
serious obstacle to fully exploiting the advantages of asyn-
chronous operation.

Two alternatives to register bypassing have been consid-
ered which deliver some of the benefits without impeding
the asynchronous operation of the pipeline. These are
described below asregister through-passing andlast result
re-use.

4.1: Register through-passing

The design shown in figure 2 is very conservative in its
timing for a write operation which clears a lock and thereby
allows a read to proceed. A mechanism under consideration
would, with the addition of a latch to the write enable logic,
allow the lock to be cleared much earlier in the write proc-
ess. This would use the register itself as the direct transmis-
sion medium from the write to the read bus, and would
reduce the worst case delay for write-then-read from 40ns
to 20ns.

4.2: Last result re-use

Another mechanism under consideration detects data
dependencies at the decode stage. Each instruction leaves
behind in the instruction decoder a record of the register its
result will be sent to, and when the next instruction enters
the decoder its operand addresses are compared with this
record. When a match is found, the read operation is
bypassed and the result is collected for operand use
directly. The mechanism has no effect on the design of the
register bank in figure 2 as it is manifested in additional
logic elsewhere in the decode and execution paths.

This second mechanism has the best performance when
it can be applied, but it has several limitations. On the ARM
in particular, all instructions are executed conditionally,
and an instruction which fails to pass the condition test will
not produce a result. But by this time its successor may
depend on that result. Therefore this mechanism must
include logic to determine whether or not an instruction
may be annulled, which adds considerably to the complex-
ity of the design.

There is considerable scope for further innovation in the
design of bypass mechanisms for asynchronous processors,
and the ideas presented here are at a preliminary stage of
conceptual development.

5: Conclusions

This paper describes an elegant and cost-effective solu-
tion to the requirement for read locking a register bank in
an asynchronous pipelined processor. The pipelining of a

processor’s functionality introduces the problem of verify-
ing that an instruction entering the pipeline does not have
data dependencies on instructions currently under execu-
tion. The asynchronous nature of the pipeline makes the
position of a particular instruction within it indeterminate
so it is convenient to assemble register destinations in a
FIFO to serve both as a write-back queue and as the basis
of the locking mechanism.

In operation a read request not encountering a lock has
immediate access to the register bank, and the instruction
may proceed along the pipeline. When a read operation
encounters a lock it is suspended indefinitely pending the
return of the write-back value; this merely causes this read
process to be delayed and does not impose delays on other
asynchronous components of the processor.

The resulting design allows efficient VLSI implementa-
tion and handles asynchronous concurrent read and write
operations (without recourse to arbiters) whilst maintaining
coherent register behaviour.

6: Acknowledgments

The work described here has been carried out as part of
ESPRIT project 5386 (the Open Microprocessor systems
Initiative - Microprocessor Architecture Project, OMI-
MAP), and the authors gratefully acknowledge this sup-
port. They are also grateful for additional specific support
received during the course of this work from Acorn Com-
puters Limited, Advanced RISC Machines Limited, VLSI
Technology Limited and Compass Design Automation.

7: References
[1] Martin, A.J., Burns, S., Lee, T.K., Borkovie, D.,

Hazewindus, P.J.,
“The Design of an Asynchronous Microprocessor”,
 Advanced Research in VLSI : Proceedings of the
Decennial Caltech Conference on VLSI, (1989) MIT Press,
pp 351-373.

[2] Sutherland, I.E.,
“Micropipelines”, Communications of the ACM,
Vol. 32, Number 6, June 1989, pp 720-738.

[3] Udding, J.T.,
“Classification and Composition of Delay-Insensitive
Circuits”, PhD Thesis, Dept. of Math. and C.S.,
Eindhoven Univ. of Technology, 1984.

[4] Furber, S.B.,
“VLSI RISC Architecture and Organization”,
Marcel Dekker Inc., NewYork, 1989.

[5] Paver, N.C.,
“Condition Detection in Asynchronous Pipelines”,
UK Patent Application No. 9114513, October 1991.

ter is unlocked for reading by removing its address from the
FIFO. The write operation is self-timed by detecting the
transitions on the word line with a wide dynamic OR gate,
and the same circuit is used to ensure that writes are fully
disabled before the write data is allowed to change.

3.3: Implementation details

The full design includes many features which have been
omitted from figure 2 in order to clarify the design princi-
ples:

• Particular instructions may not require all three
register addresses to be used, and logic is includ-
ed to bypass any subset of them.

• The lock FIFO requires that write data arrives
strictly in instruction order. Whilst the pipelined
nature of the execution path ensures that this will
apply to internal data sources, memory accesses
are expected to arrive more slowly. Therefore two
lock FIFOs are included in the design to allow in-
ternal data values to overtake external ones.

• Register bank accesses interact with accesses to
special registers; in particular the program status
register access control logic is integrated into the
main register control structures.

Storing the decoded write address in the lock FIFO at
first sight appears inefficient in terms of silicon area. How-
ever this allows the full stack of word control logic (the A,
B and W decoders, the lock FIFO, the read lock gating and
the write enable and completion logic) to be pitch-matched
to the register cell block, and the efficiency of the resulting
regular layout is very high.

The correct operation of the full circuit depends on
appropriate implementation of the bounded delay con-
straints. An entry to the lock FIFO must propagate through

I-Ack I-Req

latch W

D-Ack

D-Req

latch
datacheck unlocked

disable
W dec.

locks
stable

W latch Rin

read

enable
read
decoders

update
lock
FIFO

enable
W dec.

disable
read
decoders

Figure 3: A Petri Net model of the read-lock
sequencing

the OR gate series and arrive at the read-lock gate earlier
than any subsequent decoded read address. A visual inspec-
tion of the organization in figure 2 would suggest that this
constraint is easily met, but a final confirmation based on
delays using capacitive loads extracted from the physical
layout is necessary.

3.4: Simulated performance

The design as described above has been laid out in
CMOS VLSI and simulated at gate and transistor level. The
performance of the design is summarised in table 1 for
worst case conditions on a 1µm process; typical perform-
ance will be twice as fast.

Simulation has demonstrated the correct operation of
the design under varying conditions, but further work is
required to extend this to a formal proof of correctness.

4: Register bypassing

Typical instruction streams display frequent use of the
result of one instruction as an operand of the next. Such
data dependencies between consecutive instructions can
cause a significant reduction in throughput for typical code,
compared with best case code without dependencies, if the
result is only available to the next instruction after it has
been written back to the register bank.

Clocked processors generally use register bypassing to
allow a result to be re-used without incurring the register
write-then-read penalty. The global clock ensures that dif-
ferent parts of the processor are operating at fixed relative
times, so the result and operand addresses at two stages can
be compared to activate the bypass when appropriate.

In an asynchronous processor there is no such fixed rela-
tionship between the timing of operations in different parts
of the processor, so explicit synchronisation is necessary if
a similar result and operand address comparison is to form
the basis of a bypass mechanism. This synchronisation will
have a cost in reduced throughput and, since it forces lock-
step operation of at least two parts of the processor, it is a

path delay

I-Req to D-Req 20 nS

I cycle time 40 nS

W cycle time 30 nS

W-Req to D-Req
(register locked)

40 nS

Table1: Simulated delays

 A Done

I-Ack I - Req

B Done

Enable

Enable

P
re

 C
ha

rg
e

D
on

e

A
 &

 B
 r

ea
d

do
ne

D-Req

Lock FIFO

Enable

D-Ack

A Decode

TOGGLE

C

Lock In FIFO

C

C

Locking Complete

T
O

G
G

L
E

C

RinAin

Aout Rout

La
tc

h

Rin

Ain

A Bus

B Bus

Registers

B Decode

W Decode

Rin Ain

Aout Rout

C

TOGGLE

P
re

 C
ha

rge
Write Enable

Write Complete

W-Req

W-Ack

W Bus

Enabled

Enable

Remove Lock

W
ri

te
 D

on
e

W Latch

P
re

 C
ha

rg
e

D
on

e

Read Lock Gating

A W B

W

A

B

WL

WL

Figure 2: Organization of the register bank

cies in the read operation. Note particularly that the W
decoder is disabled until the read has completed in order to
ensure that no spurious lock indications are passed via the
empty (and therefore transparent) stages in the lock FIFO;
similarly it is disabled before the W latch is allowed to
accept a new value. The next read is allowed to proceed as
soon as the locks are stable, since any transient caused by
the slow disabling of the W decoder will cause at worst a
delay in the read operation, never an incorrect action.

The critical path in the register bank (from I-Req to D-
Req) has the minimum number of dependencies on internal
operations; this defines the register access latency of the
design. The cycle time will include this and the slowest of

three independent recovery routes:
• The supply of the next instruction.
• The completion of the locking operation.
• The read bus precharge time

(omitted from figure 3 for clarity).
In general it is expected that the first of the above will be

the critical path in determining the register bank cycle time.

3.2: Write operations

A write data value (signalled on W-Req in figure 2) is
paired with the decoded write address at the output of the
lock FIFO. The appropriate write word line is then enabled
and the data written, following which the destination regis-

functional units are employed. The destinations of results
to be returned to the register bank are therefore simply
queued and used on a First-In First-Out basis to write
results to the required locations. This FIFO holds the iden-
tifiers of all locations which are subject to alteration by
instructions currently in the processing pipeline and can
therefore form the basis of a locking mechanism to deny
premature access.

To establish whether a read access to a register is permit-
ted requires interrogation of the “Lock FIFO” contents.
This FIFO is implemented with identifiers which are repre-
sented as decoded values; each entry has a single bit set in
a field whose size matches the number of registers in the
bank. Using such a representation reduces the lock interro-
gation process to that of determining whether a bit is set in
the column of the FIFO corresponding to the register to be
read [5].

The Lock FIFO fulfils two requirements: firstly, it pro-
vides an indication of whether a register is locked and, sec-
ondly, its last stage contains the decoded address for the
next write operation. A simplified version of the Lock
FIFO is shown in figure 1 for a bank of three registers with
a 2-stage pipeline, together with the associated read and
write logic.

Certain constraints must be imposed to ensure that this
design will function correctly. The operation of the FIFO
must be organised so that a bit appears in a stage before it
is removed from its predecessor to avoid any transient
removal of the ‘locked’ condition. An empty stage must
also present an unlocked state so that it takes no part in the
locking process. Furthermore, new values must not be
allowed to enter the FIFO while the lock status is being
inspected to avoid glitches on the lock outputs.

The signalling protocols of the Sutherland micropipe-
line ensure that data is not removed from a pipeline stage
until it has been established in the succeeding stage. Empty

Reg 1

Write

Last

Figure 1: Lock FIFO, read gate and
write enable logic

Reg 0 Reg 2

A
SEL

B
SEL

W
SEL

B
DEC

A
DEC

W
DEC

A
SEL

B
SEL

W
SEL

B
DEC

A
DEC

W
DEC

A
SEL

B
SEL

W
SEL

B
DEC

A
DEC

W
DEC

Read Lock

Lock
FIFO

Stage

Gating

Enable

pipeline stages have a transparent property so that, pro-
vided the input of the pipeline is held inactive when no
entry is being made, empty stages will naturally assume an
unlocked state. Ensuring that there is no conflict between
inspecting the lock status and the entering of a new desti-
nation is left to a higher level of control.

3: Asynchronous register bank design

The overall organization of the register bank is shown in
figure 2. The interfaces use a bundled-data convention with
transition signalling. Internally the design employs a com-
bination of two-phase and four-phase techniques (see e.g.
[2]), the latter being well matched to the precharge-active
cycle of the dynamic circuits used in the basic register cell.

3.1: Read and lock operations

A new instruction has its availability signalled by I-Req,
and presents two register addresses to be read (A and B)
and a register address to be written once the datapath result
is available (W). I-Req is stalled until the register bank is
ready to start a new read operation, and then the read
decoders are enabled. Concurrently with the read address
decoding, the write register address is latched (in W Latch).

The decoded read addresses now present enables for the
selected registers which are gated with the locked register
information. A read of an unlocked register will proceed,
whereas a read of a locked register will stall at this point
until a write operation clears the register lock.

The register read circuitry uses dynamic techniques to
minimise the cell size, with charge retention circuits to give
pseudo-static operation. A thirty-third bit line gives a
matched completion signal, and when both values are
available they are latched and passed to the execution path
(via the D-Req signal) which can begin to process the data
with no further delay.

Once the data has been latched, the read decoders are
disabled and the read bus precharge is turned on to prepare
for the next access. Normally the write address will be
latched well before this time, and the instruction acknowl-
edge (I-Ack) is issued so that a new instruction can be pre-
pared during the register recovery time.

The write decoder is disabled during the read operation
to present inactive inputs to the lock FIFO. Once the read
data is latched, the write decoder is enabled and the desti-
nation register is locked. As soon as the lock FIFO has
accepted the new address, a new instruction may be
allowed to start its read operation. The lock logic will con-
tinue by disabling the write decoder and it will then free the
write address latch for the next value.

The read-lock sequencing is illustrated in Petri Net form
in figure 3, which shows the critical sequential dependen-

Register Locking in an Asynchronous Microprocessor

N.C. Paver, P. Day, S.B. Furber, J.D. Garside, J.V. Woods

Department of Computer Science, The University,
Oxford Road, Manchester, M13 9PL, U.K.

Abstract

A high performance register bank is a central compo-
nent of a RISC processor. A novel register bank design has
been developed, as an integral part of a self-timed imple-
mentation of a commercial RISC microprocessor, to
address the problem of register interlocking in an asyn-
chronous micropipelined execution unit.

The challenge in an asynchronous design is to maintain
coherent register operation while allowing concurrent
read and write accesses with arbitrary timing. The solu-
tion presented here includes a novel arbiter-free locking
mechanism which enables efficient read operations in the
presence of multiple pending write operations.

1: Introduction

The growth in demand for high performance portable
computing equipment has led to a resurgence of interest in
asynchronous logic design techniques. In order to investi-
gate the power saving potential of asynchronous
approaches to CMOS design, a self-timed implementation
of the ARM microprocessor is being developed as a com-
mercially realistic technology demonstrator. Earlier work
[1] has shown the feasibility of building a complete asyn-
chronous microprocessor; the current project addresses the
detailed problems associated with implementing a com-
mercial architecture with the specific goal of minimising
power consumption.

The methodology being applied is based on Suther-
land’s “Micropipelines” [2], a bundled-data, bounded-
delay model. Here, local timing signals are transmitted
with a ‘bundle’ of data bits whose timing is constrained to
ensure correct operation. This technique - rather than a
purely delay-insensitive model [3] - was chosen for its
economy in silicon area and its potential for low electrical

power consumption. The micropipeline approach is some-
what less ‘pure’ than other approaches to the construction
of asynchronous systems because delays in the circuit must
be managed quantitatively; however these delays can be
modelled and characterised in a similar manner to the crit-
ical path analysis used in the design of synchronous cir-
cuits.

The design of the processor can be decomposed into a
few major structural elements, one being the register bank.
The ARM register bank contains thirty one registers, of
which sixteen are available to the programmer at a given
time. All but one of these registers are general purpose and
orthogonal; the implementation of the ARM register bank
described here is therefore applicable to asynchronous
implementations of other RISC processors.

2: Register locking

The ARM architecture [4] defines a register-based RISC
processor in which arithmetic operations require two oper-
ands to be read from the register bank and a single result
value to be returned. In existing synchronous implementa-
tions of the architecture instructionexecution is not pipe-
lined (execution is a single stage of the Fetch - Decode -
Execute pipeline) and an arithmetic operation is completed
within a single clock cycle. In the asynchronous implemen-
tation instruction execution is decomposed into a number
of pipeline stages. This concurrent execution improves per-
formance but introduces the problem of data dependency.

Correct operation in a pipelined processor requires that
data dependencies between instructions are respected; this
may be achieved by ensuring that a location subject to
modification cannot be accessed until the pending write
operation has completed. This process is termed ‘locking’.

2.1: The lock FIFO

Pipelined operational parallelism does not change the
ordering of generated results as may happen when parallel

