
Scalable Event-Driven Native Parallel Processing: The
SpiNNaker Neuromimetic System

Alexander D. Rast
School of Computer Science,

University of Manchester
Oxford Road

Manchester, UK
rasta@cs.man.ac.uk

Xin Jin
School of Computer Science,

University of Manchester
Oxford Road

Manchester, UK
jinxa@cs.man.ac.uk

Francesco Galluppi
Department of Psychology,

University of Rome
Via Dei Marsi, 78

Rome, Italy
francesco.galluppi@gmail.com

Luis A. Plana
School of Computer Science,

University of Manchester
Oxford Road

Manchester, UK
plana@cs.man.ac.uk

Cameron Patterson
School of Computer Science,

University of Manchester
Oxford Road

Manchester, UK
pattersc@cs.man.ac.uk

Steve Furber
School of Computer Science,

University of Manchester
Oxford Road

Manchester, UK
steve.furber@manchester.ac.uk

ABSTRACT
Neural networks present a fundamentally different model ofcom-
putation from the conventional sequential digital model. Modelling
large networks on conventional hardware thus tends to be ineffi-
cient if not impossible. Neither dedicated neural chips, with model
limitations, nor FPGA implementations, with scalability limita-
tions, offer a satisfactory solution even though they have improved
simulation performance dramatically. SpiNNaker introduces a dif-
ferent approach, the “neuromimetic” architecture, that maintains
the neural optimisation of dedicated chips while offering FPGA-
like universal configurability. Central to this parallel multipro-
cessor is an asynchronous event-driven model that uses interrupt-
generating dedicated hardware on the chip to support real-time neu-
ral simulation. While this architecture is particularly suitable for
spiking models, it can also implement “classical” neural models
like the MLP efficiently. Nonetheless, event handling, particularly
servicing incoming packets, requires careful and innovative design
in order to avoid local processor congestion and possible deadlock.
Using two exemplar models, a spiking network using Izhikevich
neurons, and an MLP network, we illustrate how to implement ef-
ficient service routines to handle input events. These routines form
the beginnings of a library of “drop-in” neural components.Ul-
timately, the goal is the creation of a library-based development
system that allows the modeller to describe a model in a high-level
neural description environment of his choice and use an automated
tool chain to create the appropriate SpiNNaker instantiation. The
complete system: universal hardware, automated tool chain, em-
bedded system management, represents the “ideal” neural mod-
elling environment: a general-purpose platform that can generate
an arbitrary neural network and run it with hardware speed and
scale.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’10, May 17–19,2010 Bertinoro, Italy.
Copyright 2010 ACM 978-1-4503-0044-5/10/05 ...$10.00.

Figure 1: SpiNNaker test chip.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles—
Neural nets

General Terms
Design Performance Verification

Keywords
Asynchronous, event-driven, universal neural processor

1. INTRODUCTION
Neural networks present an emphatically different model of

computation from the conventional sequential digital model. This
make it unclear, at best, whether running neural networks on
industry-standard computer architectures represents a good, much
less an optimum, implementation strategy. Such concerns have be-
come particularly pressing with the emergence of large-scale spik-
ing models [8] attempting biologically realistic simulation of brain-

scale networks. While dedicated hardware is thus becoming in-
creasingly attractive, it is also becoming clear that a fixed-model
design would be a poor choice, given that just as there is debate
over the architectural model in the computational community, there
is no consensus on the correct model of the neuron in the biolog-
ical community. Our proposed solution is the “neuromimetic” ar-
chitecture: a system whose hardware retains enough of the native
parallelism and asynchronous event-driven dynamics of “real” neu-
ral systems to be an analogue of the brain, enough general-purpose
programmability to experiment with arbitrary biological and com-
putational models. This neuromimetic device, SpiNNaker, is a scal-
able universal neural network chip that for the first time provides
a hardware platform for neural model exploration able to support
large-scale networks with millions of neurons.

The SpiNNaker chip (fig. 1) is a plastic platform containing
configurable blocks of generic processing and connectivitywhose
structure and function are designed and optimised for neural com-
putation. This distinguishes it strongly from completely general-
purpose FPGA’s and also from dedicated devices that offer a fixed
selection of neural models. The primary features of the neu-
romimetic architecture are:

Native Parallelism: There are multiple processors per device,
each operating completely independently from each other.

Event-Driven Processing: An external, self-contained, instanta-
neous signal drives state change in each process, which con-
tains a trigger that will initiate or alter the process flow,

Incoherent Memory: Any processor may modify any memory lo-
cation it can access without notifying or synchronising with
other processors.

Incremental Reconfiguration: The structural configuration of the
hardware can change dynamically while the system is run-
ning.

These characteristics mean SpiNNaker has an entirely different
model of computation from the conventional sequential one,an ex-
ample to illustrate the differences between asynchronous parallel
processing and parallel processing as it has been conceivedin con-
ventional sequential models.

2. NEURAL SYSTEM ARCHITECTURES

2.1 Pure Software Simulation
The conventional way, and still by far the most widely-used

method, to simulate neural networks is through software simu-
lation on conventional computers. The computing platform may
vary all the way from a single uniprocessor PC [7], through
PC clusters [16] [18], to large mainframes [15]. Software is
equally varied but tends to depend strongly on the research do-
main. For biologically realistic modelling at the microscopic
level with fully accurate dynamics, the dominant applications are
NEURON [5] and GENESIS (http://genesis-sim.org). Simula-
tors like Brian [4] are in common use for dynamic-level simu-
lation where complete biological realism is secondary to the ba-
sic dynamics at the spiking level. Such software tends to ab-
stract neurons to a spatial point, and spikes to zero-time events.
In the realm of artificial neural networks for computing appli-
cations, software such as JNNS (http://www-ra.informatik.uni-
tuebingen.de/software/JavaNNS/welcome_e.html) has seen some
use, although these applications are waning with the emergence
of spiking networks. Finally, many users use Matlab or C/C++to
write their own neural simulators.

Software simulation tends to be slow and may require large com-
puters for detailed simulations on large-scale models. To improve
performance, recent software tools have turned to event-driven
computing [26] [13] [1]. However, conventional sequentialcom-
puters do not usually have direct hardware support for event-driven
applications, and thus most event-driven simulators actually run an
emulation by using a small timestep, recording events in an event
queue, and updating all processes dependent upon the eventsin the
queue at the appropriate timestep. While this improves efficiency
over fully synchronous approaches, it still encounters limitations
with very large networks that require either using simple dynamics
such as leaky integrate-and-fire, or modelling populationsof neu-
rons as a single object rather than each individual neuron.

2.2 Adapted General-Purpose Hardware
The emergence of various general-purpose devices supporting

some level of parallel processing has generated numerous attempts
to map various neural algorithms to the hardware. While the in-
creasing ubiquity of standard multicore microprocessors introduces
an obvious opportunity to exploit parallelism, other, morecreative
approaches use field-programmable gate arrays (FPGA’s) [20] and
graphics processor units (GPU’s) [17]. FPGA’s, in particular, offer
an attractive possibility: reconfigurable computing. In reconfig-
urable architectures, the model can modify the hardware configu-
ration of the chip while the simulation is running. There have been
2 different reconfigurable approaches: component swapping[2]
and network remapping [25]. Both seek to circumvent scaling
limitations, with some success, but with both FPGA’s and GPU’s
scalability limitations have proven to be the main problem,with
FPGA’s running into routing barriers due to their circuit-switched
fabric [12] and GPU’s running into memory access barriers. Even
more problematic has been power consumption: a typical large
FPGA may dissipate∼ 50W and a GPU accelerator∼ 200W. Thus
adapting general-purpose hardware seems to be a realistic approach
only for small-scale model prototyping.

2.3 Dedicated Neural Hardware
Given the limitations of off-the-shelf hardware, many groups

have implemented dedicated neural hardware systems, usually in-
volving a custom IC. This approach yields the greatest scopefor ar-
chitectural diversity as well as performance: different designs have
used analogue or digital technology, hardwired or configurable ar-
chitecture, continuous-activation or spiking signalling, coarse- or
fine-grained parallelism. In recent years, however, interest has
moved primarily towards processors for the simulation of spiking
neural networks. Here again there have been two threads of devel-
opment. In the “neuromorphic” approach [6], chips use analogue
circuitry to emulate, as closely as possible the actual biophysics of
real neurons. The “neuroprocessor” approach [14], by contrast, at-
tempts to use general-purpose digital components with an internal
structure optimised for massively parallel neural processing. Each
has its limitations: neuromorphic chips are power- and component-
efficient, but relatively small-scale, and have limited or fixed model
support. Neuroprocessors have, to date, suffered from interconnect
limitations, a combination of limited bus bandwidth, synchronous
shared-access protocols, and circuit-switched topology.Thus, de-
spite the obvious speed improvements, dedicated neural devices
have not thus far achieved the scalability that would permittruly
large-scale simulation, due to hardware limitations. To circumvent
such limitations while providing the scalable neural acceleration
that only dedicated hardware can provide, we have introduced the
SpiNNaker neuromimetic architecture.

Figure 2: SpiNNaker Architecture. The dashed box indicates
the extent of the SpiNNaker chip. Dotted grey boxes indicate
local memory areas.

3. THE SPINNAKER NEUROMIMETIC IC

3.1 Implementation of the Neuromimetic Ar-
chitecture

SpiNNaker implements the key architectural features usinga
mixture of off-the-shelf and custom components. By design the
system is optimised for spiking models, but this does not constrain
it exclusively to spiking neural networks. Choice of the internal
components reflects functionality that is useful specifically to neu-
ral networks.

3.1.1 Concurrent Multineuron Processing
SpiNNaker (fig. 2) contains multiple (2 in the present implemen-

tation, 20 in a forthcoming version) independent ARM968 proces-
sors, each simulating a variable number of neurons which could
be as few as 1 or as many as 10,000. Each processor operates en-
tirely independently (on separate clocks) and has its own private
subsystem containing various devices to support neural function-
ality. The principal devices are a communications controller that
handles input and output traffic in the form of “spike” packets, a
DMA controller that provides fast virtual access to synaptic data
residing off-chip in a separate memory, and a Timer that supports
the generation of fixed time steps where models need them. The
entire subsystem is therefore a self-contained processingelement
modelling a neural group. This “processing node” is truly concur-
rent, in that it uses only local information to control execution and
operates asynchronously from other processing nodes.

3.1.2 Asynchronous Event-Driven Communications
SpiNNaker’s communication network is a configurable packet-

switched asynchronous interconnect using Address-Event Repre-

sentation (AER) to transmit neural signals between processors.
AER is an emerging neural communication standard [3] that ab-
stracts spikes from neurobiology into a single atomic event, trans-
mitting only the address of the neuron that fired; SpiNNaker ex-
tends this basic standard with an optional 32-bit payload. The in-
terconnect itself extends both on-chip and off-chip as the Commu-
nications Network-on-Chip (Comms NoC). Previous work ([19],
[11]) describes the design of and configuration procedure for the
Comms NoC. At the processor node, the communications con-
troller receives and generates AER spikes, issuing an interrupt (i.e.,
an event) to the processor when a new packet arrives.From thepoint
of view of the neuromimetic architecture, this fabric implements
the support infrastructure for incremental reconfiguration and the
event-driven model.

3.1.3 Incoherent Global Memory
SpiNNaker processors have access to 2 primary memory re-

sources: their own local “Tightly-Coupled Memory” (TCM) and
a global SDRAM device, neither of which require or have sup-
port for coherence mechanisms. The TCM is only accessible to
its own processor and contains both the executing code (in the “In-
struction TCM” (ITCM)) and any variables that must be accessible
on-demand (in the “Data TCM” (DTCM)). The global SDRAM
contains the synaptic data (and possibly other large data structures
whose need can be triggered by an event) Since synapses in the
SDRAM always connect 2 specific neurons, which themselves in-
dividually map to a single processor (not necessarily the same for
both neurons), it is possible to segment the SDRAM into discrete
regions for each processor, here grouped by postsynaptic neuron
since incoming spikes carry presynaptic neuron information. This
obviates the need for coherence checking because only one proces-
sor node will access a given address range. At the processor node
level, the DMA controller handles synaptic data transfer, making
the synapse appear virtually local to the processor by bringing it
into DTCM when an incoming packet arrives [24]. The DMA con-
troller also generates an event - DMA complete - when the the en-
tire synaptic block has been transferred into local memory.Overall
therefore, the SDRAM behaves more as an extension of local mem-
ory into a large off-chip area than a shared memory area, and thus
from a system point of view, effectively all memory is local.

3.1.4 Reconfigurable Structure
SpiNNaker uses a distributed routing subsystem to direct packets

through the Comms NoC. Each chip has a packet-switching router
that can be reprogrammed in part or in full by changing the routing
table, thus making it possible to reconfigure the model topology on
the fly. Meanwhile, the DMA controller on the processing node
can likewise swap out the running code on the processor in part
or in toto, by copying data into the ITCM. With a small amount
of irreplaceable code containing the interrupt handlers, it is then
possible to alter dynamics, parameters, or virtually any other model
characteristic in the middle of a simulation. Not only, therefore, is
SpiNNaker capable of instantiating an arbitrary, user-defined user
model, it can simulate neural models with dynamically changing
structure, or even change model types entirely, in the middle of a
simulation.

3.2 Nondeterministic process dynamics
While this event-driven solution is far more scalable than either

synchronous or circuit-switched systems, it presents significant im-
plementation challenges when the network is large and packet traf-
fic dense.

No instantaneous global state:Since communications are asyn-

chronous the notion of global state is meaningless. It is there-
fore impossible to get an instantaneous “snapshot” of the sys-
tem, and processors can only use local information to control
process flow.

One-way communication: The network is source-routed. From
the point of view of the source, the transmission is “fire-and-
forget”: it can expect no response to its packet. From the
point of view of the destination, the transmission is “use-it-
or-lose-it”: either it must process the incoming packet imme-
diately, or drop it.

No processor can be prevented from issuing a packet:Since
there is no global information and no return information
from destinations, no source could wait indefinitely to
transmit. To prevent deadlock, therefore, processors mustbe
able to transmit in finite time.

Limited time to process a packet at destination:Similar con-
siderations at the destination mean that it cannot wait
indefinitely to accept incoming packets. There is thereforea
finite time to process any incoming packet.

Finite and unbuffered local network capacity:
Notwithstanding the previous requirements, the net-
work is a physical interconnect with finite bandwidth, and
critically, no buffering. Thus the only management options
to local congestion are network rerouting and destination
buffering.

No shared-resource admission control:Processors have access
to shared resources but since each one is temporally inde-
pendent, there can be no mechanism to prevent conflicting
accesses. Therefore the memory model is incoherent.

These behaviours, decisively different from what is typical in syn-
chronous sequential or parallel systems, require a correspondingly
different software model, as much a part of the neuromimeticsys-
temas the hardware, and which demonstrates much about the con-
current model of computation.

4. EVENT-DRIVEN PROCESSING
The software model uses a hardware-design-like flow based on

hierarchical levels of abstraction. In a previous work [22]we in-
troduced this 3-level software model for SpiNNaker, with a Model
Level, a System Level, and a Device Level (fig. 3). The model de-
fines an instantiation chain that proceeds from a behavioural neural
model down to a specific machine-level implementation.

4.1 The event-driven model at the model level
Model level treats the system as a process abstraction that hides

all the hardware detail and considers the model purely in terms of
neural properties. For spiking neural networks the event-driven ab-
straction is obvious: a spike is an event, and the dynamic equations
are the response to each input spike. New input spikes trigger up-
date of the dynamics. In nonspiking networks different abstractions
are necessary. One easy and common method is time sampling:
events could happen at a fixed time interval, and this periodic event
signal triggers the update. Alternatively, to reduce eventrate with
slowly-variable signals, a neuron may only generate an event when
its output changes by some fixed amplitude. For models with no
time component, the dataflow itself can act as an event: a neuron
receives an input event, completes its processing with thatinput,
and sends the output to its target neurons as an event. The impor-
tant point to observe is: decisions about the event representation

Figure 3: SpiNNaker Software Model.

at the Model level could be almost entirely arbitrary, but inorder
to implement the model efficiently on SpiNNaker the representa-
tion chosen should have a simple correspondence to the physical
hardware. Therefore, it is better to have the Model level notdefine
the event representation, but rather to have an interface toauto-
mated tools that generate the mapping operating at a lower level,
one which has visibility both of SpiNNaker hardware and of the
model-level definitions.

4.2 The event-driven model at the system level
System level is the level that provides visibility both of the model

and of SpiNNaker. At the system level the internal components
of SpiNNaker become visible, but only as high-level objects. At
this level, events are transactions between objects representing in-
dividual components. Responses to events are the subroutine calls
(or methods) to execute when the event arrives. These methods
or functions will be different for different neural models,and be-
cause automated tools must be able to associate a given modelwith
a given series of SpiNNaker system objects, the System levelis
mostly a collection of libraries for different neural models. Each
library defines the event representation as set of source component
functions: a Packet-Received event, a DMA event, a Timer event,
and an Internal (processor) event. It must also account for impor-
tant system properties: no global state information and one-way
communication. System-level event functions must as a result use
only local information, and if the current local information is insuf-
ficient to process the event, they must be able to transform itinto
a futureevent. There are several ways to do this: issue a DMA re-
quest, set a timer, or trigger an internal event. It would be possible
to define the hardware sequences to set up event triggers and re-
sponses at the system level, but this would mean defining separate

hardware sequences for each different model. This ignores the fact
that much of the low-level hardware operation is common across all
models and discards the possibility of reuse. Therefore theSystem
level instead uses common device-driver support functionswhere
possible, drawn from a base library written at a lower level.

4.3 The event-driven model at the device level
Device level ignores the neural model altogether and considers

SpiNNaker at the signalling level of its devices. At this level an
event is its actual hardware nature: an interrupt, and the response
likewise is the interrupt service routine (ISR) together with any de-
ferred processes the ISR triggers. The hardware packet encoding is
visible along with the physical registers in the DMA and commu-
nications controllers. Most of the device level code is therefore a
series of interrupt-driven device drivers acting as support functions
for the system level. Since device level code does not consider
the neural model, these drivers are common across many models
(and libraries), and includes operating-system-like system support,
startup and configuration routines essential for the operation of the
chip as a whole, but irrelevant from the point of view of the model.
Device-level ISR’s must consider carefully asynchronous timing
effects and the absence of network buffering: if the system expects
a high event rate it needs to provide an event queue. As with any
ISR, the objective will be to defer as much processing as possible
and exit the interrupt exception mode. Usually the deferredpro-
cess is a system-level function, so that the typical flow of control
is that the system level passes control to the device-level ISR when
the initial event occurs, which then does the minimal processing
necessary to capture the event and set/reset devices, then passes
control back to the system-level function. How this works indetail
is easiest to see by considering actual model implementations on
SpiNNaker.

5. NEURAL MODEL IMPLEMENTATIONS
To test SpiNNaker functionality and performance, we have im-

plemented 2 different neural network models, a spiking model and
a classical MLP model. These models are sufficiently different
in network design to represent an effective first test of SpiNNaker
universality while sufficiently representative to be reference exam-
ples for future model implementations. We tested the modelsusing
ARM SoC Designer simulator, with additional low-level Verilog
testing using Synopsys VCS.

5.1 Spiking neural network model
The first model is a spiking neural network using Izhikevich neu-

rons and STDP synapses. The Izhikevich model [7] has been the
reference spiking model driving design choices during hardware
development because it is simple yet exhibits the full rangeof ob-
served neural behaviour. Nonetheless, it should not be inferred
that SpiNNaker was designed as a direct hardware implementa-
tion of the Izhikevich model. We describe many of the algorith-
mic details of this model in the following papers: [9] (Izhikevich
model), [21], [10] (STDP implementation). Here we focus on the
event processing.

There are 3 main processes in the model, corresponding to the3
event sources. The first process operates upon receipt of theinput
packet event, an interrupt from the communications controller. The
second process operates upon receipt of the DMA completed event.
The final process operates upon receipt of the Timer event.

5.1.1 Packet Received
The packet received event is a high-priority FIQ interrupt,in

keeping with the use-it-or-lose-it nature: new packets must receive

immediate, pre-emptive servicing or they will be lost. As a re-
sult the process, operating at Device Level, uses the deferred-event
model to schedule actual processing into the future as a System
Level function. When an input arrives, the process performsan
associative lookup on the packet address to find a source ID, corre-
sponding to a row of synapses in memory. It then signals the DMA
controller to perform a transfer of this row into the next-available
of an array of synaptic buffers, incrementing the availablebuffer
number. It then exits and returns control to the background.

5.1.2 DMA received
The DMA received and all other events are normal IRQ’s, which

means that in addition to their own processing they may need to ac-
count for the arrival of other packets. Notably in the case ofDMA
received, this means that its processing may not have completed be-
fore another DMA received event arrives, triggered by a packet ar-
riving. The first task of the service routine at Device level therefore
is to acknowledge the interrupt, thus freeing the DMA controller
for further transfers. Next, it tests the values of the synaptic buffer
head and tail, to determine whether servicing of a DMA was still in
progress when the next such interrupt arrived. If the difference is
zero it triggers a System Level deferred service process operating
in user mode rather than exception mode; otherwise it can simply
return to the interrupted process (which will be a pre-existing de-
ferred service). In its deferred service, operating at System Level,
the process goes through the synaptic buffers in sequence. For each
buffer, it first performs the STDP update, then computes the new
contribution to the net input current at the delay value appropriate
to each active synapse. Once it finishes with any given buffer, it
updates the buffer queue head position, and if there remain buffers
to service it continues on to the next one, exiting otherwise.

5.1.3 Timer
The Timer event has a higher priority than DMA received, since

it operates on the current time rather than on future (delayed) time.
Unlike the DMA-received event no additional timer events can hap-
pen so it can operate continuously in an exception mode, however,
to permit additional DMA interrupts it must exit from IRQ mode
as soon as possible. Therefore, the (Device level) IRQ-modeop-
eration consists of stacking registers and return addresses to the
stack for a different mode: SVC (supervisor mode), acknowledg-
ing the interrupt, and changing to supervisor mode. By operating at
System level in supervisor mode it can avoid interfering with any
potential deferred DMA operations still in progress while freeing
the interrupt for DMA use. The SVC-mode process performs an
efficient update of the neural states, computing and triggering any
possible output spike, and with it update of STDP postsynaptic in-
formation. Efficiency is critical; the SVC-mode process must be
able to complete long before the next (1ms) Timer interrupt which
would have to kill any existing SVC process, corrupting neural and
synaptic state.

5.2 MLP model
The second network is a classical multilayer perceptron (MLP)

model using delta-rule backpropagation synapses with sigmoidal
threshold neurons. The MLP is a broadly-used model ideal as
a standard reference to test SpiNNaker’s performance with non-
spiking models. Some details of the model are in [23], how-
ever, this work largely discusses the topology and mapping.Here
we consider the dynamics, or more accurately, the transformation
of the MLP to a dynamic event-driven model. Since signals are
continuous-valued “timeless” vectors, it is necessary to define an

Figure 4: SpiNNaker MLP mapping. Each dotted oval is one
processor. At each stage the unit sums the contributions from
each previous stage. Note that one processor may implement
the input path for more than one final output neuron (shown
for the threshold stage here but not for other stages)

event representation for the dataflow. From this the processmodel
will follow.

Because the mapping of the MLP to SpiNNaker distributes unit
processing among several processors (see [23]) actual processing
will vary depending on whether the processor in concern imple-
ments the weight, sum, or threshold part of a unit. Processors of
all 3 types map a group of inputs i to outputs j. Each output j cor-
responds to a single neuron (or unit), while the inputs i depend on
the stage. The inputs to weight units are the outputs from theprevi-
ous layer of neurons. Each successive stage then representsa unit
of aggregation, where the goal is to aggregate all the inputsto a
given neuron j. Thus a weight unit will aggregate the inputs for one
subgroup of all the inputs to neuron j. Sum processors are simply
aggregation stages, accumulating the total contribution from mul-
tiple subgroups, so that a sum processor’s inputs are one accumu-
lated subgroup from the weight processor. Likewise, a threshold
processor’s inputs are one subgroup of sum processors (fig. 4). It is
possible to cascade sum processors to create a neuron with arbitrary
fan-in.

5.2.1 MLP event representation
Representing MLP dynamics as events has two parts, a packet

format and an event definition. SpiNNaker’s AER packet format
allows for a payload in addition to the address. In the model,there-
fore, the packet retains the use of the address to indicate source
neuron ID (Technically, a “unit” instead of a neuron: in the MLP
the unit is a processing element not necessarily associatedwith a
single neuron) and uses the payload to transmit that unit’s acti-
vation. Defining the events in the MLP model comes from the
dataflow. MLP neurons propagate input vectors between unitsin
a unidirectional, feedforward manner: for each input presented one
signal will pass over any given connection. Therefore one event is
the arrival of a single vector component at any given unit, corre-
sponding to the packet received event. However, the dataflowand
processing falls into 2 distinct phases: the forward pass, and the
backward pass. This suggests another event: reverse-direction, that
an individual unit can readily detect by triggering on output sent.
This would be an Internal event. These 2 events, importantly, pre-
serve the characteristic of beinglocal: a unit does not need to have
a global view of system state in order to detect the event.

5.2.2 Packet Received
The component packet received event drives most of the MLP

processing. Unlike the spiking case, the payload is critical, so the
Device-level ISR for this event immediately places it in a queue
for further processing. The rest of the processing occurs atSys-
tem level. Exact processing depends upon the stage; we denote the
internal input variable as I and the output variable as J. Thepro-
cessing then goes as follows:

1. Dequeue a packet and payload.

2. Test the packet’s source ID (address) against a scoreboard
indicating which connections remain to be updated. If the
connection needs updating,

(a) For weight processors,I = wijOi, wherewij is the
weight, andOi the payload. For all others,I = Oi.

(b) For weight processors in the backward pass only, com-
pute the weight delta for learning. (We have used stan-
dard momentum descent)

(c) Accumulate the output for neuron j:J = J + I

3. If no connections remain to be updated,

(a) For threshold processors only, use a look-up table to
compute a coarse sigmoid:J = LUT (J) in the for-
ward direction. Get the sigmoid derivativeLUT

′(Jf)
in the backward direction. (Jf is theforward J , J

b the
backward.)

(b) For threshold processors only, use a spline-based inter-
polation to improve precision of J.

(c) For threshold processors in the backward pass only,
multiply the derivative by the new input:J =
J

b(LUT
′(Jf)).

(d) Output a new packet with payload J.

4. If the packet queue is not empty, return to the start of the
loop.

The critical concern with this process, since time is not a factor, is
load balancing. If the processing in a given unit is much faster than
other units, the packet traffic to the subsequent unit may become
very bursty. This causes transient congestion, andin extremis, may

deadlock the model. Obviously the sum processors have a trivial
computation relative to weight and threshold, creating thepotential
for exactly such a problem. We developed 2 solutions: reducethe
number of sums in any given stage (which for large fan-ins is the
same as lengthening the processing pipeline), and combine the sum
process with other processes, forcing it to compete for time.

5.2.3 Output Sent
Output sent occurs when all inputs have arrived, and the com-

munications controller transitions to empty. At this pointthe pro-
cessor triggers a FlipDirection process that toggles the mode be-
tween forward and backward. Changing direction itself is a simple
task, but detecting the condition “all inputs arrived” requires con-
sideration. The most general way to do this is by a scoreboard, a
bit-mapped representation of the arrival of packet-received events
for each component. The test itself is then simple: XOR the score-
board with a mask of expected components. While this method ac-
curately detects both the needed condition and component errors,
it has an important limitation: all inputsmustarrive before the unit
changes direction. This could be a potential problem if neighbour-
ing units had already sent while the current one still expected input.
“Fire-and-forget” signalling provides no delivery guarantees, so a
receiving unit mightneverreceive an expected input. This would
effectively stop the simulation, because the network as a whole can
proceed no faster than its slowest-to-output unit.

6. SIMULATION RESULTS
We ran simulations with 3 major objectives: chip verification,

confirmation of accurate heterogeneous model support, and packet
processing performance evaluation. Simulations used ARM SoC
Designer Simulator on a complete SystemC model of the SpiN-
Naker chip. Our simulation implemented a 4-chip system with2
processors per chip (corresponding to the first test board).

6.1 Functionality testing
The first and most important series of tests verify basic func-

tionality: does the SpiNNaker chip faithfully reproduce the neural
model? We performed tests both with the spiking model and the
MLP model.

6.1.1 Spiking Tests
We ran two different simulations using the spiking model. Inthe

first we implemented a randomly-connected network with 48 exci-
tatory and 16 inhibitory neurons having 40 connections per neuron
with random 1-16 ms delay between neurons. We then stimulated
6 excitatory neurons and 1 inhibitory neuron of the population with
a constant input in order to simulate external input. As we reported
in [10] this network produced spiking patterns and synapticlearn-
ing consistent with that expected. In the second set of testswe
created a synthetic environment: a “doughnut hunter” application.
The network in this case had visual input and motion output; the
goal was to get the position of the network’s (virtual) body to a tar-
get: an annulus or “doughnut”. Testing (figs. 5, 6, and 7) verified
that the network could successfully track and then move its body
towards the doughnut, ultimately reaching the target. Although ba-
sic, these tests verified the functionality: the neural model behaved
as expected both at the behavioural level and at the signal (spike)
level.

6.1.2 MLP Tests
To test the MLP network we created an application based on the

“digits” application from LENS (http://tedlab.mit.edu/~dr/lens), a
software-based MLP simulator. Our network removed extraneous

Figure 5: Far away from the target

Figure 6: Approaching the target

Figure 7: Doughnut hunter test. Successive frames show the
network’s “body” as it approaches the target. Above is when
the network reaches the target.

Figure 8: SpiNNaker MLP test, weight changes. To improve
readability the diagram shows onlyselected weights; unshown
weights are similar. The weight changes show the expected evo-
lution. Weight changes reflect an overall downward trend, con-
sistent with early stages of momentum learning. The oscilla-
tions are characteristic of the learning rule.

Figure 9: SpiNNaker packet handling performance

structural complications from the example to arrive at a simple
feedforward network with 20 input, 20 hidden, and 4 output neu-
rons. We trained the network using momentum learning with a
momentum of 0.875 and a learning rate of 0.0078125, initialising
the weights randomly between [-0.5, 0.5] We augmented the Lens-
supplied data set with digits from 0-9 and added 2 sets of distorted
digits with values 0-9. We then ran the network through 3 succes-
sive training epochs. Results are in fig. 8. Once again these results
are consistent with basic functionality.

6.2 Packet Performance Testing
The second series of tests establish packet-processing limits. It

is important to know how far the SpiNNaker architecture can scale
in terms of local packet density before breaking down. We used the
MLP model as a test case for packet congestion by generating ad-
ditional packets from the actual traffic of the simulation proper. To
do this, we generated a separate packet type that output the weight
of each synapse, for each input. We then ramped a number of du-

Figure 10: A general event-driven function pipeline for neural
networks. The grey box is the SpiNNaker realisation.

plicates of the same packet, so that the communications controller
sent a burst of n packets each time it output a weight updated,where
n is the number of duplicates. Results are in fig. 9. SpiNNakerwas
able to handle∼ 11 times more packet traffic without breaking
down, corresponding to 1 additional packet per weight update. The
network starts breaking down due to congestion by 2 packets per
weight update, and by 3 packets became completely paralysed: no
packets reached the final output. We found that the failure mode
was the speed of the ISR: by 3 packets per update packets were
arriving faster than the time to complete the Fast Interrupt(FIQ)
ISR. Clearly, very efficient interrupt service routines, together with
aggressive source-side output management, are essential under ex-
treme loading conditions.

7. DISCUSSION
From the models that have successfully run it is clear that SpiN-

Naker can support multiple, very different neural networks; how
general this capability is remains an important question. We can
define a generalised function pipeline that is adequate for most neu-
ral models in existence (fig 10). The pipeline model emerges from
a consideration of what hardware can usually implement efficiently
in combination with observations about the nature of neuralmod-
els. Broadly, most neural models, at the level of the atomic pro-
cessing operation, fall into 2 major classes, “sum-and-threshold”
types, that accumulate contributions from parallel inputsand pass
the result through a nonlinearity, and “dynamic” types, that use dif-
ferential state equations to update internal variables. The former
have the general formSj = T (ΣiwijSi) whereSj is the output of
the individual process, T is some nonlinear function, i are the input
indices,wij the scaling factors (usually, synaptic weights) for each
input, andSi the inputs. The latter are systems with the general
form dX

dt
= E(X) + F (Y) + G(P) where E, F, and G are arbi-

trary functions, X is a given process variable, Y the other variables,
and P various (constant) parameters. Meanwhile, SpiNNaker’s pro-
cessors can easily implement polynomial functions but other types,
e.g. exponentials, are inefficient. In such cases it is usually easier
to implement a look-up table with polynomial interpolation. Such
a pipeline would already be sufficient for sum-and-threshold net-
works, which self-evidently are a (possibly non-polynomial) func-
tion upon a polynomial. It also adequately covers the right-hand-
side of differential equations: thus, to solve such equations, it re-
mains to pass them into a solver. For very simple cases it may be
possible to solve them analytically, but for the general case, the
Euler method evaluation we have used appears to be adequate.

In principle, then, SpiNNaker can implement virtually any net-
work. In practice, as the packet experiments show, traffic density

sets upper limits on model size and speed. Furthermore, process-
ing complexity has a large impact on achievable performance: more
complex event processing slows the event rate at which SpiNNaker
can respond. At some point it will drop below real-time update.

Careful management of memory variables is also an important
consideration. Both models involve multiple associative memories
and lookup tables. If speed is critical, these must reside inDTCM
or ITCM, and this places a very high premium on efficient table
implementations. If it is possible to compute actual valuesfrom a
smaller fixed memory block this will often be a better implementa-
tion than a LUT per neuron.

Solving differential equations introduces a third consideration:
time efficiency and accuracy. Most nonlinear differential equations
have no analytic solution, but numerical methods are computation-
ally complex. The Euler method we used is usually an accept-
able tradeoff, but it does introduce a synchronous element into the
model. Furthermore the time step limits simulation accuracy. It
also places fixed, absolute upper bounds on the computation time
per neuron.

Both models break down catastrophically if the packet traffic
overwhelms the processors’ ability to keep up. In the spiking
model, this occurs when the neurons become excessively bursty. In
the MLP model, this occurs when any one of the 3 component pro-
cesses becomes disproportionately faster (i.e. simpler) than the oth-
ers. Large network sizes exacerbate the problem in both cases. This
issue appears to be fundamental in a truly concurrent processing
system where individual processors operate asynchronously and in-
dependently. Finding effective ways to manage the problem,which
does not arise in synchronous systems because of the predictable
input timing relationships, is a critical future research topic.

There remains considerable work to be done. Since SpiNNaker
hardware is now available, testing the models on the physical hard-
ware is an obvious priority, along with testing larger and more com-
plex models. We are currently working on implementing larger-
scale, more biologically realistic models that simulate major sub-
systems of the brain and are scalable across a wide range of model
sizes. Part of this work also includes the creation of more model
types to expand system-level libraries, notably a leaky-integrate-
and-fire neuron and voltage-gated NMDA synapses. Work on re-
fining the packet processing, particularly in the host interface from
SpiNNaker to the user, is also a major activity. There is evidence
that in addition to neural models, SpiNNaker’s parallel-processing
model may find interesting uses outside the neural field, and thus
we are investigating these where appropriate. Certainly, the emer-
gence of such non-neural applications is an indication thatSpiN-
Naker demonstrates important and possibly fundamental properties
of parallel computing.

The pre-eminent feature of the software model, characteristic of
native parallel computation, ismodularisation of dependencies.
This includes not onlydata dependencies (arguably, the usual in-
terpretation of the term), but also temporal and abstractional ones.
In other words, the model does not place restrictions on execution
order between modules, or on functional support between different
levels of software and hardware abstraction. Architecturally, the 3
levels of software abstraction distribute the design considerations
between different classes of service and allow a service in one level
to ignore the requirements of another, so that, for example,a Model
level neuron can describe its behaviour without having to consider
how or even if a System level service implements it. Structurally, it
means that services operate independently and ignore what may be
happening in other services, which from their point of view happen
“in another universe” and only communicate via events “dropping
from the sky”, so to speak. Such a model accurately reflects the true

nature of parallel computing and stands in contrast to conventional
parallel systems that require coherence checking or coordination
between processes.

8. CONCLUSIONS
By implementing an event-driven model directly in hardware,

SpiNNaker comes considerably closer to biological neural com-
putation than clocked digital devices. At the same time it brings
into sharp relief the major differences from synchronous compu-
tation that place a much greater programming emphasis in event-
driven computing on the unpredictability of the flow of control.
This important programming difference underscores the urgency
for event-driven development tools, which at this point arescarce
to nonexistent. It is clear that most development tools today have
an underlying synchronous assumption, which in addition tocom-
plicating development, tends to influence programmers’ conceptual
thinking - thus perpetuating the synchronous model. For example,
even at a most basic level, the idea of programming in alanguage
is fundamentally synchronous and sequential: it is confusing and
difficult to express event dynamics in a language-like form.Pos-
sibly a development environment that moved away from a linguis-
tic model towards graphically-orientated development, for example
using Petri nets, might make it easier to develop for event-driven
systems. If asynchronous dynamics is by definition a necessary
feature of true parallel processing, perhaps the linguistic model is
one reason why developing effective parallel programming tools
has historically been difficult.

In the same way that the entire software model needs review, the
hardware model for the neuromimetic architecture remains awork
in progress. SpiNNaker involves various design compromises that
future neuromimetic chips could improve upon. Most obviousis
the use of (locally) synchronous ARM968 processors. Eventually
it would be ideal to have each of the local programmable proces-
sors be themselves asynchronous. Meanwhile the interrupt mecha-
nism in the ARM968 assumes a relatively slow interrupt rate.More
forceful hardware could rectify this limitation. For example, if the
vectored interrupt controller coulddirectly vector the processor to
the appropriate exception, bypassing the long and cumbersome en-
try point processing, interrupt rate could increase while narrowing
critical time windows. Such a system might also have completely
independent working memory (“register”) banks for each excep-
tion, as well as a common area to pass data between exception
modes without memory moves. These kinds of features would be
asking for data corruption in a synchronous model but becomelog-
ical in the event-driven model.

How far should neural network chips go in directly implement-
ing the model in hardware? For years the mesmerising conceptof
“direct implementation” has been popular, yet it is fundamentally a
misconception: since the “actual” model of computing in thebrain
is unknown, there can be no certainty a chip is directly implement-
ing anything. The SpiNNaker neuromimetic architecture provides
a more realistic and useful answer: instead of trying to answer the
question, build systems that can define the problem.

9. ACKNOWLEDGMENTS
The SpiNNaker project is supported by the Engineering and

Physical Sciences Research Council, partly through the Advanced
Processor Technologies Portfolio Partnership at the University of
Manchester, and also by ARM and Silistix. Steve Furber holdsa
Royal Society-Wolfson Research Merit Award. We appreciatethe
support of these sponsors and industrial partners.

10. REFERENCES
[1] A. Delorme and S. J. Thorpe. “SpikeNET: an event-driven

simulation package for modelling large networks of spiking
neurons”.Network: Computation in Neural Systems,
14(4):613–627, November 2003.

[2] B. Glackin, T. M. McGinnity, L. P. Maguire, Q. X. Wu, and
A. Belatreche. “A Novel Approach for the Implementation of
Large Scale Spiking Neural Networks on FPGA Hardware”.
In Proc. 8th Int’l Work Conf. Artificial Neural Networks
(IWANN 2005), pages 552–563. Springer-Verlag, 2005.

[3] D. Goldberg, G. Cauwenberghs, and A. Andreou. “Analog
VLSI spiking neural network with address domain
probabilistic synapses”. InProc. 2001 IEEE Int’l Symp.
Circuits and Systems (ISCAS2001), pages 241–244. IEEE
Press, 2001.

[4] D. Goodman and R. Brette. “Brian: a simulator for spiking
neural networks in Python”.Frontiers in Neuroinformatics,
2(5), Nov 2008.

[5] M. L. Hines and N. T. Carnevale. “The NEURON simulation
environment”.Neural Computation, 9(6):1179–1209, Aug.
1997.

[6] G. Indiveri, E. Chicca, and R. Douglas. “A VLSI Array of
Low-Power Spiking Neurons and Bistable Synapses With
Spike-Timing Dependent Plasticity”.IEEE Transactions on
Neural Networks, 17(1):211–221, Jan. 2006.

[7] E. Izhikevich. “Simple Model of Spiking Neurons”.IEEE
Trans. on Neural Networks, 14:1569–1572, Nov. 2003.

[8] E. Izhikevich and G. M. Edelman. “Large-scale model of
mammalian thalamocortical systems”.Proc. National
Academy of Sciences of the USA, 105(9):3593–3598, March
2008.

[9] X. Jin, S. Furber, and J. Woods. “Efficient Modelling of
Spiking Neural Networks on a Scalable Chip
Multiprocessor”. InProc. 2008 Int’l Joint Conf. on Neural
Networks (IJCNN2008), 2008.

[10] X. Jin, A. Rast, F. Galluppi, M. M. Khan, and S. Furber.
“Implementing learning on the SpiNNaker universal neural
chip multiprocessor”. InProc. 2009 Int’l Conf. Neural
Information Processing (ICONIP 2009). Springer-Verlag,
2009.

[11] M. Khan, D. Lester, L. Plana, A. Rast, X. Jin, E. Painkras,
and S. Furber. “SpiNNaker: Mapping Neural Networks onto
a Massively-Parallel Chip Multiprocessor”. InProc. 2008
Int’l Joint Conf. on Neural Networks (IJCNN2008), 2008.

[12] L. Maguire, T. M. McGinnity, B. Glackin, A. Ghani,
A. Belatreche, and J. Harkin. “Challenges for large-scale
implementations of spiking neural networks on FPGAs”.
Neurocomputing, 71(1–3):13–29, December 2007.

[13] M. Mattia and P. D. Guidice. “Efficient Event-Driven
Simulation of Large Networks of Spiking Neurons and
Dynamical Synapses”.Neural Computation,
12(10):2305–2329, October 2000.

[14] N. Mehrtash, D. Jung, H. Hellmich, T. Schönauer, V. T. Lu,
and H. Klar. “Synaptic Plasticity in Spiking Neural Networks
(SP2INN): a System Approach”.IEEE Transactions on
Neural Networks, 14(5):980–992, Sept. 2003.

[15] M. Migliore, C. Cannia, W. W. Lytton, H. Markram, and
M. L. Hines. “Parallel network simulations with NEURON”.
J. Computational Neuroscience, 21(2):119–29, October
2006.

[16] A. Mouraud, H. Paugam-Moisy, and D. Puzenat. “A
distributed and multithreaded neural event driven simulation

framework”. InProc. IASTED Int’l Conf. Parallel and
Distributed Computing and Networks, pages 212–217, 2006.

[17] J. M. Nageswaran, N. Dutt, J. L. Krichmar, and A. Nicolau.
“A configurable simulation environment for the efficient
simulation of large-scale spiking neural networks on graphics
processors”.Neural Networks, 22(5–6), July/August 2007.

[18] C. G. Orellana, R. G. Caballero, H. M. G. Velasco, and
F. J. L. Aligue. “NeuSim: a modular neural networks
simulator for Beowulf clusters”. InProc. 6th Int’l
Work-Conference on Artifical and Natural Neural Networks
(IWANN 2001), Part II, pages 72–79. Springer-Verlag, 2001.

[19] L. Plana, S. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and
S. Yang. “A GALS Infrastructure for a Massively Parallel
Multiprocessor”.IEEE Design & Test of Computers,
24(5):454–463, Sept.-Oct. 2007.

[20] M. Porrmann, U. Witkowski, H. Kalte, and U. Rückert.
“Implementation of artificial neural networks on a
reconfigurable hardware accelerator”. InProc. 2002
Euromicro Conf. Parallel, Distributed, and Network-based
processing, pages 243–250, 2002.

[21] A. Rast, X. Jin, M. Khan, and S. Furber. “The Deferred
Event Model for Hardware-Oriented Spiking Neural
Networks”. InProc. 2008 Int’l Conf. Neural Information
Processing (ICONIP 2008). Springer-Verlag, 2009.

[22] A. Rast, M. M. Khan, X. Jin, L. A. Plana, and S. Furber. “A
Universal Abstract-Time Platform for Real-Time Neural
Networks”. InProc. 2009 Int’l Joint Conf. on Neural
Networks (IJCNN2009), pages 2611–2618, 2009.

[23] A. Rast, S. Welbourne, X. Jin, and S. Furber. “Optimal
Connectivity in Hardware-Targetted MLP Networks”. In
Proc. 2009 Int’l Joint Conf. on Neural Networks
(IJCNN2009), pages 2619–2626, 2009.

[24] A. Rast, S. Yang, M. Khan, and S. Furber. “Virtual Synaptic
Interconnect Using an Asynchronous Network-on-Chip”. In
Proc. 2008 Int’l Joint Conf. on Neural Networks
(IJCNN2008), 2008.

[25] A. Upegui, C. A. Pe̋na-Reyes, and E. Sanchez. “An FPGA
platform for on-line topology exploration of spiking neural
networks”.Microprocessors and Microsystems,
29(5):211–223, June 2005.

[26] L. Watts. “Event-driven simulation of networks of spiking
neurons”. InAdvances in Neural Information Processing
(NIPS) 6, pages 927–934. Morgan Kaufmann Publishers,
1994.

