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Abstract Spike-timing dependent plasticity is a learning mechanism used exten-
sively within neural modelling. The learning rule has been shown to allow a neuron
to find the beginning of a repeated spatio-temporal pattern among its afferents. In
this study we adduce that such learning is dependent on background activity, and
is un-stable when in a noisy framework. We also present insights into the neuron’s
encoding.

1 Introduction

Spike-timing dependent plasticity (STDP) is a well established mechanism that
permits spike time differences between pre- and postsynaptic activities to affect
changes in synaptic efficacy [1, 2, 3, 4, 11, 16, 22]. If presynaptic activity precedes
postsynaptic activity, the conjoining synapse is strengthened—usually according
to some STDP function—and if the reverse is observed, the synapse is depressed.
Moreover, STDP can increase the mutual information between inputs and outputs of
simple networks ([14] used information theory to quantify learning performance),
provides a function for Hebbian learning and development and captures the causal-
ity of determining the direction of synaptic change that is implied by Hebb’s original

James Humble
School of Computing and Mathematics, University of Plymouth, UK
e-mail: james.humble@plymouth.ac.uk

Sue Denham
School of Psychology, University of Plymouth, UK
e-mail: s.denham@plymouth.ac.uk

Thomas Wennekers
School of Computing and Mathematics, University of Plymouth, UK
e-mail: thomas.wennekers@plymouth.ac.uk

1



2 James Humble, Sue Denham and Thomas Wennekers

postulate. STDP has accordingly been studied extensively and is commonly used as
a substrate of forms of learning [9, 10, 20].

STDP has been applied successfully to simple pattern learning and complicated
competitive pattern learning [7, 12, 13, 15, 19, 6]. Masquelier et al. [12] demon-
strated that a neuron equipped with STDP can learn repeated spatio-temporal spike
patterns even when embedded in a statistically identical distractor signal [12]. Such
learning takes advantage of the view that a pattern is a succession of spike coinci-
dences, and these coincidences combined with STDP’s pre- and postsynaptic tem-
poral considerations form the basis of many STDP-based learning rules.

Envisage a neuron that has learnt to fire after a subset of its afferents present a
pattern as in [12]. In the present work we adduce this neuron’s high sensitivity and
dependence on background activity unrelated to the pattern; we also show that the
temporal accuracy of the learning can be un-stable. Subsequently, insights into the
neuron’s encoding are also possible.

2 Methods

The simulations were performed using custom made C software. Source code is
available from the authors upon request.

2.1 Network Structure and Afferent Input

The network structure was identical to that of Masquelier et al. [12]: 2000 affer-
ents converge on one neuron. These 2000 afferents carry Poisson spike trains (64
Hz) which were produced ‘on the fly’, with 1000 of these afferents occasionally
conveying a repeated spatio-temporal pattern of 50 ms duration.

To produce this input a simulation is segmented into 50 ms windows. During
each subsequent bin, afferents communicating the pattern have a 0.25 probability of
displaying the pattern; the remaining afferents consistently projected random Pois-
son activity. The pattern was not presented consecutively: this ensured each pattern
presentation was preceded and followed by random activity. This protocol is simi-
lar to Masquelier et al. but allows on-line production of afferents’ inputs. Analysis
was carried out to ensure that the pattern was statistically identical to the random
distractor signal. As in [12], Poisson spike trains were 54 Hz initially, with 10 Hz
further noise added to all afferents including those of the pattern; however no jitter
was added to the pattern.

A full simulation ran for up to 3000 s. It was found that any singular weight could
converge (change from one weight limit to another) in 200 s, therefore weight values
were recorded every 2 s allowing sufficient visualisation of weight trajectories and
distributions.
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2.2 Neuron Model

A leaky integrate-and-fire (LIF) neuron model was used such that membrane poten-
tial was modeled by (1) where τm=10 ms is the membrane time constant and I is
total input to the cell from all afferents. Input activity consists of pulses of current 1
for duration dt. A threshold of θ = 1 was used.

τm
dV
dt

=−V + I if V ≥ θ then reset V = 0 (1)

2.3 Spike-Timing Dependent Plasticity

An exponential STDP rule was used such that Wt+∆ t =Wt + f (τ). Equation (2) de-
scribes the STDP function used where τp = τm=20 ms. These values of τp and τm
were chosen similar to those observed experimentally [16, 5, 8, 21, 23], where the
strongest synaptic modifications occurred within a window of ±20 ms. These con-
stants vary from other studies such as Masquelier et al. [12, 13] who used τp=16.8
ms and τm=33.7 ms.

f (τ) = Ap× exp
(
−τ

τp

)
if τ ≥ 0

f (τ) = Am× exp
(

τ

τm

)
if τ < 0

(2)

Learning rates were assigned as follows: Ap = 0.002×Wmax and Am = −Ap×(
τp
τm

)
×1.05. The assignment of Am is in accordance with the finding by Song et al.

[19] that Am
Ap

needs to be slightly larger than one to maintain reasonable postsynaptic
activity.

2.4 Maximum Synaptic Weight

Many studies into STDP pattern learning use weight bounding to control synaptic
change; such saturation limits stop unstable forms of STDP based learning chang-
ing synaptic efficacies ad infinitum. Furthermore, the maximum synaptic weight can
have a great impact on the learning process: if too low, postsynaptic activity may not
reach threshold, and if too high, postsynaptic activity may be erratic and uninfor-
mative. It is thus implemented with (3), where ∆v is the difference in membrane
potential required to go from resting to threshold, 〈r(t)〉 is the average firing rate
of afferents, Ninput is the number of afferents in the pattern (here 1000) and A is an
additional constant with arbitrary units.
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Wmax =

[
∆v

τm×〈r(t)〉×∆ t

]
+A

Ninput
(3)

Therefore, after learning one envisages that all synapses participating in a pattern
are at Wmax and the rest are at 0, and thus the afferents in the pattern will evoke an
action potential from the output neuron. However, as all afferents in the pattern may
not be learnt through STDP, and the afferents are not guaranteed to fire at the average
firing rate or sufficiently within the membrane time constant, A can be adjusted to
allow fluctuations in the total membrane potential to reach the neuron’s threshold. To
that end, an appropriately selected value can allow STDP to be affected by positive
fluctuations in input and membrane potential—found to be crucial by Song et al.
[19] and designed into a learning rule by Senn et al. [18].

Crucially, (3) is a ‘best guess’ approach to assigning maximum synaptic weights
because a ‘best’ value will depend on how many afferents are fully potentiated at
the end of learning, and this changes between simulations depending on the pattern
and chance.

2.5 Initial Synaptic Weights

The initial strength of synaptic weights is as important as their maximum efficacy.
Several different approaches are used to set initial weights; one approach is to set
weights w with random values drawn from a Uniform distribution between 0 and
Wmax as in (4). This initially results in the output neuron firing frequently.

0 < w≤Wmax (4)

Initial weights should be set such that fluctuations from all afferents cause the
output neuron to fire. This is important because it allows all synapses contributing
to postsynaptic activity to be affected by STDP [19].
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Fig. 1 Postsynaptic latency—relative to the pattern start—as a function of discharges. When the
neuron discharges outside of the pattern a latency of 0 is shown. The STDP clearly learns the
pattern and has similar periods to those observed by Masquelier et al.: 1) when the neuron is non-
selective to the pattern and most weights are being depressed due to

∫ τp
τm f (τ) < 0; 2) when the

neuron is training to the beginning of the pattern; and 3) when the neuron consistently fires to a
part of the pattern.

3 Results

During any typical simulation several phases are visible—first observed by Masque-
lier et al. [12]. The first two of these phases are similar to [12]; the last phase slightly
differs.

3.1 Typical Results

It was found that STDP trained best with A = 20 (cf. (3)). Figure 1 depicts a typi-
cal simulation of 1000 s. Our results reinforce those of Masquelier et al., viz. that
a neuron equipped with STDP is able to effectively find and train to a repeated
spatio-temporal pattern embedded within a statistically identical signal. This is not
surprising as the mechanism presented by Masquelier et al. is very general.

Masquelier et al. found that once a neuron had trained to a pattern it had “con-
verged towards a fast and reliable pattern detector.” We did not find this; instead, we
found that a learnt neuron’s firing latency appeared to drift backward through the
pattern, see Fig. 1.
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Fig. 2 Results of a longer simulation (3000 s) including weight distributions and trajectories. Fig-
ure 2a depicts the evolution of the weight distribution of afferents in the pattern and Fig. 2b of those
not in the pattern. Figure 2c shows the weight trajectories of 50 afferents in the pattern and Fig. 2d
50 of those not in the pattern. Figure 2e depicts discharge latency as a function of simulation time
(cf. Fig. 1).

3.2 Long Simulation

To study this drift in more detail longer simulations (3000 s) were ran (Fig. 2).
Figure 2e depicts a neuron’s discharges as a function of simulation time. The typical
phases described earlier (Sect. 3.1 and Fig. 1) are clearly visible again, together with
their time scales. The neuron’s latency stabilizes at ≈18 ms however does fire as
early as 13 ms. This drift backward through the pattern has a longer time scale than
the the second period where STDP reduces the latency.

To elucidate the mechanism behind this backward drift, synaptic weight values
were recorded every 2 s. Weight distributions and trajectories are fairly stable af-
ter 1000–2000 s and are bimodal (as found by [12, 17]). The period when STDP
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learns the pattern can be seen in the weights distributions and trajectories (Figs. 2a
and 2c—these plots include afferents that are within the pattern). The convergence
of weights to the pattern is mostly complete before 250 s with a small fraction of
weights still varying; in contrast however weights not in the pattern take relatively
longer to converge: ≈1000–2000 s.

These non-pattern weights are depressed over this longer period. This is the de-
sired effect of STDP as they are not conveying the repeated pattern. However, the
longer time scale has a possible side-effect: the latency drift described above. During
the first phase the neuron fires non-specifically, thus STDP depresses most weights.
This continues until pattern-driven fluctuations in the neuron’s membrane potential
facilitates STDP learning [19]. These fluctuations are based on a background activ-
ity level consisting of the synaptic weights of all afferents at that time. Therefore,
when STDP depresses non-pattern weights after the initial pattern learning has com-
pleted, this background level is consequently modified: it is reduced. This reduction
in background activity increases the time the neuron takes to temporally sum in-
coming spikes to threshold. It is hypothesized that this increase in latency visible in
Fig. 2e is due to the relatively longer time scale of weight depression.

3.3 Analysis of Drift

To test the hypothesized reliance of the output neuron on background activity, an
additional (constant) electrical current was ‘injected’ into the output neuron after it
had learnt a pattern. If a trained neuron has no significant reliance on the activity
and responds only to a short succession of coincidences from a subset of afferents,
this additional electrical current—if small relative to threshold—should not affect
when (and if) the neuron fires. Figure 3 shows the results of such a simulation.

When the additional current is applied to the neuron at 2000 s there is a significant
change in weights (Fig. 3a–d). Moreover, Fig. 3e shows a significant change in
the neuron’s firing latency during this additional current: the latency is reduced.
Interestingly the neuron’s latency then drifts again. The synapses are plastic for the
entirety of the simulation; if the synapses are fixed at their current strengths from
2000 s onwards this drift does not occur and the neuron consistently fires at the
initial reduced latency (results not shown herein).

An analysis of the weight distributions and trajectories from 2000 s helps to pos-
tulate as to this second drift: many afferents which convey the pattern change their
efficacy significantly—either going from 0 to Wmax or vice-versa. Accompanying
these changes is a reduction in weights for afferents not conveying the pattern—
similar to the initial training phases. The neuron is adjusting to its new background
activity.

To further clarify this reliance on background activity Fig. 4 depicts a neuron’s
membrane potential. Figure 4a is just after the neuron has trained to the pattern,
and Fig. 4b is later in the simulation after some drift has occurred. The background
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Fig. 3 Results of a long simulation (3000 s) with an additional injection of constant electrical
current at 2000 s. As with Fig. 3, weight distributions (a and b) and weight trajectories (c and d)
were recorded every 2 s. e clearly shows a decrease in latency at the current onset; the latency then
increases and levels off.

activity is higher in Fig. 4b than Fig. 4a; this leads to a longer integration time to
threshold, thus increasing the firing latency by ≈5 ms.
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Fig. 4 A neuron’s membrane potential depicting a lower background activity and consequently a
longer integration time. a reaches threshold with a latency of ≈10 ms, whereas b with ≈15 ms.
Patterns started at 251.25 s and 952.35 s.

3.4 Impact of Noise

To this point simulations trained to the beginning of the pattern; however if noise
was added to the neuron’s membrane potential, this is no longer the case. Figure 5
depicts two typical results with noise: in Fig. 5a the shortest latency is ≈ 15 ms,
and in Fig. 5b it is ≈ 30 ms. It appears the noise interferes with the learning phase
(Fig. 1); in fact, with this noise we found that a neuron’s learnt latency varied greatly.
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Fig. 5 Two typical results when Gaussian noise (µ = 0.05 and σ = 0.013) is added to the mem-
brane potential. The neuron starts training to the beginning of the pattern but stops before reaching
it.

4 Discussion

The results we present strengthen the findings by Masquelier et al. [12]: even though
we used—among other things—a different STDP window and different learning
rates, STDP was able to distinguish a repeated pattern from random activity, learn
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it and fire consistently within it. However, we found that with long simulations the
latency of a neuron’s firing increased with respect to the beginning of the pattern. It
is not clear if Masquelier et al. [12] ran their simulations for longer than 450 s.

To eliminate this drift as an artefact of the model, parameters were adjusted as
follows:

• Different learning rates had no affect. As rates are assigned with Am = −Ap×(
τp
τm

)
×1.05, Am ∝ Ap so

∫ τp
τm f (τ) was always < 0 thus different learning rates

changed the convergence/learning time only.
• Different values of Wmax had no affect on the drift.

It would be advantageous for resources if synapses which are depressed—and
determined not to carry information—were eliminated. However if this was to occur,
a neuron may either not fire at all or fire with a much greater latency; thus the STDP-
based learning schema used in this study may have less biological plausibility than
previously postulated.

An offshoot of the findings presented in this study is a glimpse at the pattern
encoding used by its neurons. A neuron encodes the coincidence of spikes from a
subsection of the pattern’s afferents, and when these spikes occur the neuron fires.
However the temporal precision of a response depends on some background activity,
which must be similar to that present during learning. Consequently, in a noisier
framework—perhaps with greatly fluctuating afferent activity—a neuron may no
longer respond to its learnt pattern. In addition we found that a relatively small
amount of noise added to the neuron’s membrane potential produced less stable
learning; in fact the earliest trained latency appears to be highly un-stable.
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