Approaches to Reflective Method Invocation

Tan Rogers, Jisheng Zhao, and Ian Watson

The University of Manchester,
Oxford Road, Manchester,
M13 9PL, United Kingdom
{ian.rogers, jisheng.zhao, ian.watson}@manchester.ac.uk

Abstract. Reflective method invocation is a long known performance
bottle neck in Java. Different approaches to optimizing reflective method
invocation are adopted by JVMs. In this paper we present an overview
of the different approaches and a performance analysis using synthetic
and the DaCapo benchmarks. We implement all of the approaches in the
Jikes RVM.

Keywords: Java Virtual Machine, Reflection, Performance, Method Invoca-
tion

1 Introduction

Reflective method calls are a means for programmers to interact with objects
and classes the compiler would have been unaware of at static compile time.
Reflective method calls are also used internally within the JVM to implement
other reflective mechanisms such as creating objects from a class object, as part
of the invocation of Java methods from native code and determining the main
method to execute given command line arguments. Programmers have used re-
flective method calls for Java beans and in languages built on top of the JVM
like Jython [5]. In Jython parts of the language are modelled with dynamically
created Java classes. The Java classes are unknown when Jython starts and
accessed in part using reflective object constructors and methods.

The implementation choices for reflection depend upon what use is expected
of it. There is a trade-off between fast initial invocation and fast general case
performance, as well as choices into what memory needs to be allocated. We
present these alternatives in Section 2, we also present some optimizations that
hope to achieve middle routes for performance. In Section 3 we analyse the per-
formance of the different approaches on a synthetic benchmark and the DaCapo
benchmarks. We consider related work in Section 4. Section 5 concludes the

paper.

2 Overview

Figure 1 gives an example of invoking the method bar using reflection and print-
ing hello.

import java.lang.reflect.Method;
class Example {
public static void main(String [] args) {
try {
Method m = Example.class.getMethod (‘‘bar’’);
m. invoke (null);
} catch (Exception e) {}

public static void bar() {
System.out. println (‘‘hello!’’);

}

Fig. 1. Example of Reflective Method Invocation

When performing the method invocation Java checks that reflection cannot
bypass normal scoping guarantees, it also provides a means for setting a method
to be accessible. Public methods are always accessible but otherwise a method’s
accessibility can vary.

Once past the accessibility checks the arguments to a reflective method call
need checking. In some cases the arguments are converted to the type expected
by the method call. The arguments are passed in an array.

The final part of the reflective method call is to perform the actual method
call. One approach to perform the method call is to have a special helper routine
that is responsible for getting the address of the method to invoke (in some
situations JIT compiling it), taking the arguments to the call and placing them
in the correct position for the calling conventions and finally branching to the
method. We call this the out-of-line machine code approach.

An alternate approach to performing the method invocation is to dynamically
generate Java bytecode that will invoke the method. Generating the bytecode
has a run time cost and overhead, not just for the bytecode but also for a wrapper
class and object that allow the bytecode of the generated method to be invoked.
The bytecode may be created when the call to get the method is made or it may
be made on the first invocation. We call these approaches bytecode generation
and either eager, when the bytecode is created when the method is constructed,
or lazy when the method is first invoked. Being lazy allows memory and time to
be saved when method reflection isn’t used. For the lazy scheme the generated
bytecodes aren’t referenced from the method itself but help in a map.

The out-of-line machine code takes an argument that is the method to be
invoked. If this method is a constant within the JIT compilation then we may
simplify the reflective method call to a direct method call. The arguments to
the method must be taken out of their wrapper array. We call this approach
out-of-line machine code with simplification.

An advantage to the out-of-line machine code with simplification and bytecode
generation approaches is that the array used to hold the arguments for the
reflective method call may be redundant. This can mean the allocation of this
array can be eliminated avoiding run time garbage collection overhead. When
this cannot be eliminated we call it a bozing overhead.

We summarise the properties of the different approaches in Table 1.

Out-of-line ma-|Out-of-line ma-|Bytecode genera-|Bytecode genera-
chine code chine code with|tion eager tion lazy
simplification
Creating the reflec-|Fast, method is sought and wrapped up. [Slow bytecode must|Fast, method
tion wrapper be generated. is sought and
wrapped up.
Initial invocation |Fast as no bytecode or machine code is |[Fast as bytecodes|Slow bytecode must
generated. allow direct dis-|be generated prior
patch to method. |[to invocation.
Boxing overhead Always |Maybe removed with optimizing compilation.
Extra overheads None. ‘Wrapper class and object.
Second invocation|Same speed as initial invocation. Fast as bytecodes allow direct dispatch
performance to method.
Frequent invoca-|Same speed as ini-|{Improved if method|Fast as bytecodes allow direct dispatch
tion performance [tial invocation. is a constant. to method.

Table 1. Summary of Reflective Method Invocation Schemes

The Jikes RVM [1] currently uses an out-of-line machine code approach to
reflective method invocation, whilst it is well known that Sun perform bytecode
generation.

3 Performance Analysis

3.1 Synthetic Benchmark

Figure 2 shows our synthetic benchmark, it performs a number of long additions
and returns the number of method invocations within 100 milliseconds.

We run the method doTest 50 times in each round and average the per-
formance. We give results from the 5th round of execution to avoid measuring
compilation overhead. Each test is run 30 times and the mean and 95% con-
fidence intervals calculated for each round. All of these programs are run on a
Intel P4 3.0 GHz processor, 1GB memory and OpenSUSE 10.3 operating system.
Figure 3 shows the result for the Jikes RVM with each of the four schemes.

The results show that both eager bytecode generation and out-of-line ma-
chine code with simplification can achieve roughly the same peak performance.
The extra overhead of the lazy invocation is clear, but it still performs better
than out-of-line machine code. Depending on when the optimizing compilation
is performed the lazy performance was occasionally as good as the eager and
out-of-line machine code with simplification, but on average for this benchmark
it is worse.

3.2 DaCapo Benchmarks

We ran a selection of the DaCapo benchmarks[2] that perform a large amount
of reflection method invocation. The results are shown in Figure 4.

class test {

static final Method m;
static {
try {
m = test.class.getMethod(‘‘add’’, long.class, int.class);
} catch (Throwable t) {
throw new Error(t);

}
public static long doTest() throws
long startTime = System.currentTimeMillis ();
long value = 0;
do {

value = m.invoke(null, value, 1);

} while (startTime + 100 > System.currentTimeMillis ());
return value;

}

public static long add(long x, int i)
if (x+i < x) throw new Error(”Overflow!”);
return x + i;

}

}

Fig. 2. Synthetic Method Invocation Benchmark

160000

140000

120000

100000

80000

60000

40000

number of reflection calls per 100ms

20000

out-of-line machine out-of-line machine eager bytecode lazy bytecode
code code with generation generation
simplification

Fig. 3. Performance of Reflective Method Invocation Schemes on a Synthetic Bench-
mark

80000
O out-of-line machine code
@ out-of-line machine code with simplification
O eager bytecode generation
O lazy bytecode generation
70000 T.l:
60000
50000
w
o
c
o
%3
Q
£ 40000
.E
o
£
=
30000
==
20000 B
nleEy i
10000 = = = H
0 [I] L L | L | L | L |
antlr bloat chart eclipse jython pmd xalan

Fig. 4. Performance of Reflective Method Invocation Schemes on DaCapo Benchmarks

The results show that bytecode generation has better performance than out-
of-line machine code. The biggest saving in total execution time comes from
eager bytecode generation as the execution time for eclipse is long.

Bytecode generation has the advantage of optimizing not just in the opti-
mizing compiler but for interpreted or JIT compiled code. Another problem for
the out-of-line machine code with simplification approach is it can only simplify
when the method being invoked is a constant. Fields that are static final are con-
stant within the optimizing compiler, as in our synthetic benchmark example.
We also modify the Jikes RVM class loader so that method lookup operations
are pure, this can mean lookups with literal values, such as strings, can be sim-
plified. When the methods are determined using non-literal values or static final
fields then simplification cannot ensure dispatch directly to a method, whereas
bytecode generation can.

Figure 5 shows the speedup from each method reflection approach on differ-
ent DaCapo benchmarks. The speedup for each benchmark is independent of its
execution time and we compute the average speedup from this. Averaged across
all the benchmarks, and compared to out-of-line machine code, the addition
of simplification achieved a further 0.67% speedup, eager bytecode generation a
0.88% speedup and lazy bytecode generation a 0.89% speedup. It is clear byte-
code generation achieves the greatest speedup and across a range of the DaCapo
benchmarks the lazy approach can offer the best average performance. It is in-
teresting to see that much of the average case performance for eager bytecode
generation comes from DaCapo bloat.

Bytecode generation has an overhead to create the bytecode and in stor-
age. Our results show this is less significant than its associated speedup. The
results show that lazy generation, although having a performance cost shown in
Section 3.1, for use in the DaCapo benchmarks is the best all-round approach.

4 Related Work

In order to remove the costs associated with reflection our work uses partial
evaluation. We simplify or fold expressions to reduce the overall complexity
of the program. This is combined with constant and copy propagation. When
possible we also avoid walking the run time stack to determine information for
reflection, substituting values available to the optimizing compiler. Braux and
Noyé [3] consider partial evaluation to eliminate reflective method overheads.
Their approach is to use an off-line partial evaluator. We differ in doing analysis
online, which is less of a problem for Java thanks to strong typing that reduces
the amount of analysis that needs to be performed. This work differs in being
focused on reflected method invocation performance.

Livshits, Whaley and Lam [4] provide an analysis of reflection in Java, in par-
ticular for calculating precise call-graph and pointer analysis. Their work requires
extension for online use where classes within the system can alter dynamically.
For example, in their work they don’t consider a program like Jython. However,
their analysis is more powerful than ours and could potentially yield more op-

4
3.5
o out-of-line machine code
with simplification
3 -
=] eager bytecode generation
m] lazy bytecode generation
25
o
=]
©
[
]
&
o 2
(=2
©
c —
Q
<4
o
o
1.5
1 .
05 HH =
0 L | C=
Average antlr bloat chart eclipse jython pmd xalan

Fig. 5. Speedup from Reflective Method Invocation Schemes Compared to Out-Of-Line
Machine Code for DaCapo Benchmarks

timization opportunities. As getting good performance early has proven to be
important, we believe such analysis could have only limited run time benefit.

5 Conclusions

We have demonstrated a range of approaches to implement efficient method
reflection that demonstrate a performance advantage over out-of-line machine
code. Of the approaches bytecode generation performed best. Across a number of
DaCapo benchmarks eagerly generating bytecode gives the best overall saving
in execution time, however, the average speed up is marginally better if the
bytecode is generated in a lazy manner. Based on its average case behaviour,
lazy bytecode generation appears the most beneficial scheme.

References

1. JikesT™Research Virtual Machine(RVM). http://jikesrvm.org/, 2008.

2. S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovié¢, T. VanDrunen, D. von Dinck-
lage, and B. Wiedermann. The DaCapo benchmarks: Java benchmarking develop-
ment and analysis. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-Oriented Programing, Systems, Languages, and Applications,
New York, NY, USA, October 2006. ACM Press.

3. Mathias Braux and Jacques Noyé. Towards partially evaluating reflection in java. In
PEPM °00: Proceedings of the 2000 ACM SIGPLAN workshop on Partial evaluation
and semantics-based program manipulation, pages 2—11, New York, NY, USA, 2000.
ACM.

4. Benjamin Livshits, John Whaley, and Monica Lam. Reflection analysis for Java.
Technical report, Stanford University, 2005.

5. S. Pedroni and N. Rappin. Jython Essentials. O’Reilly Media, Inc., 2002.

