Hamming and Fire codes. Second, the potentialities of
cyclic codes for error detection and the equipmenit re-
quiired for implementing error detectioni systems usinig
cyclic codes are described in detail.

POLYNOMIAL REPRESENTATION OF
BINARY INFORMATION

We will be cotncerned with coding a message of k
binary digits by appending n-k binary digits as a
check and transmittinig the k informatioin digits and
theni the n-k check digits. It is convenient to thinik of
the binary digits as coefficients of a polynomial in the
dutntnm variable X. For example, a message 110101 is
represented by the polynomial 1 +X+X3+X5. The
polynomial is written low-order-to-high-order because
these polynomials will be tratnsmitted serially, high-
order first, anid it is convenitional to indicate signal flow
as occurrinig from left to right.
These polynomials will be treated according to the

laws of ordiniary algebra with one exception. Addition
is to be done modulo two:

1 Xa + I Xa = OXa 1 Xa + O Xa = 1 Xa = O Xa + lXa

O Xa + OXa = OXa - 1Xa=1Xa.

For example:

addition

1+x +X3+X4 1+X

X+X2

multiplication

+X4 I+X
I+ X+ X2 + X4

x + XI+ X4

I+ X + X3+ X4

X + X2 + XI + X15

1 + X2 + XI + X5

In addition to the associative, distributive, anid com-

mnutative properties of polyniomials under this kind of
algebra, we have, as in ordinary algebra, unique factori-
zation; that is, every, polynomial can be factored into
prime or irreducible factors in only one way.'3

ALGEBRAIC DESCRIPTION OF CYCLIC CODES

A cyclic code is defined in terms of a generator poly-
nomial P(X) of degree n - k. A polynomial of degree less

1' J. E. Meggitt, "Error correcting codes for correcting bursts of
errors," IBM J. Res. Dev., vol. 4, pp. 329-334; July, 1960.

12 W. W. Peterson, "Error Correcting and Error Detecting
Codes," Technology Press, Cambridge, Mass., to be published.

13 See, for example, R. D. Carmichael, 'Introduction to the
Theory of Groups of Finite Order," Dover Publications, Inc., New
York, N. Y., p. 256; 1956.

than n is a code polynomial, i.e., acceptable for trans-
mission, if and only if it is divisble by the generator
polynomial P(X).14 With this definition, the sum of two
code polynomials is also a code polynomial, for if
FI(X) and F2(X) are polynomials of degree less than n,
which are divisible by P(X), then F,(X) + F2(X) is also
of degree less than n and divisible by P(X). Therefore,
these codes are a special case of group codes, as studied
by Slepian."

If P(X) has X as a factor, then every code polyno-
mial has X as a factor and, therefore, has its zero-order
coefficient equal to zero. Since such a symbol would be
useless, we will consider only codes for which P(X) is
not divisible by X.
Code polynomials can be formed by simply multiply-

ing any polynomial of degree less than k by P(X). The
following method has the advantage, however, that it
results in a code polyniomial in which the high-order
coefficients are message symbols and the low-order
coefficients are check symbols. To encode a message
polyrnomial G(X), we divide Xn-kG(X) by P(X) and
then add the remainder R(X) resulting from this divi-
Sioln to Xn-kG(X) to form the code polynomial:

XS-kG(X) = Q(X)P(X) + R(X),

where Q(X) is the quotient and R(X) the remainder re-
sulting from dividing X-kG(X) by P(X). Since in
modulo two arithmetic, addition and subtraction are
the same,

F(X) = Xn-kG(X) + R(X) = Q(X)P(X),
which is a multiple of P(X) and, therefore, a code
polynomial. Furthermore, R(X) has degree less than
n-k, and Xfl-kG(X) has zero coefficients in the n-k
low-order terms. Thus the k highest-order coefficients of
F(X) are the same as the coefficienits of G(X), which are
the message symbols. The low order n - k coefficients
of F(X) are the coefficients of R(X), and these are the
check symbols.

Example: Consider a code for which n=15, k=10,
anid n-k =5 which uses the generator polynomial
P(X) =1-iX'+X4+X5. To encode the mnessage
1010010001 corresponding to the polynomial G(X) =1
+X2+X5+X9, we divide X5G(X) by P(X) and find
the remainder. By long division it cani be found that
X5+ X7 + XIO + X14 = (1 + X2 + X4 + X5)

.(1 +X+X2+X3+ X7+ X8+ X9) + (1 +X).

The code polynomial is formed by adding the remainder
(1 +X) to X5G(X):

14 According to the usual definition, a cyclic code is a group code
with the added property that the cyclic shift of a code vector is also
a code vector. Codes obtained by making a number of the leading
information symbols identically zero and dropping them are called
shortened cyclic codes. The codes described in this paper are cyclic
codes if Xm-1 is evenly divisible by P(X), and otherwise are short.
eined cyclic codes. See Prange, footnote 1, and Peterson, footnote 12.

15 D. Slepian, "A class of binary signaling alphabets," Bell Sys.
Tech. J., vol. 35, pp. 203-234; January, 1956.
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F(X) = (1 + X) + (X5 + X7 + XIO + X14)
I I 0 0 0

check
symbols

1 0 1 0 0 1 0 0 0 1

information
symbols

PRINCIPLES OF ERROR DETECTION AND

ERROR CORRECTION

An encoded message containing errors cani be repre-

sented by

H(X) = F(X) + E(X)

where F(X) is the correct encoded message and E(X) is
a polynomial which has a nonzero term in each errone-

ous position. Because the addition is modulo two,
F(X) +E(X) is the true encoded message with the
erroneous positions changed.

If the received message H(X) is not divisible by
P(X), then clearly an error has occurred. If, on the
other hand, H(X) is divisible by P(X), then H(X) is a

code polynomial and we must accept it as the one which
was transmitted, even though errors may have occurred.
Since F(X) was constructed so that it is divisible by
P(X), H(X) is divisible by P(X) if and only if E(X) is
also. Therefore, an error pattern E(X) is detectable if
and only if it is not evenly divisible by P(X). To insure
an effective check, the generator polynomial P(X)
must be chosen so that no error pattern E(X) which
we wish to detect is divisible by P(X).
To detect errors, we divide the received, possibly

erroneous, message H(X) by P(X) and test the re-

mainder. If the remainder is nonzero, an error has been
detected. If the remainder is zero, either no error or an

unidetectable error has occurred.

Example:

F(X) = 1 + X + X5 + X7 + X10 + X14

=11 000 1 0 1 00 1 00 0 1,

E(X) X3+ X6 + X7

=0 0 0 1 0 0 1 1 0 0 0 0 00 0,

H(X) F(X) + E(X)
=1 + X+ X3 +X5+ X6 +X10+ X14

=11010110001000 1.

This F(X) was taken from the previous example. The
remainder after H(X) is divided by P(X) =1 +X2+X4
+X5 is X2+X3+X4, and the fact that this is not zero
shows that an error must have occurred. The same

remainder occurs if E(X) is divided by P(X), since
F(X) is divisible by P(X).
The ability of a code to correct errors is related to

its ability to detect errors. For example, any code
which detects all double errors is capable of correcting
any single error. This can be seen by noting that if only
a single error occurs, we can try to correct it by trying
to change each symbol. A polynomial with one error

and one symbol changed can be a code polynomial only
if the erroneous symbol is the one which was changed,
since all other combinations are equivalent to double
errors and, therefore, are detectable. Similarly, a code
which detects all combinations of 2t errors can correct
any combination of t errors, since if t or fewer errors
occur, changing all combinations of t or fewer positions
results in a code polynomial only if all the erroneous
positionls are chaniged. The samne argument shows that
any code capable of detecting any two error bursts of
length b or less can correct ainy sinigle burst of length b
or less. Finally, the converse of these statements is also
true; any t-error correcting code can detect any combi-
nation of 2t errors and any code capable of correcting
any single burst of length b can be used instead to detect
anly combination of two bursts of length b.

DETECTION OF SINGLE ERRORS

Theorem 1: A cyclic code generated by any polynlomial
P(X) with more than one term detects all single errors.

Proof: A single error in the ith position of an enicoded
message (counting from the left and niumbering the left-
most position zero) corresponds to an error polynomial
Xi. To assure detection of single errors, it is necessary
only to require that P(X) does not divide Xi evenly.
Certainly no polynomial with more than one term di-
vides Xi evenly. Q.E.D.
The simplest polynomial with more than one term is

1+X:
Theorem 2: Every polynomial divisible by 1+X has

an even number of terms.
Proof: Let F(X) = Xa+Xb+XC+ . = (1 +X) Q(X).

Substituting X= 1 gives

F(1) = 1+ 1 + 1 + (1 +1)Q(1) =0.

There is one " 1" in F(1) for each term, and since the
sum is zero, there must be an even number of terms.
Q.E.D.

It follows that the code generated by P(X) =1 +X
detects not only any single error, but also anly odd num-
ber of errors. In fact, the check symbol must simnply
be an over-all parity check, chosen to make the number
of ones in the code polynomial even.
Any polynomial of the form 1 +Xc contains a factor

1+X since 1+Xc= (1 +X) (Xc-1 +XC 2+ . . .+1)
Therefore, if P(X) contains a factor 1 lXc, any odd
number of errors will be detected.

DOUBLE AND TRIPLE ERROR DETECTING
CODES (HAMMING CODES)

A polynomial P(X) is said to belong to an exponent
e if e is the least positive integer such that P(X) evenly
divides Xe-1(=Xe+1 mod 2).

Theorem 3: A code generated by the polynomial P(X)
detects all single and double errors if the length n of the
code is no greater than the exponent e to which P(X)
belongs.

Proof: Detection of all double errors requires that
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P(X) does not evenly divide Xi+Xi for any i, j<n.
We can factor Xi+Xi (assuming i<j) to X4(1+Xi-i).
It is sufficient. to require that P(X) should not divide
1 +Xi-i, since P(X) is assumed not to be divisible by X.
Butj-i < n _ e, anid therefore, since P(X) belongs to the
exponent e, P(X) cannot divide 1 +Xi-i. Thus the code
will detect double errors. Since P(X) is not divisible by
X and certainily could niot be just the constant 1, it
must have more than one term, and will, by Theorem 1,
detect single errors also. Q.E.D.

It can be showin that for any m there exists at least
one polynomial P(X) of degree m that belonigs to
e= 2" -1. This is the maximum possible value of e.
Polynomials with this property (usually called primnitive
polynomials) are always irreducible. A few such poly-
nomials are listed in Appendix II, and more extensive
tables are available."2"6 Thus for any m there is a double-
error detecting code of length n = 2m -1 generated by a
polynomial P(X) of degree m, which therefore, has m
check symbols and 2m _1-m information symbols.
These codes can be shown to be completely equivalent
to Hamming single-error correcting codes.2 3 12,17

Theorem 4: A code generated by P(X) = (1 +X)P,(X)
detects all single, double, and triple errors if the length
n of the code is no greater than the exponent e to which
P,(X) belongs.

Proof: The single and triple errors are detected by the
presence of the factor 1 +X, as is shown by Theorem 2,
and double errors are detected because P,(X) belongs
to the exponent e . n, exactly as in Theorem 3. Q.E.D.

Codes of maximum length result if P1(X) is a primi-
tive polynomial, and these codes are equivalent to
Hamminig single-error correcting, double-error detecting
codes."2",15

DETECTION OF A BURST-ERROR

A burst-error of length b will be defined as any pattern
of errors for which the number of symbols between the
first and last errors, including these errors, is b.
Example:

The E(X) =X3+ X6 + X7
=0 0 0 1 0 0 1 1 0 0 0 0 0 0 0

of the previous example is a burst of length 5.
Theorem 5: Any cyclic code generated by a poly-

nomial of degree n - k detects any burst-error of length
n-k or less.

Proof: Clearly, any burst-error polynomial can be
factored into the form E(X) =XiE,(X) where E,(X) is
of degree b-1. This burst can be detected if P(X) does
not evenly divide E(X). Since P(X) is assumed not to

16 A. A. Albert, "Fundamental Concepts of Higher Algebra,"
University of Chicago Press, Chicago, Ill.; 1956. This book contains
a table of irreducible polynomials giving the exponent e to which they
belong (see p. 161).

17 N. M. Abramson, "A note on single error correcting binary
codes," IRE TRANS. ON INFORMATION THEORY, Vol. IT-6, pp. 502-
503; September, 1960.

have X as a factor, it could divide E(X) only if it could
divide E,(X). But if b.n-k, P(X) is of higher degree
than EI(X) and, therefore, certainly could not divide
E,(X). Q.E.D.

A high percentage of longer bursts are detected ats
well.

Theorem 6: The fractioil of bursts of lenigth b>n-k
that are undetected is

2-(7'-k) if b > n-k +1, 2-(nt-k-1) if b =n-k + 1.

Proof: The error patterin is E(X) = XiE,(X) where
E,(X) has degree b-1. Since E,(X) has terms XO and
Xb-1, there are b-2 terms Xi, where O<j<b-1, that
can have either zero or one coefficieints, anid so there are
2b-2 distinct polynomials E,(X).
The error is undetected if and only if EI(X) has

P(X) as a factor.
E1(X) = P(X)Q(X).

Since P(X) has degree n - k, Q(X) must have degree
b-I-(n-k). If b-1=n-k, then Q(X)=1, anid there
is only one E,(X) which results in one undetected error,
namely E1(X) =-P(X). The ratio of the number of uni-
detected bursts to the total number of bursts is, there-
fore, 1/2b-2 =2-(tn-k-1) for this case. If b-1>n-k,
Q(X) has terms XO and Xb-l-(n-k) and has b-2- (n -k)
arbitrary coefficients. There are, therefore, 2b-2-(n-k)
choices of Q(X) which give undetectable error patternis.
The ratio for this case is 2b-2-(n-k)/2b-2 = 2-(n-k). Q.E.D.

DETECTION OF Two BURSTS OF ERRORS (ABRAMSON
AND FIRE CODES)

Theorem 7: The cyclic code generated by P(X) =(1
+X)P1(X) detects any combination of two burst-errors
of lenigth two or less if the length of the code, n, is n10
greater than e, the exponent to which P1(X) belongs.

Proof: There are four types of error patterns.

1) E(X) = Xi + Xi

2) E(X) = (Xi + X'+') + Xi
3) E(X) = Xi + (Xi + Xi+')

4) E(X) = (Xi + Xi+') + (Xi + Xi+')
2) anid 3) have odd numbers of errors and so they are

detected by the 1+X factor in P(X). For 4), E(X)
= (1+X)(X'+Xi). The 1+X factor is cancelled by the
1 +X factor in P(X) so we will require for both 1) and
4) that Xi+Xi is not evenly divisible by P,(X).
Xi+Xj is not evenly divisible by P,(X) as is shown in
the proof of Theorem 3. Q.E.D.
These codes are equivalent to the Abramson codes,

which correct single and double adjacent errors.2'1 They
are also the same as the Hamming sinigle-error correct-
ing, double-error detecting codes of Theorem 6.

Theorem 8: The cyclic code generated by

P(X) = (Xc + 1)Pi(X)
will detect any combination of two bursts
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E(X) = XiEl(X) + XiE2(X),

provided c+ 1 is equal to or greater than the sum of the
lengths of the bursts, P,(X) is irreducible and of degree
at least as great as the length of the shorter burst, and
provided the length of the code is no greater than the
least common multiple of c and the exponent e to which
P,(X) belongs.
The proof, which is elementary but rather long, is

given in Appendix IV. These are Fire codes.4"12

OTHER CYCLIC CODES
There are several important cyclic codes which have

not been discussed. Burst-error correcting codes have
been treated also by Melas,5 Meggitt,i and Reiger.6
Codes for correcting independent random errors have
been discovered by Melas.10 Prange,' and Bose and
Chaudhuri.9"2"8 Any of these codes can also be used for
error detection. The Bose-Chaudhuri codes are par-
ticularly important. For any choice of m and t there
exists a Bose-Chaudhuri code of length 2m -1 which is
capable of correcting any combination of t errors (or
alternatively, detecting any combination of 2t errors)
and which requires a generator polynomial of degree no
greater than mt. The description of the structure of
these codes and the methods for choosing the polyno-
mials is beyond the scope of this paper.

IMPLEMENTATION

Thus far, an algebraic method has been given for en-
coding and decoding to detect various types of errors.
Briefly, to encode a message, G(X), n - k zeros are an-
nexed (i.e., the multiplication Xn-kG(X) is performed)
and then Xn-kG(X) is divided by a polynomial P(X) of
degree n-k. The remainder is then subtracted from
Xn-kG(X). (It replaces the n-k zeroes.) This encoded
message is divisible by P(X), but we have shown that
if P(X) is properly chosen, the message will not be
evenly divisible if it contains detectable errors. The
only nontrivial manipulation to be performed for both
encoding and error detection is division by a fixed
polynomial, P(X).
The following is an example of division under addi-

tion modulo two:

1 XI + 1 X2 + 0 X + 1

1X2+ 0X+ 1/1 X5 + 1 X4 + 1 X3 + 0X2 + 1 X + 0

1 XI + 0 X4 + 1 XI

1 X4 + 0 X3 + 0 X2 + 1 X + 0

1 X4 + 0 X3 + 1 X2

0 XI + 1 X2 + 1 X + 0
1 X2 + OX + 1

1x +1

18 W. W. Peterson, "Encoding and error-correction procedures for
the Bose-Chaudhuri codes," IRE TRANS. ON INFORMATION THEORY,
vol. IT-6, pp. 459-470; September, 1960.

We now repeat this division employinig onily the coef-
ficients of the polynomials:

1 101

1 o /1 1 010

I 0 1

1 00 1 0

1 0 1

01 10

1 0 1

1 1

It can be seen that modulo two arithmetic has sim-
plified the division considerably. Furthermore, we do
not require the quotient, so the division to find the re-
mainder can be described as follows:

1) Align the coefficient of the highest degree term of
the divisor and the coefficient of the highest degree
term of the dividend and subtract (the same as
addition).

2) Align the coefficient of the highest degree term
of the divisor and the coefficient of the highest
degree term of the difference and subtract again.

3) Repeat the process until the difference has lower
degree than the divisor. The difference is the re-
mainder.

The hardware to implement this algorithm is a shift
register and a collection of modulo two adders. (A
modulo two adder is equivalent to the logical operation
EXCLUSIVE OR). The number of shift register posi-
tions is equal to the degree of the divisor, P(X), and the
dividend is shifted through high order first and left to
right. As the first one (the coefficient of the high-order
term of the dividend) shifts off the end we subtract the
divisor by the following procedure:

1) In the subtraction the high-order terms of the divi-
sor and the dividend always cancel. As the high-
order term of the dividend is shifted off the end of
the register, this part of the subtraction is done
automatically.

2) Modulo two adders are placed so that when a one
shifts off the end of the register, the divisor (except
the high-order term which has been taken care of)
is subtracted from the contents of the register.
The register then contains a difference that is
shifted until another one comes off the end and
then the process is repeated. This continues until
the entire dividend is shifted into the register.

Fig. 1 gives a register that performs a division by
1+X2+X4+X5. Note that if alignment of divisor and
dividend is considered to be accomplished when the
high-order term of the dividend shifts off the end, then
the divisor is automatically subtracted.
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The shift register shown in Fig. 1 has, if used for en-
coding, one drawback that can be overcome by a slight
modification. Recall that when encoding a message
polynomial, G(X), we calculate the remainder of the
division of Xn-kG(X) by P(X). The straightforward
procedure is to shift the message followed by n-k
zeroes into the register. When the last zero is in the
register we obtain the remainder. Because this re-
mainder replaces the n-k zeros to form the encoded
message, it is necessary to delay the message n-k shift
times so that the remainder can be gated in from the
encoder register at the proper time.
An example of this method of encoding is given in

Fig. 2. Initially, the gate G1 is open and the gate G2 is
shorted, allowing the remainder on dividing Xn-kG(X)
to be calculated. After the message plus n-k zeros is
shifted in, G1 is shorted and G2 is opened. This allows
the remainder which is now in the register to replace
the n-k zeros in the output. Error detection with this
circuit requires that gate G1 be open and gate G2 be
shorted. After H(X) has been shifted in, the register

SHIFT
REGISTER POSITION

G EXCLUSIVE OR

Fig. 1-A shift register for dividing by 1 +X2+X4+X5.

Fig. 3-A more efficient circuit for encoding and error detection.
(In this example, P(X) = 1 +X2+X4+X5.)

contains the remainder. If this is nonzero, an error has
occurred.
The delay of n - k shifts can be avoided if Fig. 2 is

modified to give the circuit of Fig. 3. In Fig. 3, instead
of shifting the polynomial into the low-order end of the
register, it is treated as if it were shifting out of the
high-order end. This is equivalent to advancing every
term in the polynomial by n-k positions, or multiply-
ing by Xn-k. Now in encoding, as soon as G(X) has been
completely shifted into the register, the register con-
tains the remainder on dividing Xn-kG(X) by P(X).
Then gate G1 is shorted, gate G2 is opened, and the re-
mainder follows the undelayed G(X) out of the enicoder
to form F(X).
To minimize hardware, it is desirable to use the same

register for both encoding and error detection, but if
the circuit of Fig. 3 is used for error detection we will
get the remainder on dividing Xn-kH(X) by P(X) in-
stead of the remainder on dividing H(X) by P(X). It
turns out that this makes no difference, for if H(X) is
evenly divisible by P(X) then obviously H(X)Xn-k is
evenly divisible, and if H(X) is not evenly divisible by
P(X) then H(X)Xn-k will not be evenly divisible either,
provided the divisor P(X) does not have a factor X.
Any useful P(X) will satisfy this restriction. The cir-
cuit of Fig. 3 can, then, be used for both encoding and
error detection.

Error correction is by its nature a much more difficult
task than error detection. It can be shown that each
different correctable error pattern must give a different
remainder after division by P(X). Therefore, errorcor-
rection can be done as follows:

1) Divide the received message H(X) = F(X) +E(X)
by P(X) to obtain the remainder.

2) Obtain the E(X)- corresponding to the remainder
from a table or by some calculation.

3) Subtract E(X) from H(X) to obtain the correct
transmitted message F(X).

Both the encoding and step 1 of the decoding are the
same for error correction as for error detection. The
error-correction equipment is more complex in that it
requires equipment for the table look-up or computa-
tion of step 2, and it requires that the entire received
message H(X) be stored temporarily while the remainder
is being calculated and E(X) is being determined. The
calculation required in step 2 can be done simply with
a shift register for burst-error or single-error correcting
codes, but is quite complex for codes that correct mul-
tiple random errors. Details of error-correction proce-
dures are beyond the scope of this paper, but can be
found in references.111217

CONCLUSION
A simple presentation of cyclic codes has been given

in terms of polynomials. The attractive features of these
codes for error detection, both their high efficiency and
the ease of implementation, have been emphasized.

Fig. 2-One method of encoding on detecting errors.
(In this example, P(X) = 1 +X2+X4 +X5.)
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PROCEEDINGS OF THE IRE

APPENDIX I

NOTATION

k =number of binary digits in the message before
encoding,

n = number of binary digits in the encoded message,
n-k = number of check digits,

b = length of a burst of errors,
G(X) =message polynomial (of degree k-1),
P(X) =generator polynomial (of degree n -k),
R(X) =remainder on dividing Xn-kG(X) by P(X),

R(X) is of degree less than n-k,
F(X) =encoded message polynomial,

F(X) = Xn-kG (X) -R(X),
E(X) =error polynomial,
H(X) = received enicoded miessage polynomial,

H(X) = F(X) +E(X).

APPENDIX I I

A SHORT TABLE OF PRIMITIVE

Primitive Polynomial

1+X
1+X+X2
1 +X+X3
1+X+X4
1 +X2+X5
1+X+XI
1+X3+X7
1 +X2+X3+X4+X8
1 +X4+X9
1 +X3+Xlo
1 +X2+Xll
1 +X-+X4A+X6+X'2
1 +X+X3+X4+X13
1 +X+X6 +X1 +X14
1 +-X'4+X'5

POLYNOMIALS

e

1
3
7
15
31
63
127
255
511
1023
2047
4095
8191
16383
32767

APPENDIX I II

DATA FOR SOME REPRESENTATIVE CODES

Detection Capabilities

Any odd number of errors

Two errors, a burst of length 4 or less, 88 per cent of
the bursts of length 5, 94 per cent of longer bursts*

kinax

any value

11

Two errors, a burst of 9 or less, 99.6 per cent of the 502
bursts of length 10, 99.8 per cent of longer bursts

Two bursts of length 2 or less, any odd number of 10
errors, a burst of 5 or less, 93.8 per cent of the bursts
of length 6, 96.9 per cent of longer burstst

Two bursts of combinied length 12 or less, any odd 22495
number of errors, a burst of 22 or less, 99.99996 per
cent of the bursts of length 23, 99.99998 per cent of
longer bursts

Any combination of 6 or fewer errors, a burst of
length 11 or less, 99.9 per cent of bursts of length 12,
99.95 per cent of longer bursts

n-k
1

4

9

5

22

12 11

I.--

992 31

P(X) Reference

1 +X Theorem 2

1 +X+XI Theorems 3, 5, 6

1 +X4+X9 Theorems 3, 5, 6

(1+X+X4)(1+X)=1+X2 Theorems 2, 5, 6, 7
+X4+X5

(I+X2+Xll)(1+Xll)=1+X2 Theorems 2, 5, 6, 8
+X13+X22

1 +X2+X4+X5+X6+X'O+Xll

(1 +X)( 1 +X3+X'O)
(1 +X+X2+X3+X1O)
(1 +X2+X3+X8+XIO)

* Note: 1 +X+X4 belongs to e= 15 and 11+4= 15.
t Note: This is the code used in all examples.

Any combination of 7 or fewer errors, any odd num-
ber of errors, a burst of length 31 or less, all but
about 1 in 109 of longer bursts

Theorems 5, 6, and footnote I

Theorems 2, 5, 6, and foot-
notes 9, 12, 18
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APPENDIX IV

PROOF OF THEOREM 8

The error polynomial has the form:

E(X) = Xi[E,(X) + Xi-iE2(X)Z].

E1(X) has degree bi -1 and E2(X) has degree b2 -1.
The generator polynomial P(X) cannot have a factor

X so we need only cotisider the factor of E(X) in brack-
ets. Let j-i=d, assume E'(X) =E1(X) +XdE2(X) is
divisible by Xc+ 1, and let d = cq+ r with r <c.

Then,

E'(X) = E1(X) + XcY+rE2(X)
- E1(X) + XrE2(X) + [XrE2(X)j. [XCQ + 11. (1)

Now Xc +I contains a factor Xc+1 for

Xcq + 1 = (X'' + 1)(Xc(q-1) + Xc(q-2

+ Xc.(q-3) + . . . + XO).

Hence the rightmost term in (1) is divisible by XG+1.
E'(X) was assumed divisible by Xc+1 anid so from (1),
E1(X) +XTE2(X) must be divisible by Xc+ 1. Using this
result, we can let

E1(X) + XTE2(X) = [xc+ 1I] [Q(X)I
E1(X) + XrE2(X) = Q(X) + XCQ(X). (2,

We will assume that Q(X) $0. Let the degree of
Q(X) be h. The degree of the right-hand side of (2) is
c+h and the degree of the left-hand side is either b1 -1
or r+b2-1. Then, for (2) to be true we mlust have
either c+h=bi-1 or c+h=r+b2-1. Since it was as-
sumed that c>.bi+b2 -1 we must have the second
relation.

c + h = r + b2 - 1.

Again using c > b1+b2-1 we have

bi +b2-1 +h _ r+b2-1 or b +h r.

From this, bi_r or b1-1 <r and as b1$0, h<r.
Applying these results to (2), we see that both E1(X)

and Q(X) are of lower degree than any of the terms in
XrE2(X). It follows then, given the assumption that

Q(X) 0, that

XrE2(X) = XcQ(X). (3)

As E2(X) always contains an XO term, the lowest
order term in XrE2(X) is of degree r. The lowest order
term in XcQ(X) is of degree at least c but r <c so (3) can
never be satisfied. Therefore, the only solution of (2) is
with Q(X) = 0 giving E1(X) +XrE2(X) = 0.

As E1(X) always contains an XO termi, r=O aind
E1(X) = E2(X) . Substituting in (1) gives

E'(X) =E2(X) [XcQ+ 1 ].
This is the form of the error polynomial if it is evenily

divisible by XC+1. It is sufficient to show that this
polynomial is not evenly divisible by P1(X) to guarantee
that E(X) is never evenly divisible by P(X) =P(X),
[Xc+ ]. P1(X) is irreducible, so to divide E'(X) =E2(X)
[Xc-q+l it must divide one of the factors. For this
special case, E1(X)=E2(X) so bl=b2, and sinice both
bursts have the same length, this is the lenigth of the
shorter burst. It was specified that P1(X) is of degree no
less than the length of the shorter burst so it is of higher
degree than E2(X) and cannot divide E2(X).

It remains to show that P1(X) does not evenily divide
Xcq+1 Make the substitution cq= ue+v where e is the
exponent to which P1(X) belonigs and v<e. Now vO0
because cq is less than or equal to the length of the
message and the length of the message is less than or
equial to the least common miiultiple of c and e. Since
cq is a mnultiple of c, it cannot be a multiple of e.

xcq + 1 - X1te+V + 1
Xct, + 1 = XV + 1 + XV(Xie + 1).

As was shown previously, Xue+ 1 is divisible by
Xe+1. Furthermore, P1(X), by definiitioni, divides
Xe+1; therefore, P1(X) divides Xue+ 1. However, Xe+1
is the lowest degree polynomial of this fornm that P1(X)
divides, so P1(X) does not divide Xv1-. As v$0, we
have shown that P1(X) does not divide XI.+ 1, coni-
pleting the proof.
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