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AMULET2e is an embedded system chip incorporating a 32-bit
ARM-compatible asynchronous processor core, a 4-Kb pipelined
cache, a flexible memory interface with dynamic bus sizing,
and assorted programmable control functions. Many on-chip
performance-enhancing and power-saving features are switchable,
enabling detailed experimental analysis of their effectiveness.

AMULET2e silicon demonstrates competitive performance and
power efficiency, ease of system design, and it includes innovative
features that exploit its asynchronous operation to advantage in
applications that require low standby power and/or freedom from
the electromagnetic interference generated by system clocks.
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I. INTRODUCTION

Nearly all digital system design today is based upon
the use of a clock to control the rate of operation and
the flow of information within the system. There may be
different clocks in different subsystems (for instance, the
graphics subsystem may use a different clock from the
processor), but the basis of the design methodology is that
large areas of logic operate within the same clock domain
and the interfaces between the domains of different clocks
are localized and treated separately. The clock is sometimes
even apparent to the user; all but the most naive PC users
know that a P200 Pentium is faster than a P166 Pentium
and the number indicates some sort of clock rate.

The clock has not always enjoyed dominance in digital
designs. Many of the earliest computers operated without
a central clock, employing “asynchronous” design tech-
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niques. However, asynchronous design gained a reputation
for being difficult and unreliable, and the advent of inte-
grated circuits increased the need for reliability to the extent
that any risk that could be removed should be removed,
including any asynchronous operation. Thus the dominance
of the clock was established. For the last quarter of a
century asynchronous design has been of mainly academic
interest, playing little part in industrial electronics.

Now, however, we are poised on the brink of a revolution.
Asynchronous design is reemerging from academia with a
new look, with new answers to the old problems of design
difficulty and unreliability. At the same time, clocked
design is running into trouble. There is now a significant
prospect of asynchronous design returning to industrial use
in the next few years.

A. Motivation for Asynchronous Design

Since the clock has been so successful in enabling
the digital revolution over the last 50 years, why should
we even consider abandoning it? Several arguments can
be made, but the two that most influence the AMULET
work are electromagnetic compatibility (EMC) and power
efficiency. Both of these are very important factors in the
rapidly growing market for mobile communication devices
such as pagers, cellular telephones, etc.

1) EMC: Clocked control is the worst possible approach
for EMC. CMOS circuits only draw current when they
switch, and clocked synchronization means that all the
circuits on the chip switch at the same time, maximizing
the current transients, which in turn maximizes the radio
interference. Furthermore, high-precision crystal controlled
oscillators focus the energy into very narrow spectral peaks
on harmonics of the fundamental clock frequency.

Asynchronous circuits, on the other hand, distribute ac-
tivity over time as each part of the circuit becomes active
in response to inputs from another. Therefore the circuit
does not have the large current peak at a fixed point in
every clock cycle of a synchronous circuit, rather it has
a distribution of smaller peaks which result in a lower
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radiated power. Furthermore, the activity is not locked to
a particular frequency, and although many asynchronous
circuits have characteristic cycle times, these are averages
and individual cycles vary considerably from the average.
Therefore there is much less concentration of the power into
spectral peaks, and what radiated power there is spreads
across the frequency spectrum more evenly.

2) Power Efficiency:Clocks cause unnecessary power
dissipation by generating activity in parts of the circuit
that are doing no useful work. Merely distributing a high-
frequency, low-skew clock consumes significant power.
Clock gating can reduce the unnecessary activity, but
only at a coarse granularity, and although software power
management techniques are effective, it clearly costs power
to run the power-management software itself.

Asynchronous circuits are inherently data driven and
only consume power when there is useful work to do. As
we shall see, an asynchronous circuit can switch instantly
between zero idle power and maximum throughput without
software assistance, giving better power efficiency than so-
phisticated working/idle/sleep power management schemes,
and with no software overhead.

B. Asynchronous Microprocessors

This paper focuses on the AMULET asynchronous mi-
croprocessors developed at University of Manchester, U.K.
Related work on the design of clockless very large scale
integration (VLSI) processors has taken place under the
leadership of Martin at California Institute of Technology
(Caltech), where the first fully asynchronous VLSI mi-
croprocessor [1] was developed in the late 1980’s. More
recently they have developed an asynchronous implemen-
tation of the MIPS R3000 [2]. An asynchronous 8-bit
microprocessor, TITAC, has been developed at the Tokyo
Institute of Technology [3] under the leadership of Nanya,
and more recently he has led the development of TITAC-2
[4], a 32-bit asynchronous microprocessor with an instruc-
tion set based on the MIPS R2000. An asynchronous
8051 microcontroller has been produced by Eindhoven
University of Technology and Philips Research Labs [5].

Work on the design of asynchronous processor orga-
nizations not yet leading to VLSI prototypes has taken
place at Sun Research Laboratories [6], University of Utah
[7], University of Cambridge [8], University of Hertford-
shire [9], Technical University of Denmark [10], France
Telecom-CNET [11], and other places.

C. The AMULET Processors

While asynchronous design is enjoying increasing atten-
tion from the academic community and initial stirrings of
interest from industry, its progress toward realizing its full
commercial potential continues to be impeded by a shortage
of large-scale demonstrations of merit. For the last seven
years the AMULET group at University of Manchester has
spent most of its energies addressing this shortfall and gain-
ing experience of asynchronous engineering “in the large.”

The first milestone in this work was reached in 1995
with the delivery of AMULET1 [12], [13], an asynchronous

Fig. 1. Two-phase bundled-data communication.

implementation of the ARM [14] 32-bit reduced instruction
set computer (RISC) microprocessor which used a two-
phase bundled-data design style based closely on Suther-
land’s micropipelines [15]. The basic concepts of two-phase
bundled data are:

• transition (two-phase) signaling, where a change in
logic level is used to signal an event; rising and falling
events are equivalent in their interpretation;

• bundled data, where a conventional data bus carries
binary data whose validity is indicated by a transition
on a request wire and whose reception is indicated by
a transition on an acknowledge wire.

The resulting communication protocol is illustrated in
Fig. 1, which shows two consecutive communications using
first rising and then falling transitions on the request and
acknowledge events.

AMULET1 was broadly comparable with, but not su-
perior to, clocked ARM processors built on the same
technology, fulfilling its primary role of demonstrating the
feasibility of designing complex asynchronous circuits with
the resources and tools available to the group. It also taught
us a great deal about practical asynchronous design both
from the things that we got right and from the things we
got wrong.

The second milestone in this work has now been reached.
AMULET2e is an asynchronous embedded controller in-
corporating AMULET2 (a significantly enhanced version
of AMULET1), 4 Kb of RAM which can be configured
to operate as a cache, a flexible memory interface which
makes the system designer’s job look quite conventional,
a counter-timer for real-time reference, and various con-
figuration and control registers. First silicon arrived on
October 1, 1996, having passed functional tests at the
foundry (VLSI Technology, Inc.) without difficulty, and
within a few hours a sample was communicating with the
standard ARM development tools and running compiled C
programs. The parts are highly functional, perform exactly
as predicted by our simulation tools, and have the sort
of performance and flexibility that will attract applications
developers to look again at asynchronous technology.

In Section II we review AMULET1, looking particularly
at the lessons we learned from it which influenced the
design of AMULET2e. Then the AMULET2 processor core
is described in Section III. In Section IV we present the
organization of AMULET2e, and in Section V we present
a simple system designed around the part. In Section VI we
describe the tools used in the development of AMULET2e.
In Section VII we give a summary and analysis of the
test results and we draw our conclusions from the work
in Section VIII.
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Fig. 2. AMULET1 internal organization.

This paper is an extended and updated version of a paper
[16] first presented at the 3rd International Symposium on
Advanced Research in Asynchronous Circuits and Systems
which was held in Eindhoven, The Netherlands, on April
7–10, 1997.

II. AMULET1

The AMULET1 organization has been described else-
where [12], [13], [17]–[20], so only a summary is presented
here. The processor-to-memory interface follows the mi-
cropipeline convention in that it uses two-phase bundled
data communication as described earlier, with one (output)
bundle to send address, control, and write data to the
memory and a second (input) bundle to return read data
from the memory. The memory system may have an
arbitrary pipeline depth and delay, but it must return read
values in the requested order.

Internally the processor may be viewed as comprising
several pipeline units (Fig. 2) which operate independently
and concurrently, exchanging information through bundled-
data interfaces. The role of each of these units is described
briefly below. The memory pipeline is also shown in Fig. 2
because, while the memory array is external, memory con-
trol information (such as whether the fetch was instruction
or data) is kept on chip.

1) Address Interface:The address interface [13] is re-
sponsible for issuing read and write requests to memory.
It issues instruction prefetch requests autonomously and
accepts data transfer and branch target addresses from the
execution unit as required. Branch target addresses are im-
mediately issued to memory and also change the prefetching
stream to continue from the target location; data-transfer ad-
dresses temporarily interrupt the prefetching stream, which
resumes once the data address has been issued.

The ARM architecture makes the program counter readily
accessible to the programmer as register 15 in the register
bank. PC values are therefore copied from the address
interface to the register bank through a PC pipeline that
buffers the values until the associated instruction arrives
from memory.

2) Register File: All the user-accessible state is held in
the register bank, which employs a novel locking mech-
anism [21] to allow multiple pending writes from the
execution pipeline and from external memory. The lock-
ing mechanism ensures the correct behavior of instruction
streams with data dependencies between successive instruc-
tions. It also enables register read and write processes to
proceed asynchronously without arbitration and without risk
of metastability in the control and data circuits.

3) Execution Pipeline:Arithmetic processing is carried
out in the execution pipeline. This incorporates a “3-bits at a
time” carry-save multiplier, a barrel shifter and rotator, and
an arithmetic and logic unit (ALU). The ALU has a data-
dependent propagation delay that detects the longest carry
chain in an addition [22]. This allows a relatively simple
ALU to give better average performance on a typical mix of
operand values than the more complex ALU in the clocked
ARM6, since there is no need to coerce the worst-case
addition into a fixed clock period.

4) Instruction Decoder:The instruction decoder accepts
instructions from the instruction pipeline and generates the
necessary control signals to pass to the register file and
to the execution pipeline (via the control pipeline, where
some further decoding takes place). The major decode
function of the instruction decoder is implemented by a
large programmable logic array (PLA), but there are other
complex control functions (such as splitting a single ARM
instruction into several execution pipeline operations) that
lead to considerable complexity in this area.

A. AMULET1 Lessons

AMULET1 was a major design project that had to be
completed with limited resource and within a limited time.
It clearly solves all the problems that must be solved to
implement a functional asynchronous microprocessor, but
the solutions are not all equally good. In some areas we
consider that we have found solutions which are elegant
and efficient.

• The (patented) register locking mechanism [21] works
efficiently and well. Although it is desirable to avoid
stalls by bypassing when possible (which AMULET1
made no attempt at, though AMULET2 does), the
totally dependable consistency offered by this mecha-
nism has stood up well through the developments that
followed.

• The instruction prefetching with its “color” manage-
ment of nondeterminism [12], [13] has also scaled
well. The nondeterminism is a potential source of
difficulty for test vector generation, but otherwise
it solves a tricky problem in a straightforward and
efficient manner.
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Fig. 3. Four-phase bundled-data communication.

• The overall organization based on interacting mi-
cropipelines has proven reasonably straightforward to
design and optimize.

Against these positive lessons, there were a number of
experiences with AMULET1 that we wished to avoid
repeating.

• Although micropipelines worked well on chip, they
proved very troublesome at board level. AMULET1 is
a basic processor core with a two-phase micropipeline
interface at the pins, and debugging the logic which
handled these two-phase signals took a long time—it
took almost a month from receiving the first silicon be-
fore we knew that the chips were basically functional.

• Two-phase design is conceptually straightforward, but
our CMOS implementations of two-phase control ele-
ments were somewhat inefficient. All pipeline registers
had two- to four-phase conversions inside them, and
all dynamic logic structures needed four-phase con-
versions also. Even where four-phase control is not
required, steering two-phase signals (which are edges)
requires circuits with state and exclusiveOR gates
gates, since CMOS is fundamentally a level-sensitive
technology.

• Building deep pipelines in a micropipeline circuit is
too easy. The AMULET1 execution pipeline is deeper
than is useful, and performance is lost as a result. (It is
actually quite hard to balance asynchronous pipelines;
against this, they are very flexible and often self-adapt
to varying load conditions.)

III. AMULET2

These lessons formed the starting point for AMULET2.
A four-phase bundled-data design style was adopted [23],
a little more care was taken over the pipeline depths, and
a lot more attention was paid to the system interface at the
chip pins. In addition, several architectural features were
added to improve the performance and power efficiency of
the device. These are described below.

The four-phase bundled-data style differs from the two-
phase style in that whereas the latter uses both rising and
falling transitions to carry the same information, the four-
phase style uses one of the edges as the active edge and
requires a return-to-zero phase before the next communi-
cation can begin. The four-phase communication protocol
is illustrated in Fig. 3.

A. Pipeline Reorganization

As was mentioned above, a retrospective analysis of
the AMULET1 design revealed that the depth of pipelin-

(a) (b)

Fig. 4. (a) AMULET1 and (b) AMULET2 execution pipelines.

ing is too great. This is partly due to first-in first-out
(FIFO) buffers being conceptually easy to use within the
micropipeline design style, and as a result too many were
added. There are many stages that contribute little (or
nothing) toward performance but still cost silicon area,
transistors and power dissipation, and some stages actually
decrease performance! This analysis identified the main
execution pipeline as a candidate for pipeline simplification.

The ARM architecture specifies that the shifter can be
used to shift one of the operands in many of the instruction
classes. However, in practice most shift operations are
performed on immediate values, and this can be done before
the immediate value is passed to the execution pipeline, in
parallel with reading the register bank. This, coupled with
the fact that a high percentage of instructions do not take
advantage of the shift operation at all, means that there are
performance and power gains to be achieved by bypassing
the shifter when it is not in use (which is most of the time).

Fig. 4 shows a comparison of the AMULET1 and
AMULET2 execution pipeline structures with the
AMULET2 pipeline showing the shifter bypass route
through the multiplier. (The multiplier contains an internal
bypass mechanism, so if neither the shifter nor multiplier is
to be activated the internal multiplier bypass path is used.)
The shifting of immediate values is performed elsewhere
in order to exploit this pipeline organization fully.

Now that the shifter and multiplier are bypassed for
most operations, there is little justification for providing
a separate pipeline stage for them. This also facilitates the
ALU register forwarding scheme (described in Section III-
B) where the last result value only has to propagate
backward across a single pipeline stage.

The last difference between the two execution pipeline
organizations is that the final result latch has been replaced

246 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 2, FEBRUARY 1999



Fig. 5. LRR control algorithm.

with latches inside the register bank and address interface.
This reduces the time that the write bus (a shared resource)
is busy for a given write-back operation and reduces
arbitration clashes between the ALU and data interface,
thus improving performance.

B. Register Forwarding

The register management scheme in AMULET1 provides
an effective mechanism for ensuring register coherency.
However, the locking mechanism employed causes the
pipeline to stall when any register dependency is detected;
processing only continues when the required value has
returned to the register bank. This stall encompasses the
entire register write–unlock–read sequence.

Conventional synchronous processors overcome this
problem by using register forwarding. However this
relies on global synchronization; enforcing any pipeline
synchronization in an asynchronous processor destroys any
advantage gained. AMULET2 therefore uses the concept
of last result registers to achieve similar results.

Two schemes are employed in AMULET2: the ALU last
result register (LRR) is used when the result calculated by
the ALU is required as an operand by the next instruction;
the last loaded value (LLV) register is used when the
operand being loaded from memory is required by one
of the following instructions. The control mechanism and
validity of the data is different for the two types. Both
mechanisms can be disabled independently if required,
allowing their effectiveness to be measured.

1) ALU LRR: The ALU last result mechanism divides
into two distinct parts: the LRR itself and the control to
indicate when to use the value in the LRR. The LRR itself
is simply a transparent latch in anti-phase to the ALU result
latch. Whenever the ALU is activated the previous value is
automatically available on the LRR. Its associated control
(see Fig. 5) keeps a record of the destination register of each
instruction and compares this with the operand addresses of
the subsequent instruction. If the comparison matches and
the LRR value is valid (not all instructions produce usable
results) then the register bank read is bypassed and the data
are retrieved from the LRR—which must be valid before the
instruction is allowed to arrive—via a set of multiplexers
(see Fig. 6).

As the LRR is in anti-phase with the ALU output latch
its value is only valid for the next instruction. As soon as

Fig. 6. Register forwarding organization.

the next instruction passes through the ALU the LRR is
automatically updated with the new last result value.

2) LLV: The LLV mechanism also divides into data and
control partitions. The LLV register is updated with a load
data value directly from the processor write bus every time
a data value returns from memory to the register bank.
The value in the LLV is therefore valid from when the
data arrive from memory until the next update of the LLV
(another load returning data from memory) or an ALU
operation renders the cached register value in the LLV
invalid by writing to the same destination register. The
value in the LLV can therefore be valid for a number of
consecutive instructions (in contrast to the ALU last result,
where the validity of the data is from one instruction to the
next only).

The control of the LLV is considerably more complex
than the ALU last result due to two key “features”:

• the validity of the LLV must be managed explicitly
rather than automatically being taken care of as for
the ALU last result;

• the LLV cannot be used until the value has returned
from memory, and there may be multiple outstanding
load operations. In the ALU last result, the value
is available immediately in the ALU if the control
indicates forwarding is possible.

The first “feature” can be addressed by additional decode
logic to detect instructions which would invalidate the LLV
prematurely (for example, an ALU operation with the same
destination register as the value stored in the LLV).

The second “feature” is more complex. An instruction
wishing to use the LLV value must somehow synchro-
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nize with the returning value. Unfortunately the returning
memory data does not know that it should be forwarded to
the LLV as the load was dispatched before the following
instruction detected a data forwarding opportunity. There-
fore explicit synchronization is not practical. A semaphore
technique based upon the lock FIFO [21] principle can
be used to solve the problem. Every issued load places a
token in a FIFO (increment). Every data value that returns
is copied into the LLV register (overwriting any previous
value) and a token is removed from the FIFO (decrement).
An instruction that wishes to use the LLV must wait until
the FIFO is empty before taking the value and proceeding.
The empty FIFO state confirms that the value in the LLV
register is truly the “last” value and not some preceding
value. Note that all three semaphore operations (increment,
decrement, and read) are independent and asynchronous.

3) Forwarding Issues:Both forwarding mechanisms
gain performance by bypassing a register bank read
operation (and potential stall), so an instruction that uses
forwarding must be sure that the value will, indeed, become
available. A feature of the ARM instruction set [14] is that
every instruction has a conditional guard on its execution;
if the condition test fails it will produce no result. Therefore
only the results of instructions with the guard “ALWAYS”
(that is, instructions that are unconditionally executed,
which typically represent 70% of all instructions) are
guaranteed to be available and only these results may
be used for forwarding. In all other cases the instruction
must fall back on the register locking mechanism to ensure
it gets the correct operand values.

Since there is always a fall-back mechanism, the for-
warding logic only serves to improve performance. There is
little performance benefit from forwarding for infrequently
used instructions, so the decoder can take a conservative
approach and only attempt to use the forwarding mechanism
for frequently used instruction classes.

C. The Branch Target Cache (BTC)

AMULET1 prefetches instructions sequentially from the
current PC value and all deviations from sequential exe-
cution must be issued as corrections from the execution
pipeline to the address interface. Every time the PC has to
be corrected performance is lost and energy is wasted in
prefetching instructions that are subsequently discarded.

AMULET2 attempts to reduce this inefficiency by re-
membering where branches were previously taken and
guessing that control will subsequently follow the same
path. The organization of the BTC is shown in Fig. 7; it
is similar to the “jump trace buffer” used on the MU5
mainframe computer [24] developed at University of Man-
chester between 1969 and 1974 (which also operated with
asynchronous control).

The BTC caches the addresses and targets of 20 recently
taken branch instructions and modifies the predicted control
flow to the previous branch target whenever it spots an
instruction fetch from a stored address. When this pre-
diction is correct, exactly the right instruction sequence
is fetched. When it is wrong, the correction mechanism

Fig. 7. BTC organization.

(an “unbranch”) has the same cost as an unpredicted taken
branch.

Note that the branch prediction operation is entirely local
to one pipeline stage in the address incrementer loop; it
requires no information about (for example) the fetched
instruction. The only external synchronization occurs fol-
lowing a misprediction (unpredicted branch or “unbranch”)
in which case an interruption of the prefetch is necessary
anyway. This led us to choose this approach over the many
other branch prediction schemes used in clocked processors.

Although not shown in Fig. 7, the flow of data required
to update the cache is almost as convenient. The cache
is updated when an unpredicted branch is taken. When this
happens, the execution stage calculates the branch target by
adding an offset to the PC and then passes the result along
with the PC to the address interface. These are exactly the
values required to update the BTC.

A good way to think about the BTC is to view the
incrementer in AMULET1 as a first-order next instruction
address predictor and the BTC as a second-order correction
unit. They occupy exactly the same pipeline slot in the
address interface and work in parallel, with the BTC having
priority whenever it recognizes the input address. When
the prediction is correct the instruction flow is smooth;
when it is wrong recovery is necessary. In AMULET1
the prediction is wrong whenever a branch is executed,
and recovery is performed by executing the branch. In
AMULET2 the prediction is wrong when an unpredicted
branch is executed (recovered by executing the branch) or
when a branch is predicted in error (which is recovered by
executing an “unbranch”).

1) BTC Implementation:Since the BTC performs a
lookup on every instruction address issue it is important
that it consumes minimal power. Its basic structure is that
of an associative memory, and for performance reasons the
associative store is built from content-addressable memory
(CAM) which tends to be power hungry. To reduce its
power consumption the CAM is divided into two sections
(see Fig. 8): the larger section takes all of the address apart
from a few low-order bits; the smaller section deals with
these low-order bits. Since most instruction fetches run
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Fig. 8. BTC internal structure.

sequentially, the high-order bits change rarely and the high
section of the CAM need not be activated (provided that its
last output was stored). Therefore only the small section of
the CAM is active on every cycle. This segmentation of the
CAM saves around 70% of the power consumption of the
CAM; it also reduces the average lookup time, improving
performance. The RAM part of the BTC is only activated
when there is a hit in the CAM, so its contribution to the
overall power consumption is small.

Despite careful design the BTC will still consume some
power. However, it should also reduce the total number
of instruction fetches, improving performance and saving
power in the cache and/or external memory, so with careful
design it should save system power overall.

D. “Halt”

Most ARM programs, when they run out of useful work
to do, enter an idle loop implemented as “B.” where
an instruction continuously loops back to itself until an
interrupt occurs. (The ARM instruction set does not include
an explicit halt instruction.) Since this idle looping wastes
power, AMULET2 detects this instruction and a mecha-
nism stalls a control loop in the execution pipeline. The
stall rapidly propagates throughout the system, halting all
activity. An interrupt causes an immediate resumption of
processing at maximum performance.

IV. AMULET2e

AMULET2e is an asynchronous embedded system
controller incorporating an AMULET2 core, as described
above, along with a cache/RAM, a flexible memory
interface, and various control functions (including a
timer/counter that will typically be driven from a 32-kHz
crystal oscillator). Its internal organization is illustrated in
Fig. 9.

A. The AMULET2e Cache

The cache [25] is 4 Kb of RAM divided into four
1-Kb blocks, each block having an associated 64-entry tag

Fig. 9. AMULET2e internal organization.

CAM. When configured to operate as a cache (it may,
alternatively, operate as a memory mapped RAM) the
tag and data accesses are pipelined. The cache is 64-way
associative with a quad-word line. Refill is addressed-word
first [26] and the processor may continue accessing other
cache locations while the refill completes (“hit under miss”)
although a second cache miss must wait for the first line
fetch to complete. Refill data are held in a line-fetch latch
until the next cache miss, so an additional CAM entry
identifies subsequent hits on the line-fetch latch.

The CAM and RAM are self-timed for asynchronous
operation using dummy matched paths, and the organization
incorporates a number of power-saving features:

• sequential accesses within a line bypass the CAM
lookup (this also improves performance);

• the RAM sense amps do not turn on until the differ-
ential data are almost ready, and they turn off as soon
as the value has been sensed;

• only the addressed 1-Kb block is activated in any
access—the other blocks remain inactive and consume
no power.

B. The Memory Interface

Perhaps the most forceful lesson from AMULET1 was
the need to make the memory interface easier to use.
AMULET2e presents a relatively conventional interface
to the system designer, with a bidirectional data bus, an
address bus, and a range of chip select lines.

The ARM 32-bit address space is divided into eight
regions which can be configured independently for bus
width, memory “type,” and access timing; external memory
may be 8-, 16-, or 32-bits wide. For example, this allows
the system to boot from a single, slow 8-bit ROM but use
fast 32-bit SRAM for its main memory. Alternatively (or
additionally) a variety of DRAM devices are supported with
the address multiplexing and control sequencing supported
on-chip; page mode is used if the processor or cache
indicates that sequential addresses will be forthcoming
(such as a cache line fill or a multiple register stack push).
The objective here was to provide the system designer
with maximal flexibility. Full details of the memory con-
figuration options are available in the AMULET2e data
sheet [27].
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Fig. 10. AMULET2e test card organization.

Since it is unreasonable to require external memory
and peripheral components to provide completion signals
(at least until asynchronous design has wider commercial
support), some mechanism must be provided to ensure that
the timing requirements of these components are met. In a
clocked circuit, the period of a crystal oscillator provides
a very reliable reference for this purpose, but we wish
to avoid the power overhead of running an oscillator at
memory speeds. The solution adopted on AMULET2e is
to provide a “reference delay” and to program all external
accesses in multiples of this delay. Since on-chip delays are
subject to process variation, the reference delay is off chip.
It may be a simpleRC delay, an integrated delay line, or
a silicon delay line.

If DRAM’s are used, one absolute timing reference is re-
quired to ensure that the RAM is refreshed. This is provided
by the 32-kHz crystal oscillator, which provides regular (if
infrequent) requests for refresh to the memory interface.
These requests are arbitrated with any other requests by the
interface itself, thus refresh will proceed with or without
other bus activity, even if the processor is halted.

V. AMULET2e SYSTEM DESIGN

At board level, the chip is conventional and building a
system is straightforward. The flexible memory interface
results in a very low chip count. As an example, Fig. 10
shows how the AMULET2e equivalent of the ARM “PIE”
(platform independent evaluation) card is designed. An
8-bit ROM holds the “Demon” debug monitor code, which
is unchanged from the PIE ROM apart from a few instruc-
tions used to configure the various memory regions. One
location in the ROM is used by the AMULET2e hardware
to configure the region occupied by the ROM itself so that
the system can bootstrap.

Four 8-bit SRAM chips provide the main memory. The
system can operate with one or two RAM’s, but four gives
the best performance. The remaining components are the
UART and RS232 line driver chips used to communicate
with the host machine.

VI. DEVELOPMENT TOOLS

Although a number of different software tools were used
in the development of AMULET2e, the majority were

“off the shelf” commercial products; these are, of course,
intended and optimized for synchronous design. Fortunately
the design flow was very similar to that used in synchronous
microprocessors. The primary tools were the Compass
Design Automation Electronic Design Automation (EDA)
tools. These provided for schematic entry, layout design,
and some functional simulation. Detailed circuit simula-
tion used HSPICE. Latterly TimeMill from EPIC Design
Technology, Inc. was employed to give more accurate
timing information for circuits too large for sensible SPICE
simulation; TimeMill was able to simulate the extracted
layout of the whole chip.

Initial high-level modeling was performed in ASim—a
proprietary logic simulator developed by ARM Ltd. This
allowed models at gate level and above to be simulated with
arbitrary delays early in the design process, and the model
could be updated and used for verification as the design
entry progressed. A technique used with this model was
to vary the delays of gates within the asynchronous control
paths. This ensured that synchronization elements that could
expect inputs to arrive in any order were properly tested;
a normal logic simulation with more accurate delays could
miss cases that may occur only in unusual circumstances.
This process did find several potential deadlocks early in
the design cycle.

The one specific asynchronous logic tool which was
employed was Forcage [28], which was used to syn-
thesize many of the asynchronous control circuits, most
notably several different four-phase latch control circuits
which offer a range of performance and complexity choices
[23]. The only other tool component with particular asyn-
chronous aspects comprised a set of PERL scripts used
to trawl through TimeMill trace files to detect when the
bundled data–request–acknowledge orderings were violated
or had inadequate margins. Slow transitions on any control
wires were likewise identified and corrected.

Although the data path of the processor and much of the
cache is full custom design, large amounts of the control
logic were compiled from standard cells. We are indebted
to ARM Ltd. for the use of their standard cell library in
AMULET2e. This library was supplemented locally with a
number of physically compatible cells (such as C-elements)
which are specific to asynchronous control circuits.

There remains a major area that was not addressed by any
of these tools—the design of the overall system architec-
ture. In this field the synchronous designer has a significant
advantage imposed by the constraint of the clock. One
operation that occupies a clock cycle takes exactly the same
time as any other such operation, thus complex timing
interrelations are minimized. In an asynchronous system
this is not so and the benefits (or otherwise) of architectural
features cannot be counted upon so easily; this is illustrated
in Section VII.

A tool is needed to model asynchronous architectures
simply and cheaply at a high level, with the ability to
change the timing parameters of various blocks to observe
the effects on overall performance. This allows experimen-
tation to discover the more critical areas and design resource
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Fig. 11. AMULET2e die plot.

to be directed accordingly. Although ASim would allow
this, its models are primarily at gate level and thus it lacks
much of the desired flexibility. Work within the research
group is currently being directed in this area as we wish
to be able to explore the high-level design space more
effectively for future designs [29].

VII. AMULET2e TEST RESULTS

First silicon was delivered from VLSI Technology, Inc.,
on October 1, 1996. A plot of the die is shown in Fig. 11
where the AMULET2 processor core can be seen occupying
most of the top half of the chip and the four 1-Kb cache
blocks occupy the bottom half.

The chips had been packaged and tested, passing the test
program with little trouble. The test, while not giving the
level of coverage that would be required for commercial
production, was sufficiently extensive to give considerable
confidence that the parts were functional. For example, at
one point the program loads a RAM test routine into the
on-chip memory, which the AMULET2 core then executes
at full speed, without external intervention from the tester,
before returning a signature result which confirms that the
memory has passed the test. (AMULET2e was developed
as a research prototype, and extending the test program to
give acceptable test coverage for volume production would
be difficult without modifying the design to improve test
access to, for example, the cache and BTC CAM’s.)

The parts were functionally tested in a card as described
in Section VI. The first result was that the objective of sim-
plifying the system design interface was highly successful.
AMULET2e was running code within a few hours of its
arrival, unlike AMULET1, which took a month to bring
into life. The device also appears to be very robust.

Only one hardware fault has been identified so far. The
device fails by deadlock if the BTC and aborts are enabled
at the same time under certain interrupt conditions. Since

Table 1
AMULET2e Characteristics

most embedded applications make no use of aborts this
problem is easily avoided. The fault is a result of an error in
the design of the logic that removes a program counter value
from a holding pipeline that is used both to write values
into the BTC and to recover from an abort. The design
does not take into account the fact that these two functions
occur in different phases of their respective instructions and
an abort on one instruction can interfere with a BTC update
on another. The problem is straightforward to fix and can be
observed in the original simulation model if you look in the
right place. The failure to identify and correct this fault prior
to tape out is not related in any way to the asynchronous
operation of the part. As with clocked design, considerable
care must be taken in design verification and, ultimately,
only formal verification has the potential to remove the
risk of errors of this kind from complex designs, whether
clocked or asynchronous.

A. Performance

The fastest mode of operation is to run a program
from internal RAM. TimeMill simulations predicted 68
kDhrystones (2.1) in this case, and our first measurement
was 69 kDhrystones. This constitutes remarkably accurate
modeling on the part of the simulator, upon which we
depended totally for the final verification of the design.
(This accuracy must, at least in part, be due to the silicon
process parameters being very close to typical, which on
a small prototype sample is a matter of chance.) When all
the performance features were turned on this increased to
over 74 kDhrystones (42 MIPS based on the Dhrystone 2.1
benchmark). These measurements are at 3.3 V, the nominal
operating voltage of the device. Running at this peak rate
it consumes just under 150 mW (excluding I/O power,
but there is very little I/O activity). On similar process
technologies the ARM710 delivers 23 MIPS at 120 mW
and the ARM810 86 MIPS at 500 mW (see Table 1), so
the AMULET2e performance falls between these two with
slightly better power efficiency (though the ARM figures do
include I/O power). As with most processor comparisons,
there are too many variables for the results to be completely
clear and unambiguous, so Table 1 should be viewed as only
indicative of the relative properties of the three chips.

Running from external 80-ns static memory with the
cache enabled the processor delivers 54 kDhrystones
(31 MIPS), and with the cache disabled 19 kDhrystones
(11 MIPS).
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1) Multiplier Speed: AMULET2 includes a 4-bits-per-
cycle multiplier [30] that uses data-dependent early ter-
mination. The multiplier cycle time (measured by varying
the operand values) is around 6.5 ns, demonstrating the
merits of allowing different functions to operate at different
speeds. (The main execution pipeline cycles in about 25 ns.)
A multiplier constrained to operate at the same cycle rate as
the execution pipeline, such as a multiplier in a clocked pro-
cessor, would require four times as many Booth’s encoders
and carry-save adders to deliver the same performance.
This illustrates the fact that, under certain circumstances,
asynchronous design can save hardware cost.

2) Low-Voltage Operation:The processor appears to tol-
erate supply voltage variations well. The whole board
operates between 2.5 and 4 V, but failures of other com-
ponents stop the board operating below 2.5 V. In tests
which do not involve the other components the chip appears
fully functional down to 2 V, at which point the I/O’s
stop working. The core appears to continue operating down
to 1.1 V, though this can only be surmised by taking it
down from and back up to 2 V, since below 2 V the
I/O failures prevent external observations from being made.
The performance and power-efficiency scale with voltage
according to the standard formulas [14].

3) EMC: The radio-frequency emission from an
AMULET2e test card was measured according to the
EN 55022 standard in an industrial test facility. The
distance between the antenna and the test card was 3
m. The AMULET2e processor was tested running the
Dhrystone 2.1 benchmark from external memory, using a
nonswitching power supply with 30-cm long supply wires.
No particular EMC measures were taken in the design of
the PCB, although the UART with its baud rate oscillator
was removed for the test. An ARM60 PIE board running
at 20 MHz was measured under the same conditions.

Fig. 12 shows a logarithmic plot of the field strength
(in dBmV/m) against frequency from 30 MHz to 1 GHz
in steps of 60 kHz. The horizontal, stepped line shows
the EN 55022 limit. The AMULET2e test card emissions
are significantly lower than those from the clocked ARM
board at all frequencies. The spectrum displays peak field
strengths on harmonics of 26.247 MHz, reflecting the
average periodicity of the software, but these peaks are
much less pronounced than those in the clocked system.

4) Power Breakdown:The AMULET2e chip has sepa-
rate power supply pins for the core logic and pad ring,
allowing the core power dissipation to be measured accu-
rately. In addition, the PowerMill tool (from EPIC Design
Technology, Inc.) has been used to obtain an internal
breakdown of the core power. The results are summarized
in Table 2.

It might be expected that the power efficiency (measured
as MIPS/W) of the AMULET2 core would be independent
of the memory system, since the core does the same work
in all cases. However, the nondeterminacy of the instruction
prefetch mechanism and the transparency of micropipeline
structures mean that there is a dependency as can be seen
from these results.

(a)

(b)

Fig. 12. AMULET2e test card EMC measurements: (a)
AMULET2e evaluation board and (b) ARM60 “PIE” board.

Table 2
AMULET2e Power Breakdown

The on-chip RAM on AMULET2e is very power effi-
cient, using less energy to complete an access than it costs
to prepare to go off chip (and off-chip accesses also use
pad driver and off-chip memory device power in addition
to the on-chip logic). Configuring the on-chip memory as
a cache reduces its power-efficiency, as would be expected
since the cache requires a CAM tag lookup in addition to
the RAM access.

B. Benefits of Architectural Features

The various architectural features described in Section III
were justified on the grounds of their contribution to
performance, power-efficiency, or both. It is interesting,
therefore, to see what effect they have on the prototype
silicon. This is particularly straightforward as they can all
be enabled and disabled under software control. A summary
of the measurements taken on the test card is given in Table
3. All the measurements were taken running the Dhrystone
2.1 synthetic benchmark program, with the program either
resident in the internal memory, cached from the external
memory or executed directly from the external memory.
The external memory is 80-ns 32-bit static RAM and the
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Table 3
Architecture Feature Results

power figures are for the AMULET2e core logic including
the cache/RAM but excluding the I/O pads.

The last line in Table 3 shows the performance benefits
of turning all the architectural features on together.

1) LRR’s and LLV’s: The mechanisms used on
AMULET2 to perform forwarding were the outcome
of considerable development effort, and their contribution
to the performance of the device cannot be described as
anything other than disappointing. The LRR contributes
about twice the benefit of the LLV, but even taken together
the net result is meagre. This clearly demands some
explanation.

The AMULET2 forwarding mechanisms exist to reduce
the time an instruction waits for a stalled register read to
be resolved. If an instruction does not stall—because the
register bank is fully updated by the time it attempts the
read—there is no added benefit from forwarding. This can
occur when some other pipeline stage limits the instruction
issue rate to below that required by the execution stage to
complete register write back. For example, external memory
in the test card is slow (relative to the processor cycle
time) so when it is used as the source of instructions each
instruction races through the processor before its successor
has been fetched; hence there is no performance gain from
enabling the forwarding paths. As the instruction source
gets faster gains do appear: the cache system demonstrates
a (very) small gain from forwarding, and using the inter-
nal RAM (which is faster than the cache) a little more.
Unfortunately—as a consequence of limited development
resources—even the internal RAM subsystem cycles more
slowly than the register read and execute stages and so
much of the benefit of pipelining within the processor is
lost.

Therefore, our conclusion is that the forwarding mech-
anisms on AMULET2 are capable of delivering more
performance benefit than the rest of the AMULET2e system
can expose. From simulation results we expect that the
AMULET2 execution pipe cycles in 20 ns but the rest
of the chip can only sustain an average of around 25
ns. With a faster decode stage, address interface, and
memory we would expect considerably more benefit from
the forwarding paths in the existing execution pipeline.

The next question that must be answered is why was
this result not evident during simulation? The answer
lies in the critical dependency of the effectiveness of the
forwarding mechanisms on the detailed timing of all parts
of the chip. Early high-level simulations that were used to

define the architecture were based upon approximate timing
estimates. Accurate timings only became available during
postlayout simulation using “TimeMill,” by which time the
architecture was frozen.

It is interesting to observe that in a synchronous im-
plementation the execution path would have been slowed
to the memory speed and thus the relative gain (although
not the absolute speed) provided by these mechanisms
would be more pronounced. The asynchronous design has
automatically exploited the faster processing pipeline and
any forwarding benefits have been masked. The consequent
“waste” of development time could be turned into a case
against asynchronous design. However, with its greater
freedom to adapt to its working environment it is quite
possible that other benefits have accrued. An inevitable
conclusion is that it is hard to optimize an asynchronous
architecture, especially early in the design process.

2) BTC: The BTC caches 20 branch targets, a number
that was chosen on the basis of extensive simulation of
a range of applications. Unfortunately, it became clear
during those simulations that Dhrystone, the benchmark
program used for most our other measurements, has very
unusual branch characteristics—it is basically a single large
loop with over 20 branches in it, many of which are
taken atypically infrequently. This would suggest a BTC
of at least 27 entries is needed to optimize Dhrystone
performance. We resisted the temptation to optimize the
architecture for this synthetic benchmark. Whereas the BTC
gives a performance improvement of over 10% on typical
programs, it delivers only 7% on Dhrystone.

The power efficiency of the core drops by 5% when
the BTC is turned on without the power-saving feature
described in Section III-C, though the overall system power
efficiency rises by 4% when the code is being executed
from external memory due to the reduction in wasted in-
struction fetches. When the power-saving feature is enabled
the power-efficiency loss is eliminated, showing that this
feature saves around 5% of the total core power dissipation
with the BTC enabled.

The BTC therefore performs largely as expected and
makes a useful contribution to system performance and
power efficiency, and the power-saving optimization in the
design of the BTC completely eliminates the efficiency
penalty the BTC would otherwise incur in the core power.

3) “Halt”: When AMULET2e enters an idle loop with-
out the “Halt” function enabled it consumes between 66
mW and 162 mW depending on how fast the memory
system allows the processor to access instructions. With
the “Halt” function enabled the power drops to under 0.1
mW if the 32-KHz oscillator is running (and 3W if
it is not). The “Halt” feature therefore delivers a three
to four orders of magnitude power saving during idle
periods, automatically, and in a way which works with
much existing code (including the “Demon” ROM code
used in these tests). In many systems, when the processor
halts the external system power will also drop to very low
levels. The power consumption of the test card is dominated
by a single LED when the processor is halted.
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A clocked system can approach this idling efficiency, but
only with considerable effort. The clock must be gated off
to all parts of the system that consume significant dynamic
power, but in a way that leaves interrupts enabled, and
an interrupt must gate the clock back on. Often power-
management software is used to detect idle periods and to
step the power consumption down through a progressive
series of stages, reducing clock frequencies and gating out
particular parts of the system. Power-management software
consumes power itself when running. For very low con-
sumption the oscillators and phase-locked loops (PLL’s)
must also be turned off. Stopped oscillators and PLL’s
take considerable time to stabilize when they are turned
back on, compromising response time when an interrupt
occurs. Overall, power optimization in a clocked system is a
complex matter involving many tradeoffs. In an application
with a significant proportion of idle time, AMULET2e
should display remarkable power efficiency with very little
effort on the part of the designer.

At first sight it might appear that having only two states
(maximum performance or halted) is not as flexible as
being able to step a clock down through lower frequencies.
However, lowering a clock frequency does not, of itself,
improve power efficiency. It takes the same energy to
perform a given calculation in half the time and to halt
for the remaining time as it does to perform the calculation
at half the clock rate for the whole time. The only way a
lower clock rate can improve power-efficiency is if there is
a corresponding reduction in the supply voltage, which is
rarely used in practice and can equally (and more easily, as
there is no clock to adjust) be applied to an asynchronous
system.

An additional benefit of the halted state of AMULET2e
is that, by stopping all activity, it also removes all sources
of electromagnetic interference. Although tests show that
AMULET2e has good EMC properties when running under
maximum load, these can be further improved by halting
the processor when “radio silence” is required. There is
no high-speed clock oscillator continuing to generate inter-
ference, and maximum performance is available instantly
after an interrupt. This technique has potential benefits
in many modern time-division multiplexed digital radio
communication systems, where in weak signal areas the
processor could be shut down during the time slot used to
receive each packet.

C. Costs of Architectural Features

The last result and last loaded value registers are rel-
atively low-cost features when measured by their require-
ments for silicon area. They add considerable complexity to
the processor’s control logic, however, and therefore they
have significant design cost. The BTC has a higher area
cost, adding around 15% to the length of the processor
core data path. This cost is proportional to the number of
branches cached, so a direct cost/performance tradeoff is
possible. The halt feature has very low cost, requiring only
a handful of gates to be added to the processor control logic.

VIII. C ONCLUSIONS

AMULET2e is a highly usable asynchronous embedded
system chip. Its performance and power efficiency are
competitive with the industry-leading clocked ARM
designs, and in an idle loop its power reduces below
that achievable in a clocked design without stopping the
clock (whereafter the clocked chip takes considerable
time to resume full performance). Its EMC properties
are also very attractive, displaying a lower overall
emission level and much less severe harmonic peaks
than similar clocked circuits. Although in its current form
AMULET2e has a minor logic fault and could not be tested
economically in volume production, both of these issues
could be remedied with a little design effort to deliver a
highly effective, fully asynchronous controller for small
embedded systems.

AMULET2e incorporates several new architectural fea-
tures and the means to evaluate them (the LRR, LLV,
BTC, and abort handling can all be turned on or off
independently). As such it contributes to the growing pool
of architectural knowledge which must expand considerably
further before asynchronous designers can compete with
synchronous designers on equal terms.

However, seeing is believing, and the reactions of the
systems designers who have seen AMULET2e since proto-
types first ran have been very favorable. Several prototype
applications for the chip are presently under development.
We sense that the barriers to the commercial exploitation
of asynchronous design are beginning to fall.
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