Boot Image Layout for Jikes RVM

Tan Rogers, Jisheng Zhao, and Ian Watson

The University of Manchester,
Oxford Road, Manchester,
M13 9PL, United Kingdom
{jisheng.zhao, ian.rogers, ian.watson}@manchester.ac.uk

Abstract. A boot image is a view of memory created in a bootstrap
environment, written to disk and subsequently loaded by a linker to run
without the aid of the bootstrap environment. Creating a boot image
is a staple of run time environments that are written in their own pro-
gramming language and using their own run time services. A prominent
example is Jikes RVM, a Java Virtual Machine (JVM) written in Java.
In this paper we will look at the issue of boot image layout. We show
that static layout methods can be used to reduce the number of pages
accessed by garbage collection of the boot image by over 48%. An av-
erage speed up of 0.61% is found for a range of DaCapo and SpecJVM
benchmarks.

1 Introduction

Compiler writers often face a bootstrap problem of which programming language
to use to write their compiler? T-diagrams [1] capture this problem, with the
source language and output language as the left and right aspects of the T, the
implementation language is the base of the T, as shown in Fig. 1.

Fortran C

c C M-Code

M-Code

Fig. 1. Example of a T-diagram Showing a Fortran to C Compiler Written in C Com-
piled on a Native C to Machine Code Compiler

For a dynamic system, rather than create machine code to be executed as a
program an image of the run time environment is created. This image represents
the state of the run time environment when it starts execution.



Jikes RVM is a JVM written in Java. Jikes RVM runs on a bootstrap JVM to
create its initial boot image. The bootstrap process involves getting, compiling
and writing to disk the classes and objects for the initial run time. The boot
image comprises code and data, where the data is static fields and run time
literals. As the data values can reference values within the running system they
need to be considered as part of the root set for garbage collection. The Jikes
RVM uses an extra run-length encoded map to capture which parts of the boot
image contain references potentially making objects live.

In the bootstrap process, the data in the boot image of the Jikes RVM is
created by traversing its the run time objects using reflection. In the current
code base a depth-first traversal from one object to another is performed. For
example, a String object will first be written into the boot image and then
the character array that backs the String will be written. Reference holding
fields within the boot image will be dispersed over its entire contents, a likely
consequence of which is that pages of the boot image need to be brought into
memory when performing garbage collection.

2 Static Organisation Methods

When laying out the boot image the following factors are important:

— depth or breadth first traversal: the depth first traversal allocates space
in the boot image for an object, writes out the object’s fields and recurses if
a field is found that references another object. A depth first traversal is likely
to lead to leaf objects being located near their referencing class. A breadth
first traversal queues objects to be traversed in a first in, first out manner.
Objects close to the root of the graph will be traversed first.

— arrays: arrays of primitive values, such as characters, are likely to fragment
the boot image. Arrays of references will contain many potential references
into run time heaps.

— name or ID of a type: the name of a type encodes whether it is an array
or class. Placing similarly named types together helps ensure that if the type
contains reference fields, these will be close to each other. The ID of a type
is given by the class loader. In Jikes RVM lower valued IDs are likely to
be more widely used in the run time system as they will have been loaded
earlier.

— size of object: the overall size of an object will have an impact on how
many reference containing fields may be on a page. Large objects with many
primitive fields will cause there to be little references on a page.

— number of references within object: it is possible to calculate when
building the boot image how many of the fields or array elements contain
references.

— constant/final fields: immutable fields within the boot image can only
reference boot image and therefore immortal (will never be garbage collected)
data. These fields aren’t included in the reference map.



We modify the Jikes RVM to have a breadth first traversal. Figure 2 visu-
alises the reference fields within the boot image for the depth first traversal. We
organise the data into 4KB pages on the y-axis and show pages on the x-axis.
For example, if the address of a reference field were 0x8010 it would have a page
address of 0x8000 on the x-axis and a page offset of 0x10 on the y-axis. Figure 3
shows the same configuration of the Jikes RVM with a breadth first traversal.

0x1000
0x0C00
0x0800
0x0400

Offset in page

0x0000 2 .
0x60000000 0x60400000 0x60800000 0x60C00000
Page in memory

Fig. 2. Locations of Reference Fields in Boot Image Following Depth First Traversal

0x1000
0x0C00
0x0800
0x0400

0x0000 — —L
0x60000000 0x60400000 0x60800000 0x60C00000

Page in memory

Offset in page

Fig. 3. Locations of Reference Fields in Boot Image Following Breadth First Traversal

By changing the queue we can modify the behaviour of the traversal. We
modify it to be a priority queue that sorts elements as they are added. We use
our criteria to come up with a number of different sorting heuristics. Each sorting
heuristic is implemented as a comparator as shown in Fig. 4. If the comparator
determines two objects for the boot image are identical it can delegate sorting
to another comparator.

We summarise our results in Tab. 1. Many of the sorting methods are within
a single page of the best. Sorting alphabetically based on class name performs
surprisingly well. The least number of pages is used by sorting entries based on
the density of their references (the number of references divided by the object
size) and sorting identical densities by type id. Table 1 shows that using final
information has a mixed effect in improving the density of references. It is likely
that reducing the priority of traversing objects with final fields means that some
objects with many reference fields aren’t reached early, fragmenting the reference
fields across many pages.

Compared to the depth first traversal, breadth first traversals achieve fewer
pages with references on. In the best case with 4KB pages, the number of pages



is reduced from 2,666 to 1,368. If the boot image must be scanned for garbage
collection, this can mean over 5MB of data (5,316,608bytes) can be left paged
out to disk. The location of references on the fewest number of pages is shown
in Fig. 5.

private static final class TypeReferenceComparator
implements Comparator<BootImageMap.Entry> {
public int compare(BootImageMap.Entry a,
BootImageMap . Entry b) {

VM_TypeReference aRef =

VM_TypeReference. findOrCreate (a.jdkObject.getClass ());
VM _TypeReference bRef =

VM_TypeReference. findOrCreate (b. jdkObject. getClass ());
return aRef.getId () — bRef.getld ();

Fig. 4. Example Comparator Used to Prioritise Entries During Traversal

0x1000
0x0C00
0x0800
0x0400

0x0000 -
0x60000000 0x60400000 0x60800000 0x60C00000

Page in memory

Offset in page

Fig. 5. Locations of Reference Fields in Boot Image Following Prioritized Traversal.
Priority Determined by the Density of References, Identical Densities Sorted by Type
Id.

3 Performance

We measure the performance of Jikes RVM with and without packing the boot
image reference fields. We run a number of DaCapo and SpecJVM benchmarks
with our results shown in Fig. 6. All of these programs are run on a Intel P4
3.0 GHz processor, 1GB memory and OpenSUSE 10.3 operating system. Each
benchmark is run 60 times with the mean result and 95% confidence interval
shown.

On average a 0.61% speed up was achieved by packing references close to-
gether compared to not. Given the small percentage of execution time attributable



30000

25000

20000

DDepth First Traversal
WPrioritized Traversal

15000

Time (milliseconds)

10000

5000

Fig. 6. Overall Performance of Packed and Unpacked Reference Fields Within The
Boot Image



Sort method Number of 4KB pages used
Depth first traversal 2,666
Breadth first traversal 2,017
Type identifier 2,593
Ordered by class name 1,378
Object size 2,632
Number of references 1,518
Density of references 1,369
Number of non-final references 1,937
Density of non-final references 2,010
Density of references, identical densities sorted by type id. 1,368
Number of non-final references, identical numbers sorted by ob- 2,481
ject size

Density of non-final references, identical densities sorted by 1,378
type id.

Number of references, identical numbers sorted by object size, 1,369
identical object sizes sorted by class name

Number of references, identical numbers sorted by object size, 1,369
identical object sizes sorted by type id.

Number of references, identical numbers sorted by type id. 1,402

Table 1. Methods for Sorting Boot Image and Number of Pages Containing References

to the garbage collector (typically less than 6%) if this speed up is purely garbage
collector related then it is significant (say an 11% speed up in garbage collec-
tion). However, for a number of the results the prioritised organisation is under
performing the depth first traversal.

4 Related Work and Improvements

The layout of objects on the heap to improve locality using copying garbage
collection is considered by a number of authors [2] [3]. [4] considers the simple
use of type information to improve locality of garbage collected objects and
find it improves grouping. Our work is motivated to improve the layout of boot
images. In contrast to run time systems, we can spare compile time to determine
better groupings for objects. However, run time profiling would give us more
information to base our judgement on where to place objects. We hope that we
can look at run time information, such as on allocation frequency, and use it to
devise a better boot image creation strategy.

5 Conclusions

We have presented how the number of pages traversed by a garbage collect of a
boot image may be nearly halved using simple heuristics readily available from
the object type. We create new boot images using a breadth first traversal of
the boot image’s objects and prioritise objects that will help to pack references.



Benchmark results show a modest 0.61% speedup when the boot image is re-
structured. Measuring the number of pages within the boot image containing
references shows a more the 48% reduction.

References

1. Alfred V. Aho, R. Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques
and Tools. Addison-Wesley, 1986.

2. Xianglong Huang, Stephen M. Blackburn, Kathryn S. McKinley, J. Eliot B. Moss,
Zhenlin Wang, and Perry Cheng. The garbage collection advantage: Improving
program locality. In OOPSLA’04: ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 69-80, 2004.

3. Wen ke Chen, Sanjay Bhansali, Trishul M. Chilimbi, Xiaofeng Gao, and Weihaw
Chuang. Profile-guided proactive garbage collection for locality optimization. In
PLDI’06: ACM SIGPLAN 2006 Conference on Programming Language Design and
Implementation, pages 332-340, 2006.

4. Michael S. Lam, Paul R. Wilson, and Thomas G. Moher. Object type directed
garbage collection to improve locality. In IWMM’92: International Symposium,/-
Workshop on Memory Management, pages 404-425, 1992.



