Scalable Event-Driven Native Parallel Processing: The
SpiNNaker Neuromimetic System

Alexander D. Rast
School of Computer Science,
University of Manchester
Oxford Road
Manchester, UK
rasta@cs.man.ac.uk

Luis A. Plana
School of Computer Science,
University of Manchester
Oxford Road
Manchester, UK
plana@cs.man.ac.uk

ABSTRACT

Neural networks present a fundamentally different modedawh-
putation from the conventional sequential digital modebddlling

large networks on conventional hardware thus tends to fé-ine

cient if not impossible. Neither dedicated neural chipshwmodel
limitations, nor FPGA implementations, with scalabilifynlta-
tions, offer a satisfactory solution even though they haveroved
simulation performance dramatically. SpiNNaker introgkia dif-
ferent approach, the “neuromimetic” architecture, thatraéns
the neural optimisation of dedicated chips while offeringGA-
like universal configurability. Central to this parallel Hipro-
cessor is an asynchronous event-driven model that usesuiptte
generating dedicated hardware on the chip to supportiraalfteu-
ral simulation. While this architecture is particularlyitsible for
spiking models, it can also implement “classical” neuraldels
like the MLP efficiently. Nonetheless, event handling, jgaittirly
servicing incoming packets, requires careful and inngeatiesign
in order to avoid local processor congestion and possitadidek.
Using two exemplar models, a spiking network using Izhikbvi

neurons, and an MLP network, we illustrate how to implemént e

ficient service routines to handle input events. Thesemestiorm
the beginnings of a library of “drop-in” neural componentdl-
timately, the goal is the creation of a library-based dgwelent
system that allows the modeller to describe a model in a lagél-
neural description environment of his choice and use amaatied
tool chain to create the appropriate SpiNNaker instaotiatiThe
complete system: universal hardware, automated tool cleam

bedded system management, represents the “ideal” neud mo

elling environment: a general-purpose platform that camegate

an arbitrary neural network and run it with hardware speedl an

scale.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CF'10, May 17-19,2010 Bertinoro, Italy.

Copyright 2010 ACM 978-1-4503-0044-5/10/05 ...$10.00.

Xin Jin
School of Computer Science,
University of Manchester
Oxford Road
_ Manchester, UK
jinxa@cs.man.ac.uk

Cameron Patterson
School of Computer Science,
University of Manchester
Oxford Road
Manchester, UK
pattersc@cs.man.ac.uk

Francesco Galluppi
Department of Psychology,
University of Rome
Via Dei Marsi, 78
Rome, Italy

francesco.galluppi@gmail.com

Steve Furber
School of Computer Science,
University of Manchester
Oxford Road
Manchester, UK
steve.furber@manchester.ac.uk

Figure 1: SpiNNaker test chip.

Categories and Subject Descriptors

C.1.3 [Processor Architecture§: Other Architecture Styles—
Neural nets

General Terms
Design Performance Verification

Keywords

Asynchronous, event-driven, universal neural processor

1. INTRODUCTION

Neural networks present an emphatically different model of

computation from the conventional sequential digital moddis

make it unclear, at best, whether running neural networks on

industry-standard computer architectures represent®ad, gouch
less an optimum, implementation strategy. Such concees hex
come particularly pressing with the emergence of largéessjaik-
ing models [8] attempting biologically realistic simulati of brain-

scale networks. While dedicated hardware is thus beconmng i
creasingly attractive, it is also becoming clear that a firemtiel
design would be a poor choice, given that just as there istdeba
over the architectural model in the computational comnyttiere

is no consensus on the correct model of the neuron in theddiolo
ical community. Our proposed solution is the “neurominfetic
chitecture: a system whose hardware retains enough of the na
parallelism and asynchronous event-driven dynamics af"resu-

ral systems to be an analogue of the brain, enough genenabs®i
programmability to experiment with arbitrary biologicaldacom-
putational models. This neuromimetic device, SpiNNalesa,scal-
able universal neural network chip that for the first timevioles

a hardware platform for neural model exploration able topsup
large-scale networks with millions of neurons.

The SpiNNaker chip (fig. 1) is a plastic platform containing
configurable blocks of generic processing and connectivhipse
structure and function are designed and optimised for heora-
putation. This distinguishes it strongly from completelngral-
purpose FPGA's and also from dedicated devices that offexed fi
selection of neural models. The primary features of the neu-
romimetic architecture are:

Native Parallelism: There are multiple processors per device,
each operating completely independently from each other.

Event-Driven Processing: An external, self-contained, instanta-
neous signal drives state change in each process, which con
tains a trigger that will initiate or alter the process flow,

Incoherent Memory: Any processor may modify any memory lo-
cation it can access without notifying or synchronisinghwit
other processors.

Incremental Reconfiguration: The structural configuration of the
hardware can change dynamically while the system is run-
ning.

These characteristics mean SpiNNaker has an entirelyreliffe
model of computation from the conventional sequential anegx-
ample to illustrate the differences between asynchronauasllpl
processing and parallel processing as it has been condeiced-
ventional sequential models.

2. NEURAL SYSTEM ARCHITECTURES

2.1 Pure Software Simulation

The conventional way, and still by far the most widely-used
method, to simulate neural networks is through softwareusim
lation on conventional computers. The computing platforaym
vary all the way from a single uniprocessor PC [7], through
PC clusters [16] [18], to large mainframes [15]. Software is
equally varied but tends to depend strongly on the reseaveh d
main. For biologically realistic modelling at the micropio
level with fully accurate dynamics, the dominant applicasi are
NEURON [5] and GENESIS (http://genesis-sim.org). Simula-
tors like Brian [4] are in common use for dynamic-level simu-
lation where complete biological realism is secondary ® bbha-
sic dynamics at the spiking level. Such software tends to ab-
stract neurons to a spatial point, and spikes to zero-tine@tey
In the realm of artificial neural networks for computing @ppl
cations, software such as JNNS (http://www-ra.informatik
tuebingen.de/software/JavaNNS/welcome_e.html) has seme
use, although these applications are waning with the emeege
of spiking networks. Finally, many users use Matlab or C/Ge+
write their own neural simulators.

Software simulation tends to be slow and may require large-co
puters for detailed simulations on large-scale models.nirove
performance, recent software tools have turned to evéverdr
computing [26] [13] [1]. However, conventional sequentiam-
puters do not usually have direct hardware support for estemen
applications, and thus most event-driven simulators #Higtua an
emulation by using a small timestep, recording events invante
queue, and updating all processes dependent upon the evéms
queue at the appropriate timestep. While this improvesieifffay
over fully synchronous approaches, it still encounterstéitions
with very large networks that require either using simpleaityics
such as leaky integrate-and-fire, or modelling populatiminseu-
rons as a single object rather than each individual neuron.

2.2 Adapted General-Purpose Hardware

The emergence of various general-purpose devices supgorti
some level of parallel processing has generated nhumertaras
to map various neural algorithms to the hardware. While the i
creasing ubiquity of standard multicore microprocessareduces
an obvious opportunity to exploit parallelism, other, moreative
approaches use field-programmable gate arrays (FPGABafRD
graphics processor units (GPU's) [17]. FPGA’s, in partecubffer
an attractive possibility: reconfigurable computing. leaefig-
urable architectures, the model can modify the hardwaréiguen
ration of the chip while the simulation is running. There &een

2 different reconfigurable approaches: component swapfihg
and network remapping [25]. Both seek to circumvent scaling
limitations, with some success, but with both FPGA's and GPU
scalability limitations have proven to be the main problemith
FPGA's running into routing barriers due to their circuiticched
fabric [12] and GPU's running into memory access barriengere
more problematic has been power consumption: a typicaklarg
FPGA may dissipater 50W and a GPU accelerater 200W. Thus
adapting general-purpose hardware seems to be a regtipticeach
only for small-scale model prototyping.

2.3 Dedicated Neural Hardware

Given the limitations of off-the-shelf hardware, many gisu
have implemented dedicated neural hardware systems lyugual
volving a custom IC. This approach yields the greatest stmysr-
chitectural diversity as well as performance: differergiges have
used analogue or digital technology, hardwired or configlerar-
chitecture, continuous-activation or spiking signallicgarse- or
fine-grained parallelism. In recent years, however, istehas
moved primarily towards processors for the simulation dkisg
neural networks. Here again there have been two threadsef-de
opment. In the “neuromorphic” approach [6], chips use amato
circuitry to emulate, as closely as possible the actualthisigs of
real neurons. The “neuroprocessor” approach [14], by eshtat-
tempts to use general-purpose digital components with tannial
structure optimised for massively parallel neural processEach
has its limitations: neuromorphic chips are power- and camept-
efficient, but relatively small-scale, and have limited el model
support. Neuroprocessors have, to date, suffered fronconeect
limitations, a combination of limited bus bandwidth, syrmous
shared-access protocols, and circuit-switched topolddws, de-
spite the obvious speed improvements, dedicated neuratedev
have not thus far achieved the scalability that would petraiy
large-scale simulation, due to hardware limitations. Touwrnvent
such limitations while providing the scalable neural aecaion
that only dedicated hardware can provide, we have intratitioe
SpiNNaker neuromimetic architecture.

HE R 1
i\ Router CAM 1
Input { 1 Output
Comms —y»] i ' | Comms
NoC NoC
Router
2 : |
2
------ ' ey ey
: | TCM i i TeM |
| ARM968 ARM968 ARM968 |
Core Core Core
| System NoC |
| SDRAM System thernet |
Interface SRAM erne
I

—

Figure 2: SpiNNaker Architecture. The dashed box indicates
the extent of the SpiNNaker chip. Dotted grey boxes indicate
local memory areas.

3. THE SPINNAKER NEUROMIMETIC IC
3.1 Implementation of the Neuromimetic Ar-
chitecture

SpiNNaker implements the key architectural features using
mixture of off-the-shelf and custom components. By destyn t
system is optimised for spiking models, but this does nostram
it exclusively to spiking neural networks. Choice of theeimtal
components reflects functionality that is useful specifjdal neu-
ral networks.

3.1.1 Concurrent Multineuron Processing

SpiNNaker (fig. 2) contains multiple (2 in the present impdem
tation, 20 in a forthcoming version) independent ARM968cess
sors, each simulating a variable number of neurons whiclidcou
be as few as 1 or as many as 10,000. Each processor operates e
tirely independently (on separate clocks) and has its oviwater
subsystem containing various devices to support neuraiifum
ality. The principal devices are a communications corerathat
handles input and output traffic in the form of “spike” packed
DMA controller that provides fast virtual access to synatata
residing off-chip in a separate memory, and a Timer that supp

the generation of fixed time steps where models need them. The

entire subsystem is therefore a self-contained procesdément
modelling a neural group. This “processing node” is trulp@ar-
rent, in that it uses only local information to control exeon and
operates asynchronously from other processing nodes.

3.1.2 Asynchronous Event-Driven Communications

SpiNNaker’'s communication network is a configurable packet
switched asynchronous interconnect using Address-EvepteR

sentation (AER) to transmit neural signals between pragsss
AER is an emerging neural communication standard [3] that ab
stracts spikes from neurobiology into a single atomic evieahs-
mitting only the address of the neuron that fired; SpiNNaker e
tends this basic standard with an optional 32-bit paylodak if-
terconnect itself extends both on-chip and off-chip as tbm@u-
nications Network-on-Chip (Comms NoC). Previous work {[19
[11]) describes the design of and configuration procedurehfe
Comms NoC. At the processor node, the communications con-
troller receives and generates AER spikes, issuing arrige(i.e.,

an event) to the processor when a new packet arrives.Fropothe

of view of the neuromimetic architecture, this fabric implents
the support infrastructure for incremental reconfiguragmd the
event-driven model.

3.1.3 Incoherent Global Memory

SpiNNaker processors have access to 2 primary memory re-
sources: their own local “Tightly-Coupled Memory” (TCM) én
a global SDRAM device, neither of which require or have sup-
port for coherence mechanisms. The TCM is only accessible to
its own processor and contains both the executing code¢ifitth
struction TCM” (ITCM)) and any variables that must be acid#es
on-demand (in the “Data TCM" (DTCM)). The global SDRAM
contains the synaptic data (and possibly other large datetstes
whose need can be triggered by an event) Since synapses in the
SDRAM always connect 2 specific neurons, which themselves in
dividually map to a single processor (not necessarily tmeestor
both neurons), it is possible to segment the SDRAM into eiscr
regions for each processor, here grouped by postsynapiiome
since incoming spikes carry presynaptic neuron infornmatibhis
obviates the need for coherence checking because only ooespr
sor node will access a given address range. At the procesder n
level, the DMA controller handles synaptic data transfeakimg
the synapse appear virtually local to the processor by oing
into DTCM when an incoming packet arrives [24]. The DMA con-
troller also generates an event - DMA complete - when the the e
tire synaptic block has been transferred into local memoxerall
therefore, the SDRAM behaves more as an extension of loaalme
ory into a large off-chip area than a shared memory area,tarsl t
from a system point of view, effectively all memory is local.

3.1.4 Reconfigurable Structure

SpiNNaker uses a distributed routing subsystem to diresitgia
through the Comms NoC. Each chip has a packet-switchingrout
that can be reprogrammed in part or in full by changing théimgu
table, thus making it possible to reconfigure the model togpbn
the fly. Meanwhile, the DMA controller on the processing node

fan likewise swap out the running code on the processor in par

or in toto, by copying data into the ITCM. With a small amount
of irreplaceable code containing the interrupt handldrgs then
possible to alter dynamics, parameters, or virtually ahgomodel
characteristic in the middle of a simulation. Not only, gfere, is
SpiNNaker capable of instantiating an arbitrary, userrdefiuser
model, it can simulate neural models with dynamically cliagg
structure, or even change model types entirely, in the raidflla
simulation.

3.2 Nondeterministic process dynamics

While this event-driven solution is far more scalable thihes
synchronous or circuit-switched systems, it presentsfsignt im-
plementation challenges when the network is large and p#eie
fic dense.

No instantaneous global state:Since communications are asyn-

chronous the notion of global state is meaningless. It iethe
fore impossible to get an instantaneous “snapshot” of the sy User Interface
tem, and processors can only use local information to cbntro
process flow.

Description

One-way communication: The network is source-routed. From
the point of view of the source, the transmission is “fire-and
forget™ it can expect no response to its packet. From the Configuration
point of view of the destination, the transmission is “use-i
or-lose-it": either it must process the incoming packet ieam
diately, or drop it.

No processor can be prevented from issuing a packetSince
there is no global information and no return information
from destinations, no source could wait indefinitely to
transmit. To prevent deadlock, therefore, processors brust Neural Synapse
able to transmit in finite time. Models Models

Limited time to process a packet at destination: Similar con- - i
siderations at the destination mean that it cannot wait Neuron Synapse
indefinitely to accept incoming packets. There is thereéore Hardware Bl Hardware
finite time to process any incoming packet. Models Models

Finite and unbuffered local network capacity: i ;
Notwithstanding the previous requirements, the net- _m e
work is a physical interconnect with finite bandwidth, and {Device
critically, no buffering. Thus the only management options 5 - Level

to local congestion are network rerouting and destination
buffering.

No shared-resource admission control:Processors have access
to shared resources but since each one is temporally inde-
pendent, there can be no mechanism to prevent conflicting
accesses. Therefore the memory model is incoherent.

Figure 3: SpiNNaker Software Model.

These behaviours, decisively different from what is tybinasyn- at the Model level could be almost entirely arbitrary, bubnder
: y y y to implement the model efficiently on SpiNNaker the représen

3ﬂfrgrneonlisszﬁevﬁgtﬁlowa;sa"rﬁLif;en;sr’t Lef(iﬁgenZucrgjml Eih lgl.y_ tion chosen should have a simple correspondence to thegahysi
' P B hardware. Therefore, it is better to have the Model leveldadine

temas the hardware, and which demonstrates much about the con-, . .
. the event representation, but rather to have an interfaceitim
current model of computation.

mated tools that generate the mapping operating at a lowet, le
one which has visibility both of SpiNNaker hardware and & th
4. EVENT-DRIVEN PROCESSING o oLlovel dofintions. P

The software model uses a hardware-design-like flow based on .
hierarchical levels of abstraction. In a previous work [28] in- 4.2 The event-driven model at the system level

troduced this 3-level software model for SpiNNaker, with addl System level is the level that provides visibility both o&tmodel
Level, a System Level, and a Device Level (fig. 3). The model de and of SpiNNaker. At the system level the internal compament
fines an instantiation chain that proceeds from a behavioertaal of SpiNNaker become visible, but only as high-level objecd$
model down to a specific machine-level implementation. this level, events are transactions between objects reqtiag in-

. dividual components. Responses to events are the suteails
4.1 The event-driven model at the model level (or methods) to execute when the event arrives. These nmeethod

Model level treats the system as a process abstractionitteg h or functions will be different for different neural modeksnd be-

all the hardware detail and considers the model purely imdesf cause automated tools must be able to associate a given witidel
neural properties. For spiking neural networks the evented ab- a given series of SpiNNaker system objects, the System Isvel
straction is obvious: a spike is an event, and the dynamiatems mostly a collection of libraries for different neural moslelEach
are the response to each input spike. New input spikes trigge library defines the event representation as set of sourceaoemt
date of the dynamics. In nonspiking networks different eusions functions: a Packet-Received event, a DMA event, a Timenteve

are necessary. One easy and common method is time samplingand an Internal (processor) event. It must also accountipoi-
events could happen at a fixed time interval, and this periedint tant system properties: no global state information andveae
signal triggers the update. Alternatively, to reduce evate with communication. System-level event functions must as dtrasea
slowly-variable signals, a neuron may only generate anteviean only local information, and if the current local informatics insuf-

its output changes by some fixed amplitude. For models with no ficient to process the event, they must be able to transfoimtait
time component, the dataflow itself can act as an event: aneur afutureevent. There are several ways to do this: issue a DMA re-
receives an input event, completes its processing withitimatt, quest, set a timer, or trigger an internal event. It would besfble
and sends the output to its target neurons as an event. Tlee-imp to define the hardware sequences to set up event triggerseand r
tant point to observe is: decisions about the event repratem sponses at the system level, but this would mean definingatepa

hardware sequences for each different model. This ignbeefatt
that much of the low-level hardware operation is commonsxad
models and discards the possibility of reuse. Therefor&ttatem
level instead uses common device-driver support functioimsre
possible, drawn from a base library written at a lower level.

4.3 The event-driven model at the device level

Device level ignores the neural model altogether and censid
SpiNNaker at the signalling level of its devices. At thisdban
event is its actual hardware nature: an interrupt, and thigorese
likewise is the interrupt service routine (ISR) togethethwany de-
ferred processes the ISR triggers. The hardware packetliengis
visible along with the physical registers in the DMA and comm
nications controllers. Most of the device level code is ¢fiere a
series of interrupt-driven device drivers acting as supfuorctions
for the system level. Since device level code does not censid
the neural model, these drivers are common across many snodel
(and libraries), and includes operating-system-likeeyssupport,
startup and configuration routines essential for the ojweraff the
chip as a whole, but irrelevant from the point of view of thedab
Device-level ISR’s must consider carefully asynchronduosing
effects and the absence of network buffering: if the systepeets
a high event rate it needs to provide an event queue. As with an
ISR, the objective will be to defer as much processing asilpless
and exit the interrupt exception mode. Usually the defepes
cess is a system-level function, so that the typical flow ofti
is that the system level passes control to the device-IS8RMhen
the initial event occurs, which then does the minimal preies
necessary to capture the event and set/reset devices, dissasp
control back to the system-level function. How this worksletail
is easiest to see by considering actual model implementato
SpiNNaker.

5. NEURAL MODEL IMPLEMENTATIONS

To test SpiNNaker functionality and performance, we have im
plemented 2 different neural network models, a spiking rhadd
a classical MLP model. These models are sufficiently differe
in network design to represent an effective first test of Bfzkler
universality while sufficiently representative to be refere exam-
ples for future model implementations. We tested the madkiyy
ARM SoC Designer simulator, with additional low-level Vieg
testing using Synopsys VCS.

5.1 Spiking neural network model
The first model is a spiking neural network using Izhikevielun

rons and STDP synapses. The Izhikevich model [7] has been the

reference spiking model driving design choices during Wware
development because it is simple yet exhibits the full raofgab-
served neural behaviour. Nonetheless, it should not beratfe
that SpiNNaker was designed as a direct hardware implementa
tion of the Izhikevich model. We describe many of the aldorit
mic details of this model in the following papers: [9] (Izkikch
model), [21], [10] (STDP implementation). Here we focus ba t
event processing.

There are 3 main processes in the model, corresponding ® the
event sources. The first process operates upon receipt ofgghe
packet event, an interrupt from the communications coletrol' he
second process operates upon receipt of the DMA completad.ev
The final process operates upon receipt of the Timer event.

5.1.1 Packet Received

The packet received event is a high-priority FIQ interrupt,
keeping with the use-it-or-lose-it nature: new packetstrereive

immediate, pre-emptive servicing or they will be lost. Asea r
sult the process, operating at Device Level, uses the def@avent
model to schedule actual processing into the future as ae®yst
Level function. When an input arrives, the process perfoams
associative lookup on the packet address to find a sourceotia-c
sponding to a row of synapses in memory. It then signals théDM
controller to perform a transfer of this row into the nexa#able
of an array of synaptic buffers, incrementing the availdhiéer
number. It then exits and returns control to the background.

5.1.2 DMA received

The DMA received and all other events are normal IRQ’s, which
means that in addition to their own processing they may nead-t
count for the arrival of other packets. Notably in the casBiIA
received, this means that its processing may not have coecde-
fore another DMA received event arrives, triggered by a paiak-
riving. The first task of the service routine at Device levarefore
is to acknowledge the interrupt, thus freeing the DMA coltgro
for further transfers. Next, it tests the values of the syioduuffer
head and tail, to determine whether servicing of a DMA wdkisti
progress when the next such interrupt arrived. If the diffiee is
zero it triggers a System Level deferred service procesgtipg
in user mode rather than exception mode; otherwise it caplgim
return to the interrupted process (which will be a pre-axistie-
ferred service). In its deferred service, operating at&ysdtevel,
the process goes through the synaptic buffers in sequenceakEh
buffer, it first performs the STDP update, then computes twe n
contribution to the net input current at the delay value appate
to each active synapse. Once it finishes with any given huffer
updates the buffer queue head position, and if there rem#dierb
to service it continues on to the next one, exiting otherwise

5.1.3 Timer

The Timer event has a higher priority than DMA received, sinc
it operates on the current time rather than on future (delptyme.
Unlike the DMA-received event no additional timer events bhap-
pen so it can operate continuously in an exception mode, Vawe
to permit additional DMA interrupts it must exit from IRQ med
as soon as possible. Therefore, the (Device level) IRQ-nopde
eration consists of stacking registers and return addsesséhe
stack for a different mode: SVC (supervisor mode), ackndgde
ing the interrupt, and changing to supervisor mode. By dpeyat
System level in supervisor mode it can avoid interferinghveihy
potential deferred DMA operations still in progress whiteding
the interrupt for DMA use. The SVC-mode process performs an
efficient update of the neural states, computing and triggeany
possible output spike, and with it update of STDP postsyaapt
formation. Efficiency is critical; the SVC-mode process s
able to complete long before the next (1ms) Timer interrupicty
would have to kill any existing SVC process, corrupting méand
synaptic state.

5.2 MLP model

The second network is a classical multilayer perceptron ML
model using delta-rule backpropagation synapses with aiggh
threshold neurons. The MLP is a broadly-used model ideal as
a standard reference to test SpiNNaker's performance vath n
spiking models. Some details of the model are in [23], how-
ever, this work largely discusses the topology and mappiiere
we consider the dynamics, or more accurately, the transfiom
of the MLP to a dynamic event-driven model. Since signals are
continuous-valued “timeless” vectors, it is necessarydfing an

Inputs
Weight Processors

Sum Processors

Threshold Processors

XIS
XX////] 5
X//) =
XXXX [
XK :
;0;0.\\\
AN\
AN

Figure 4: SpiNNaker MLP mapping. Each dotted oval is one
processor. At each stage the unit sums the contributions fra
each previous stage. Note that one processor may implement
the input path for more than one final output neuron (shown
for the threshold stage here but not for other stages)

event representation for the dataflow. From this the procexiel
will follow.

Because the mapping of the MLP to SpiNNaker distributes unit
processing among several processors (see [23]) actuagsiog
will vary depending on whether the processor in concern émpl
ments the weight, sum, or threshold part of a unit. Processbr
all 3 types map a group of inputs i to outputs j. Each outputrj co
responds to a single neuron (or unit), while the inputs i depan
the stage. The inputs to weight units are the outputs frorpitée-
ous layer of neurons. Each successive stage then represeniis
of aggregation, where the goal is to aggregate all the infouts
given neuron j. Thus a weight unit will aggregate the inpatsohe
subgroup of all the inputs to neuron j. Sum processors arplgim
aggregation stages, accumulating the total contributiom fmul-
tiple subgroups, so that a sum processor’s inputs are OnEMaEC
lated subgroup from the weight processor. Likewise, a tulels
processor’s inputs are one subgroup of sum processors)filgig
possible to cascade sum processors to create a neuron bittar
fan-in.

5.2.1 MLP event representation

Representing MLP dynamics as events has two parts, a packet
format and an event definition. SpiNNaker’'s AER packet fdrma
allows for a payload in addition to the address. In the matieke-
fore, the packet retains the use of the address to indicateeso
neuron ID (Technically, a “unit” instead of a neuron: in thé.R®I
the unit is a processing element not necessarily assoandtbch
single neuron) and uses the payload to transmit that uritis a
vation. Defining the events in the MLP model comes from the
dataflow. MLP neurons propagate input vectors between imits
a unidirectional, feedforward manner: for each input pné=g one
signal will pass over any given connection. Therefore orentis
the arrival of a single vector component at any given unitreo
sponding to the packet received event. However, the datafiav
processing falls into 2 distinct phases: the forward pasd,the
backward pass. This suggests another event: reverseiairatat
an individual unit can readily detect by triggering on outpant.
This would be an Internal event. These 2 events, importapitéy
serve the characteristic of beitaral: a unit does not need to have
a global view of system state in order to detect the event.

5.2.2 Packet Received

The component packet received event drives most of the MLP
processing. Unlike the spiking case, the payload is ctitszathe
Device-level ISR for this event immediately places it in &ge
for further processing. The rest of the processing occuSyat
tem level. Exact processing depends upon the stage; weedémeot
internal input variable as | and the output variable as J. rioe
cessing then goes as follows:

1. Dequeue a packet and payload.

2. Test the packet’s source ID (address) against a scotboar
indicating which connections remain to be updated. If the
connection needs updating,

(a) For weight processord, = w;;O;, wherew;; is the
weight, andO; the payload. For all otherg,= O;.

(b) For weight processors in the backward pass only, com-
pute the weight delta for learning. (We have used stan-
dard momentum descent)

(c) Accumulate the output for neuronj:= J + I
3. If noconnections remain to be updated,

(a) For threshold processors only, use a look-up table to
compute a coarse sigmoidf = LUT(J) in the for-
ward direction. Get the sigmoid derivative/ 7" (J7)
in the backward direction.J¢ is theforward .J, J® the
backward)

(b) For threshold processors only, use a spline-based inter
polation to improve precision of J.

(c) For threshold processors in the backward pass only,
multiply the derivative by the new input:J
JU(LUT (JT)).

(d) Output a new packet with payload J.

4. If the packet queue is not empty, return to the start of the
loop.

The critical concern with this process, since time is notcadia is
load balancing. If the processing in a given unit is mucheiagtan
other units, the packet traffic to the subsequent unit maprbec
very bursty. This causes transient congestion,iamktremis may

deadlock the model. Obviously the sum processors haveialtriv
computation relative to weight and threshold, creatingpibiential
for exactly such a problem. We developed 2 solutions: redoee
number of sums in any given stage (which for large fan-insiés t
same as lengthening the processing pipeline), and contigrsim
process with other processes, forcing it to compete for.time

5.2.3 Output Sent

Output sent occurs when all inputs have arrived, and the com-
munications controller transitions to empty. At this pdihné pro-
cessor triggers a FlipDirection process that toggles thdentze-
tween forward and backward. Changing direction itself igvgpte
task, but detecting the condition “all inputs arrived” regs con-
sideration. The most general way to do this is by a scoreb@ard
bit-mapped representation of the arrival of packet-reabigvents
for each component. The test itself is then simple: XOR tloeesc
board with a mask of expected components. While this methed a
curately detects both the needed condition and componesrser
it has an important limitation: all inputsiustarrive before the unit
changes direction. This could be a potential problem if inledgir-
ing units had already sent while the current one still exgetatput.
“Fire-and-forget” signalling provides no delivery guarees, so a
receiving unit mightneverreceive an expected input. This would
effectively stop the simulation, because the network as@ewtan
proceed no faster than its slowest-to-output unit.

6. SIMULATION RESULTS

We ran simulations with 3 major objectives: chip verificatio
confirmation of accurate heterogeneous model support, ackep
processing performance evaluation. Simulations used ARKI S
Designer Simulator on a complete SystemC model of the SpiN-
Naker chip. Our simulation implemented a 4-chip system ®&ith
processors per chip (corresponding to the first test board).

6.1 Functionality testing

The first and most important series of tests verify basic func
tionality: does the SpiNNaker chip faithfully reproduce theural
model? We performed tests both with the spiking model and the
MLP model.

6.1.1 Spiking Tests

We ran two different simulations using the spiking modelthe
first we implemented a randomly-connected network with 48-ex
tatory and 16 inhibitory neurons having 40 connections peiron
with random 1-16 ms delay between neurons. We then stintllate
6 excitatory neurons and 1 inhibitory neuron of the popafativith
a constant input in order to simulate external input. As vpored
in [10] this network produced spiking patterns and synale@éen-
ing consistent with that expected. In the second set of tests
created a synthetic environment: a “doughnut hunter” appbn.
The network in this case had visual input and motion outfhg; t
goal was to get the position of the network’s (virtual) bodyattar-
get: an annulus or “doughnut”. Testing (figs. 5, 6, and 7)fiesti
that the network could successfully track and then moveatiyb
towards the doughnut, ultimately reaching the target. <hh ba-
sic, these tests verified the functionality: the neural nhbdbaved
as expected both at the behavioural level and at the sigpi&iefs
level.

6.1.2 MLP Tests

[iwero

VR 7.0 (MFC)

B @ @ O T [emitro | Sinsssiof o | @ Tt | 02 s .- o owe @ |

£ wndows e,

Figure 7: Doughnut hunter test. Successive frames show the

To test the MLP network we created an application based on the nNetwork’s “body” as it approaches the target. Above is when

“digits” application from LENS (http://tedlab.mit.edtdr/lens), a
software-based MLP simulator. Our network removed extage

the network reaches the target.

0.6000

MLP Digits Recognition, Weights Evolution

0.4000

0.2000 =

‘Weight Value

08000
Update 4 Update 10 Update 16 Update 22 Update 28 Update 34 Update 40 Update 45 Update 52 Update 58
Update | Update 7 Update 13 Update 19 Update 25 Update 31 Update 37 Update 43 Update 49 Update 55 Update 81

Example Number

Figure 8: SpiNNaker MLP test, weight changes. To improve
readability the diagram shows onlyselected weights; unshown
weights are similar. The weight changes show the expectedav
lution. Weight changes reflect an overall downward trend, co-

sistent with early stages of momentum learning. The oscilla
tions are characteristic of the learning rule.

SpiNNaker High Traffic Performance

1400
1200

1000

B Packets Expected
B Packets Recelved

600

. —

Plain +1 Weight +2 Weight +3 Weight

Figure 9: SpiNNaker packet handling performance

structural complications from the example to arrive at apéém
feedforward network with 20 input, 20 hidden, and 4 outpui-ne
rons. We trained the network using momentum learning with a
momentum of 0.875 and a learning rate of 0.0078125, irsfizdj

the weights randomly between [-0.5, 0.5] We augmented tinsLe
supplied data set with digits from 0-9 and added 2 sets ofdesi
digits with values 0-9. We then ran the network through 3 esec
sive training epochs. Results are in fig. 8. Once again thesdts

are consistent with basic functionality.

6.2 Packet Performance Testing

The second series of tests establish packet-processiitg.lith
is important to know how far the SpiNNaker architecture czales
in terms of local packet density before breaking down. Wel ke
MLP model as a test case for packet congestion by generaling a
ditional packets from the actual traffic of the simulatiooger. To
do this, we generated a separate packet type that outputetightw

SDRAM DMA

Transfers

ARM968

Subroutines

Interpolation

Timer
(Events)

Data-Processing
Instructions

Variable
Retrieval

Polynomial
Evaluation

Look-Up
Table

Figure 10: A general event-driven function pipeline for neual
networks. The grey box is the SpiNNaker realisation.

plicates of the same packet, so that the communicationsatant
sent a burst of n packets each time it output a weight updateete

n is the number of duplicates. Results are in fig. 9. SpiNNwler
able to handle~ 11 times more packet traffic without breaking
down, corresponding to 1 additional packet per weight updBihe
network starts breaking down due to congestion by 2 paclets p
weight update, and by 3 packets became completely paralysed
packets reached the final output. We found that the failurdemo
was the speed of the ISR: by 3 packets per update packets were
arriving faster than the time to complete the Fast Inter(&pD)
ISR. Clearly, very efficient interrupt service routineggether with
aggressive source-side output management, are essertél ex-
treme loading conditions.

7. DISCUSSION

From the models that have successfully run it is clear that-Sp
Naker can support multiple, very different neural networkew
general this capability is remains an important questiore dah
define a generalised function pipeline that is adequate ést meu-
ral models in existence (fig 10). The pipeline model emergas f
a consideration of what hardware can usually implementieffity
in combination with observations about the nature of nenvad!-
els. Broadly, most neural models, at the level of the atomiz p
cessing operation, fall into 2 major classes, “sum-andsiold”
types, that accumulate contributions from parallel in@nd pass
the result through a nonlinearity, and “dynamic” typest thee dif-
ferential state equations to update internal variablese fohmer
have the general forrfi; = T'(X;w;;.S;) wheresS; is the output of
the individual process, T is some nonlinear function, i Aeeinput
indices,w;; the scaling factors (usually, synaptic weights) for each
input, andsS; the inputs. The latter are systems with the general
form £X = E(X) + F(Y) + G(P) where E, F, and G are arbi-
trary functions, X is a given process variable, Y the otheialdes,
and P various (constant) parameters. Meanwhile, SpiN Reber-
cessors can easily implement polynomial functions butrdipes,
e.g. exponentials, are inefficient. In such cases it is iseakier
to implement a look-up table with polynomial interpolatidBuch
a pipeline would already be sufficient for sum-and-threghut-
works, which self-evidently are a (possibly non-polynoinfanc-
tion upon a polynomial. It also adequately covers the rlggnte-
side of differential equations: thus, to solve such equatidt re-
mains to pass them into a solver. For very simple cases it may b
possible to solve them analytically, but for the generakcdle
Euler method evaluation we have used appears to be adequate.

In principle, then, SpiNNaker can implement virtually arstn

of each synapse, for each input. We then ramped a number of du-work. In practice, as the packet experiments show, trafficsite

sets upper limits on model size and speed. Furthermoreggsoc nature of parallel computing and stands in contrast to quiweal
ing complexity has a large impact on achievable performamoze parallel systems that require coherence checking or coatidn
complex event processing slows the event rate at which SpikeiN between processes.
can respond. At some point it will drop below real-time ugdat

Careful management of memory variables is also an important
consideration. Both models involve multiple associativenmories 8. CONCLUSIONS

and lookup tables. If speed is critical, these must resid2TiCM By implementing an event-driven model directly in hardware
or ITCM, and this places a very high premium on efficient table spiNNaker comes considerably closer to biological neucah<
implementations. If it is possible to compute actual valirem a putation than clocked digital devices. At the same time igs
§ma||er fixed memory block this will often be a better implerze into sharp relief the major differences from synchronousigo-
tion than a LUT per neuron. _ _ tation that place a much greater programming emphasis int-eve
Solving differential equations introduces a third consadien: driven computing on the unpredictability of the flow of caitr
time efficiency and accuracy. Most nonlinear differentigations This important programming difference underscores thenry
have no analytic solution, but numerical methods are coatjaut- for event-driven development tools, which at this point scarce
ally complex. The Euler method we used is usually an accept- o nonexistent. It is clear that most development tools yduave
able tradeoff, but it does introduce a synchronous elenm¢otthe an underlying synchronous assumption, which in additiocoim-
model. Furthermore the time step limits simulation accyrdt plicating development, tends to influence programmersteptual
also places fixed, absolute upper bounds on the computatien t thinking - thus perpetuating the synchronous model. Fomgka,
per neuron. even at a most basic level, the idea of programming lemguage

Both models break down catastrophically if the packet taffi s fundamentally synchronous and sequential: it is confusind
overwhelms the processors’ ability to keep up. In the sgikin gjfficult to express event dynamics in a language-like folPms-
model, this occurs when the neurons become excessiveltyblrs sibly a development environment that moved away from a istgu
the MLP model, this occurs when any one of the 3 component pro- tic model towards graphically-orientated developmentef@mple

cesses becomes disproportionately faster (i.e. simplanthe oth- sing Petri nets, might make it easier to develop for eveied
ers. Large network sizes exacerbate the problem in botls cabes systems. If asynchronous dynamics is by definition a nepgssa
issue appears to be fundamental in a truly concurrent pSOWRS feature of true parallel processing, perhaps the linguistdel is
system where individual processors operate asynchrognandlin- one reason why developing effective parallel programmigst
dependently. Finding effective ways to manage the problemch has historically been difficult.
does not arise in synchronous systems because of the pieict In the same way that the entire software model needs review, t
input timing relationships, is a critical future researopit. hardware model for the neuromimetic architecture remainsrk
There remains considerable work to be done. Since SpiNNaker jn progress. SpiNNaker involves various design comprosnisat
hardware is now available, testing the models on the phiyiséoa- future neuromimetic chips could improve upon. Most obvigis
ware is an obvious priority, along with testing larger andencom- the use of (locally) synchronous ARM968 processors. Evalytu
plex models. We are currently working on implementing large it would be ideal to have each of the local programmable oce
scale, more biologically realistic models that simulatganaub- sors be themselves asynchronous. Meanwhile the interrephan

systems of the brain and are scalable across a wide rangedeimo pism in the ARM968 assumes a relatively slow interrupt ritere
sizes. Part of this work also includes the creation of morel@ho forceful hardware could rectify this limitation. For exalapif the

types to expand system-level libraries, notably a leakggrate- vectored interrupt controller couldirectly vector the processor to
and-fire neuron and voltage-gated NMDA synapses. Work on re- the appropriate exception, bypassing the long and cuminerso-
fining the packet processing, particularly in the host iiaee from try point processing, interrupt rate could increase whilerawing
SpiNNaker to the user, is also a major activity. There is evad critical time windows. Such a system might also have coreplet
that in addition to neural models, SpiNNaker's paralledgessing jndependent working memory (“register”) banks for eachegxc
model may find interesting uses outside the neural field, Bus t tign, as well as a common area to pass data between exception
we are investigating these where appropriate. Certainé/emer- modes without memory moves. These kinds of features would be
gence of such non-neural applications is an indication SaN- asking for data corruption in a synchronous model but bedome
Naker demonstrates important and possibly fundamentakpties ical in the event-driven model.
of parallel computing. o How far should neural network chips go in directly implement
The pre-eminent feature of the software model, charatiedb ing the model in hardware? For years the mesmerising comfept
native parallel computation, imodularisation of dependencies “direct implementation” has been popular, yet it is fundataty a
This includes not onlydata dependencies (arguably, the usual in- mjsconception: since the “actual” model of computing in ihain
terpretation of the term), but also temporal and abstraationes. is unknown, there can be no certainty a chip is directly inmgat-
In other words, the model does not place restrictions onuiet ing anything The SpiNNaker neuromimetic architecture provides
order between modules, or on functional support betwederdliit a more realistic and useful answer: instead of trying to @ngte
levels of software and hardware abstraction. Architediyyrde 3 question, build systems that can define the problem.

levels of software abstraction distribute the design atersitions
between different classes of service and allow a servicaérievel

to ignore the requirements of another, so that, for exanagdiéodel 9. ACKNOWLEDGMENTS

level neuron can describe its behaviour without having tusizter The SpiNNaker project is supported by the Engineering and
Pnog;r?g ?ﬁ;p;;g@ésstimelﬁa\g ii%g”%?]'dn;glt?m:nrgsi 'tr;osrglml%”; Physical Sciences Research Council, partly through thexAckd
hapoening in other ser?/ices whicﬂ from th)éir oir?t of Vi “d)E'Iet n Processor Technologies Portfolio Partnership at the Wsityeof

pp 9 ' P aph Manchester, and also by ARM and Silistix. Steve Furber halds

in another Lyjlnlverse and only communicate via events “gog Royal Society-Wolfson Research Merit Award. We appreciaée
from the sky”, so to speak. Such a model accurately refleetstie - .
support of these sponsors and industrial partners.

10. REFERENCES

[1] A. Delorme and S. J. Thorpe. “SpikeNET: an event-driven
simulation package for modelling large networks of spiking
neurons”.Network: Computation in Neural Systems
14(4):613-627, November 2003.

[2] B. Glackin, T. M. McGinnity, L. P. Maguire, Q. X. Wu, and
A. Belatreche. “A Novel Approach for the Implementation of
Large Scale Spiking Neural Networks on FPGA Hardware”.
In Proc. 8th Int'l Work Conf. Artificial Neural Networks
(IWANN 2005) pages 552-563. Springer-Verlag, 2005.

[3] D. Goldberg, G. Cauwenberghs, and A. Andreou. “Analog
VLSI spiking neural network with address domain
probabilistic synapses”. IRroc. 2001 IEEE Int’l Symp.
Circuits and Systems (ISCAS200dages 241-244. IEEE
Press, 2001.

[4] D. Goodman and R. Brette. “Brian: a simulator for spiking
neural networks in PythonFrontiers in Neuroinformatics
2(5), Nov 2008.

[5] M. L. Hines and N. T. Carnevale. “The NEURON simulation
environment”.Neural Computation9(6):1179-1209, Aug.
1997.

[6] G. Indiveri, E. Chicca, and R. Douglas. “A VLSI Array of
Low-Power Spiking Neurons and Bistable Synapses With
Spike-Timing Dependent PlasticitfEEE Transactions on
Neural Networks17(1):211-221, Jan. 2006.

[7] E. I1zhikevich. “Simple Model of Spiking NeuronslEEE
Trans. on Neural Network44:1569-1572, Nov. 2003.

[8] E. Izhikevich and G. M. Edelman. “Large-scale model of
mammalian thalamocortical systemProc. National
Academy of Sciences of the U3A85(9):3593-3598, March
2008.

[9] X.Jin, S. Furber, and J. Woods. “Efficient Modelling of
Spiking Neural Networks on a Scalable Chip
Multiprocessor”. InProc. 2008 Int’l Joint Conf. on Neural
Networks (IJCNN2008R008.

[10] X.Jin, A. Rast, F. Galluppi, M. M. Khan, and S. Furber.
“Implementing learning on the SpiNNaker universal neural
chip multiprocessor”. IfProc. 2009 Int’l Conf. Neural
Information Processing (ICONIP 20099 pringer-Verlag,
20009.

[11] M. Khan, D. Lester, L. Plana, A. Rast, X. Jin, E. Painkras
and S. Furber. “SpiNNaker: Mapping Neural Networks onto
a Massively-Parallel Chip Multiprocessor”. Rroc. 2008
Int’l Joint Conf. on Neural Networks (IJCNN20Q&008.

[12] L. Maguire, T. M. McGinnity, B. Glackin, A. Ghani,

A. Belatreche, and J. Harkin. “Challenges for large-scale
implementations of spiking neural networks on FPGAs”.
Neurocomputing71(1-3):13—-29, December 2007.

[13] M. Mattia and P. D. Guidice. “Efficient Event-Driven
Simulation of Large Networks of Spiking Neurons and
Dynamical SynapsesNeural Computation
12(10):2305-2329, October 2000.

[14] N. Mehrtash, D. Jung, H. Hellmich, T. Schénauer, V. T, Lu
and H. Klar. “Synaptic Plasticity in Spiking Neural Netwark
(SPPINN): a System Approach’lEEE Transactions on
Neural Networks14(5):980-992, Sept. 2003.

[15] M. Migliore, C. Cannia, W. W. Lytton, H. Markram, and
M. L. Hines. “Parallel network simulations with NEURON".
J. Computational Neuroscienc21(2):119-29, October
2006.

[16] A. Mouraud, H. Paugam-Moisy, and D. Puzenat. “A
distributed and multithreaded neural event driven sinutat

[17]

[18]

[19]

[20]

[21]

[22]

[23]

framework”. InProc. IASTED Int'| Conf. Parallel and
Distributed Computing and Networksages 212—-217, 2006.
J. M. Nageswaran, N. Dutt, J. L. Krichmar, and A. Nicalau
“A configurable simulation environment for the efficient
simulation of large-scale spiking neural networks on gregph
processors”’Neural Networks22(5-6), July/August 2007.
C. G. Orellana, R. G. Caballero, H. M. G. Velasco, and

F. J. L. Aligue. “NeuSim: a modular neural networks
simulator for Beowulf clusters”. IProc. 6th Int'l
Work-Conference on Atrtifical and Natural Neural Networks
(IWANN 2001), Part Il pages 72—79. Springer-Verlag, 2001.
L. Plana, S. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and
S. Yang. “A GALS Infrastructure for a Massively Parallel
Multiprocessor”.|EEE Design & Test of Computers
24(5):454-463, Sept.-Oct. 2007.

M. Porrmann, U. Witkowski, H. Kalte, and U. Riickert.
“Implementation of artificial neural networks on a
reconfigurable hardware accelerator” Rroc. 2002
Euromicro Conf. Parallel, Distributed, and Network-based
processingpages 243-250, 2002.

A. Rast, X. Jin, M. Khan, and S. Furber. “The Deferred
Event Model for Hardware-Oriented Spiking Neural
Networks”. InProc. 2008 Int'l Conf. Neural Information
Processing (ICONIP 20085pringer-Verlag, 2009.

A. Rast, M. M. Khan, X. Jin, L. A. Plana, and S. Furber. “A
Universal Abstract-Time Platform for Real-Time Neural
Networks”. InProc. 2009 Int’'l Joint Conf. on Neural
Networks (IJCNN2009pages 2611-2618, 2009.

A. Rast, S. Welbourne, X. Jin, and S. Furber. “Optimal
Connectivity in Hardware-Targetted MLP Networks”. In
Proc. 2009 Int'l Joint Conf. on Neural Networks
(IJCNN2009) pages 2619-2626, 2009.

[24] A.Rast, S. Yang, M. Khan, and S. Furber. “Virtual Synapt

Interconnect Using an Asynchronous Network-on-Chip”. In
Proc. 2008 Int’'l Joint Conf. on Neural Networks
(IJCNN2008) 2008.

[25] A. Upegui, C. A. Péa-Reyes, and E. Sanchez. “An FPGA

[26]

platform for on-line topology exploration of spiking nelira
networks”.Microprocessors and Microsystems
29(5):211-223, June 2005.

L. Watts. “Event-driven simulation of networks of spig
neurons”. InAdvances in Neural Information Processing
(NIPS) 6 pages 927-934. Morgan Kaufmann Publishers,
1994.

