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Abstract

In this paper we consider the problem of desynchronising modular syn-
chronous speci�cations for their realisation into GALS architectures and
obtaining simple wrappers that are e�ciently synthesisable using exist-
ing synthesis tools. The systems are modeled using Petri nets (PN) and
the desynchronisation technique is based on the theory of PN Localities.
The �ring semantics of a globally synchronous system is characterised
by maximal �ring of input and output transitions. The partitioning of
a synchronous system is achieved by unbundling the input transitions
and allowing the output transitions to �re in maximal steps, in order to
enable asynchronous communication in a distributed environment. Our
model satis�es the two essential correctness properties, namely, seman-
tics preservation and deadlock prevention, during the shift from maximal
�ring semantics, followed by synchronous systems, to standard interleav-
ing semantics for input transitions and maximal step �ring semantics for
output transitions, followed by GALS architectures. The formation of
localities is supported by adding internal signals which are necessary for
building wrappers in the localities that will generate local clock enables.
These wrappers can be subsequently synthesised using PN based synthesis
tools.

1 Introduction

This paper introduces a new methodology for the desynchronisation of syn-
chronous systems into globally asynchronous and locally synchronous (GALS)
architectures. Di�erent formal techniques have been proposed for GALS in the
last ten years, e.g. [1, 2]. Previously in [3], Transition Systems (TS) were used
as the speci�cation model to describe the synchronous systems for the purpose
of desynchronising them into GALS architecture. The models obtained for each
synchronous module can be very large and complex due to the weak handling
of concurrency posed by the desynchronisation methodology used. Concurrency
is a prerequisite for the speci�cation of synchronous systems for handling asyn-
chronous communication for their GALS deployment. Moreover, these models
are translated into Petri nets in order to use existing asynchronous tools for
logic synthesis.
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Figure 1: Synchronous system transformation into distributed architecture

Therefore, the complexity of the transition system, obtained from the previ-
ous methodology, and the computational complexity of the PN synthesis of these
models form the main motivations for this work. The new technique uses PN as
the speci�cation model whose e�cient concurrency handling technique makes
it one of the most viable models to describe systems for desynchronisation. PN
provides a high level system description model where the transitions are mapped
to actions on channels or symbols. This technique uses labelled PNs as a way
to specify logical dependencies between these actions and the I/O events of
the system and its constituent blocks. The notion of synchrony/asynchrony is
applied in our framework through the semantics of transition execution. The
execution of a net is subject to certain rules which are determined by the way
logically enabled transitions are scheduled to �re depending on some conditions
on places. These conditions are imposed by the semantics applied to meet the
clocking requirements of the system. It is assumed that in a truly synchronous
execution, the �ring of all logically enabled transitions is done according to the
policy of maximal step (see De�nition 1 ) semantics. In a true asynchronous
execution, we use step semantics with all possible interleavings.

The theory behind the new technique uses the concept of Localities, inspired
by [5], which helps in describing the distribution of a synchronous system over
asynchronous architectures owing to its strong structural and functional corre-
spondence with GALS architectures.

A synchronous system consists of components which are associated with a
set of input and output signals. Such a system is depicted in Figure 1. Each of
these components are governed by activities like sending and receiving control
signals as well as exchanging data signals across di�erent components. The
actions performed by all the components are controlled by a single global clock.
In this work we assume that the mechanism for clock generation can be built in
one of the known ways:

• using the independent global clock and synchronisers (e.g. based on two-
�op structures) associated with each input,

• internal clock generated from the inputs (event or data-driven clocking)

The notion of localities[5], in application to biological membrane systems, in-
troduces the idea of localising these above mentioned components and hence



their associated actions into individual blocks. These blocks are incorporated
with some additional ordering constraints on their input and output signals.
These constraints enable the localities to behave like independent synchronous
systems. Therefore, the global clock can be eliminated and each locality can be
employed with local clocks which govern the actions assigned to them. Such an
occurrence draws a parallel between systems obtained from the proposed desy-
chronisation scheme and Endochronous systems , where a synchronous program
can reconstruct its timing from its internal actions and does not require to use
the environment as an external stimulus for it.

As �gure 1 shows, more than one component can be mapped onto each lo-
cality depending on some rules and optimisation criteria, discussed later. These
localities created would then communicate with each other asynchronously due
to the absence of a clock signal between the localities owing to the removal of
the global clock and application of the local clocks. The technique to obtain
a distributed architecture from a globally synchronous system must satisfy two
essential correctness properties, namely,

• semantics preservation of the original synchronous system: During the
execution of each synchronous sequence, components of the synchronous
system compute events for the output signals based on the internal signals
and the values of the input signals. Within each unit of time, the system
is transformed by a maximally concurrent execution of input and output
signals. The deployment of such a system into GALS architecture entails
unbundling of input signals to aid out-of-order reception of these signals
in an asynchronous environment. Therefore, this transformation to form
a distributed architecture should preserve the semantics of the original
system.

• prevention of deadlocks: When the synchronous system is transformed
into a GALS architecture, the input transitions that were bound in the
original system are unbundled, as previously discussed. This out-of-order
reception of signals should not cause the system to enter into a deadlock
state. Therefore, there should be additional constraints in the transformed
model to avoid such occurrences.

Both these properties have been dealt with in Section 6 and 7, respectively.
We attempt to present in this paper some preliminary ideas for a method

which performs desynchronisation of systems using the modeling language of
PNs and their �synchronisation paradigm� expressed semantically in terms of
steps and max-parallelism. This method de�nes important conditions for cor-
rect desynchronisation of a Petri net model of a system. These conditions are
discussed in the context of the application of the execution semantics of Petri
nets. The method has the potential of allowing the designer to move in the
design space of a variety of di�erent options for desynchronisation between fully
synchronous and fully asynchronous. Particular solutions can be determined
by the criteria for desynchronisation, such as performance optimisation. To
illustrate a particular case of the design solution search in this spectrum, the



paper ends with a sketch of an algorithm which takes a Petri net model of a
fully synchronous system and produces a system model with a set of localities
determined by the condition of unbundled inputs (both primary inputs to the
whole system and inputs to individual blocks, formed by the re�nement of the
system and associated with unbounded delays) and largest possible groups of
outputs that can be executed synchronously.

2 Preliminaries

This work uses Petri net models to describe the synchronous systems. This
is because all the components and actions carried out by synchronous systems
can be directly mapped onto the di�erent elements of a Petri net. For instance,
synchronous events are represented on the transitions and the trigger conditions
are denoted on the places. In order to show that a trigger condition is true, the
place is equipped with a token. To make a synchronous component transit from
one con�guration to another is denoted by the �ring of transition(s). Therefore,
PN models are su�ciently expressive in describing a synchronous system. A
detailed description of such models is presented in Section 4.

2.1 Petri nets and their interpretation in the system desyn-

chronisation context

A Petri net (PN) is a model used to represent systems with concurrency. It
is a quadruple PN = {P, T, F, µ0}, where P is a set of places, T is a set of
transitions, F is an arc denoting the �ow relation F ⊆ {(P ×T )∪ (T ×P )} and
µ0 is the initial marking.

Given a Petri net N , the pre- and post-multiset of a transition t ∈ T are
respectively the multiset preN (t) and the multiset postN (t), such that for all
p ∈ P , |p|preN (t) = F (p, t) and |p|postN (t) = F (t, p), where |p| denotes the
number of tokens present in the place p.

There are many semantical aspects and properties available in theory of
PNs, but the most essential for our purposes are the following: the semantical
notion of a step and the behavioural property of persistency. The former is
necessary for expressing the idea of synchronising a group of actions as a bundle
(in our interpretation, implemented with the application of a common clock
to the corresponding hardware units). The latter is needed for expressing the
notion of stability of a bundle of events (i.e., if a clock signal is applied to a set
of actions committed to �re in a bundle, this set cannot be changed 'on the �y',
otherwise the clock signal can experience hazards).

De�nition 1. Step
A step is a multiset of transitions U : T → N , where N is a set of natural

numbers.
In a maximal step semantics, a PN model evolves through the concurrent

�ring of transition sets, given the associated external conditions are true.
De�nition 2. Persistency



A Petri net (N,µ0) is persistent if for any two di�erent transitions t1, t2 of N
and any reachable marking µ, if t1 and t2 are enabled at µ, then the occurrence
of one cannot disable the other.

The notion of persistency can be generalised for steps.
In this paper we will consider as the main execution semantics the semantics

called interleaved step semantics [5], which requires to execute in every marking
all possible subsets of enabled transitions if they are not in con�ict. For exam-
ple, for the net shown in Figure 2(b), in the marking which enables both In1
and In2, there are three possible steps that can be executed, {In1}, {In2}, and
{In1; In2}. Each step is usually associated with a separate arc in the reachable
state graph. In the following, in order to avoid clutter in notation, we will not
normally show the transient steps if the corresponding interleavings are possible.
Therefore, as shown in Figure 3, where In1 and In2 are executed in the inter-
leaved step semantics, we don't depict the arc with the step label {In1; In2}.
We will therefore only show steps where their signi�cance is determined by the
use of Maximal step execution.

This paper uses PNs to model systems with actions associated with activa-
tions of I/O ports and internal channels. We will not be looking at the compu-
tational details of the systems, abstracting them away, and just focusing on the
communication aspects. It is therefore convenient to assume that for such a PN
there are disjoint sets of inputs I and outputs O and a function l which maps
the transitions of the Petri net to the set I ∪O ∪ {tint}, where tint /∈ I ∪O is a
silent event not observable by the environment. Consider a simple example of a
system with I/O ports, as in Figure 2(a). Let inputs I1 and I2 be concurrent to
each other. Figure 2(b) denotes the Petri net representation of the input output
dependencies of the system which is shown in Figure 2(a).

In the next section we will consider how adding an addition (structural) no-
tion of locality can help us in putting together a convenient modeling framework
for analysis of the issues related to system desynchronisation using the Petri net
model under the above interpretation of PN transitions.

3 Motivation for Desynchronisation Approach based

on Localities

The above de�nition of steps of transitions helps to model the e�ect of their
binding, i.e. synchronisation using clocks. Depending on the semantics of tran-
sition step execution, we can formulate di�erent levels of synchronicity, from
global, i.e. fully synchronous, down to fully asynchronous. However, we also
need some criteria which would impose a particular form of execution policy
on the Petri net model of the system. For example, from the point of view of
performance we may want to change the policy of (global) maximum step �r-
ing parallelism, because such a semantics assumes that the clock signal is only
activated after all the events in the previous step have been executed. This
leads to the operation with a worst case delay. From the system's viewpoint
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Figure 2: Block and PN representation of a synchronous system

this also implies the problem of distributing global clock, working with global
interconnects etc, i.e. all the reasons of why people need to look for ways of
moving to GALS systems.

We associate globally synchronous paradigm with maximal �ring semantics.
A state graph depicting such semantics for the above PN example is presented
in Figure 2(c). Suppose we would like to desynchronise the system into a GALS
version, for example due to the fact that the variation of delays between In1
and In2, as well as between O1 and O3, etc. is large and the global clocking is
time-ine�cient.

In order to incorporate the idea of asynchrony, the inputs must be allowed
to arrive in any order and at any instant of time. This results in unbundling
of inputs as shown in Figure 3. But the output signals are �red in bundles or
maximal output steps (or Max-O step semantics, see Section 4). Since the input
signals cannot be scheduled to arrive at known instants, persistency property
cannot be guaranteed. This results in an unknown delay between the inputs.
Therefore, from the �gure it can be seen that the model has non-persistent steps
at state s1 and s2. Namely, let< In1 > arrive �rst, which causes < O1, O2 >
to execute in a maximal step. But before the execution of the maximal step
< O1, O2 > is completed, if In2 arrives then the system attempts to execute the
maximal step < O1, O2, O3, O4 >. Therefore, the arrival of < In2 > disables
the step < O1, O2 >leading to violation of persistency property between the
steps < In2 > and < O1, O2 >at s1. Non-persistent steps at the state s2 can
be easily shown in a similar way.

Therefore, if a bundle is altered on the �y, such as {O1, O2, O3, O4} to
{O1, O2} in the above example, it leads to the violation of persistency of a
bundle. In other words, events cannot be removed or added into steps as a
result of some concurrent action, because it would give rise to unstable bundles.

In order to avoid this situation, the system is not made to follow Maximal
Output semantics globally. If it is possible to partition the system in such a way
that none of the input transitions and output steps are non-persistent in each
partition, then the Max-O semantics can be restricted to each partition leading
to a correct realisation of a concurrent system. This gives the motivation for
the use of localities and hence, a way of desynchronisation which satis�es the
properties of persistent clocking. In order to obtain a correct implementation
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of a GALS system from a synchronous speci�cation, the synchronous system
is required to be partitioned into localities, which are analogous to partitioned
blocks. Therefore, the partitioning of the global synchronous system into lo-
calities and application of Max-O semantics in each locality, aid the removal of
the global clock by guaranteeing the absence of deadlock and the realisation of
correct input output dependencies.

3.1 Max-O semantics and validity criteria using Processes

The previous section presented the idea about Max-O semantics used to describe
distributed architectures. The standard interleaving semantics for PN does not
associate any notion of maximal �ring by which a set of transitions are always
�red concurrently. Therefore, maximal output semantics is introduced which
binds sets of output transitions in order to �re them concurrently.

In this section we draw some equivalences between models of PN with max-
imal output semantics and standard (interleaved step) semantics. The reason
for obtaining such equivalences is to use PNs that are behaviourally equivalent
under both semantics due to the feasibility of veri�cation and synthesis using
standard tools. Hence, the models used to represent our system are those that
are equivalent under standard and Max-O semantics. Here, we require to de�ne
the restrictions that support the above equivalence. This can done with the
help of theory of Processes, which was introduced in [6]. Avoiding formalisation
here we only present the intuitive idea of such a behavioural equivalence.

Let Σ = {P, T, F, µ} be a Petri net model. Let PNSTD be the pre�x of
the unfolding of Σ under standard semantics and PNmax be the pre�x of the
unfolding of Σ under the Max-O semantics.

The standard semantics have interleaved output steps and the Max-O se-
mantics have maximal output steps. Hence, the interleaving semantics will
have more permissive steps as compared to Max-O semantics. Therefore, intu-
itively we can say that the processes of standard semantics are richer than the
processes of Max-O semantics.

To prevent the Max-O semantic from having additional events which are not
permitted by the standard semantics, every process of PNmax semantics must
be a pre�x of some process of PNSTD.
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4 Synchronous model description

A more complex example is now considered to highlight the main aspects of our
desynchronisation methodology. This will be a running example for the process
of GALSi�cation.

Figure. 4(a) shows a synchronous system. There are two inputs In1 and In2
to the block and seven outputs, namely, O1, O2, O3, O4, O5, O6 and O7 from
the block. The system clock is used to clock the whole system globally. The
PN model speci�cation of such a system is shown in Figure 4(b) (for simplicity,
we slightly abuse the labelling convention of our labeled Petri nets, and assign
a set of concurrently enabled outputs to one transition instead of using seven
separate transitions). The state representation of the maximal �ring semantics
in a globally synchronous environment is shown in Figure 4(c).

Suppose the synchronous system is further sub-divided into smaller compu-
tational blocks. These blocks have their own input signals coming from and
outputs going to other similar internal blocks. These signals, when seen from
the top level of the single synchronous block, form the internal signals of the
circuit. These smaller blocks have their own sets of internal signals. Such a
system is shown in Figure 5. The signals a, b, c and d form internal signals to
the overall synchronous block. A PN representation of such a system is shown
in Figure 6(a). The state graph of such a system is shown in Figure 6(b).

For the formation of localities and to aid asynchronous communication be-
tween the localities some transformations are applied at the PN model level. At
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the granularity of the individual blocks that compose the synchronous system,
these internal signals form inputs to and outputs from the internal blocks, i.e
a acts as an output from block 1, but behaves as an input for block 4. Since
the internal signals are now interpreted as output from one block and input
into the next block, transformations are applied on the net to incorporate this
communication on the channel, in order to distinguish the outputs from the
input signals for desynchronisation. This is necessary to incorporate the idea
of localities which have sets of input and output transitions allocated to each
locality. Therefore, output from one locality forms the input to another. To do
so, we partition the signal into output and input signals. For example, signal a
is re�ned into a_O and a_In. To do this, the model needs to be transformed
by inserting new internal signals, for which the transition insertion technique
de�ned in Section 4.1 is used. This re�nement leads to a modi�ed PN model of
the original system and is depicted in Figure. 7. The shaded blocks denote the
insertion of signals in the original system.

4.1 Net Transformations and notion of validity

In order to obtain a distributed PN model of a system, some transformations
are required on the model to aid the compartmentisation process. One such
transformation is Signal Insertion. In this section, signal insertion by transition
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partitioning, is formally de�ned. The type of insertion is restricted to sequential
post insertion because the insertion is to aid the partition of a signal into its
output and input counterparts and hence eliminates concurrent insertions.

De�nition 3. Transition Splitting
Given a labelled Petri net Υ = (Σ, I, O, l) where Σ = (P, T, F, µ0), I is a set

of inputs, O is a set of outputs, such that I ∩ O = 0, l is a function that maps
the transitions of the Petri net to the set I ∪ O ∪ {tint}, where, tint /∈ I ∪ O,
the partition of the transition t ∈ T yields an LPN Υ

′
= (Σ

′
, I, O, l) with

Σ
′
= (P

′
, T

′
, F

′
, µ0), where,

• T
′
= T ∪ {u}, where u /∈ P ∪ T is a new transition

• P
′
= P ∪ {p}, where p /∈ P ∪ T is a new place

• F
′
= F ∪ ({t, p} ∪ {p, u} ∪ {(u, q) | q ∈ t•})\{(t, q) | q ∈ t•}

The notion of validity for signal insertion is straightforward and the transforma-
tion can be justi�ed in terms of weak bisimulation which is well studied. Such
a notion is presented in [[4], Proposition 5.3].

Conditions of valid transformations There are some restrictions that are
required to be followed while inserting the signals.

• The newly inserted places form the interface places between the di�erent
localities. Therefore, these places cannot have the token stolen by another
transition in con�ict. To avoid a transition from stealing the token and
resulting in running one locality into a deadlock, situation depicted in
Figure. 8(a), should not be allowed. Hence, interface places cannot be
choice places.

• If the signal has fan-outs, the bu�er should be inserted before the fanout,
instead of one bu�er in each branch. The latter can lead to formation of
unnecessary localities due to numerous signal insertions. This is exempli-
�ed in Figure. 8(b).

Therefore, the allowable examples for signal insertion after fan-ins and before
fan-outs are shown in Figure 8(c) and (d), respectively.
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Transition re-labelling The transitions t (the transition which is split) and
u (the newly inserted transition) are labelled by adding a post-�x _O to the
label of t and _In to the label of u. This is done to associate meaning to
the inserted signals which signify channel communication. Therefore, for the
example shown in Figure 6, the transition labelled a is split into a_O, denoting
output from block 1 and a_In, denoting input to block 4. The newly inserted
place t•, can be regarded as a unit of storage, for instance a bu�er. This bu�er
stores item of data before transferring it across to the next block.

Each of the individual compartments depicted in Figure 9 can now be viewed
as a modular synchronous block with its own input and output signals.Therefore,
each of these compartments will have to follow the synchronous behaviour.
Therefore, the original synchronous system can be now de�ned as a collection
of these compartments, modelled at the PN level by a standard operation of a
union of PNs, merged on places [10]:

Σ = (P1, T1, F1, µ1) ∪ ...(Pn, Tn, Fn, µn)

Since each of these compartments are viewed as synchronous blocks, the
input and the output transitions from these blocks also follow the same execution
rules as discussed above.

4.2 A Petri net class

For our initial work , we use a subclass of PNs that follow certain assumptions
to aid our desychronisation process. Therefore, our PN models should satisfy
the following properties:

Property 1 (Safe): A PN is 1-safe if for every reachable marking and every
place we have µ(p) ≤ 1. The PN models used in this work are 1-safe to aid
synthesis of the models using existing synthesis tools, as well as to be able to
use the theory of localities from [5], which used elementary net structures (it is
a known fact that 1-safe nets can be easily modelled by elementary nets).

Property 2 (Choice): Non-deterministic choice is only allowed between
input signals if they are controlled by the environment.



5 Petri nets with localities

In order to model a distributed architecture from a synchronous system model,
we apply the theory of Petri net with Localities which was originally introduced
in [5]. In the previous work, the co-located transitions executed maximally. We
extend this by making a distinction between input and output transitions and
allowing the input transitions to execute as and when they arrive and restricting
the output transitions to execute maximally and in persistent steps only. This
extension is in direct relation to the synchronous behaviour, discussed in the
previous sections. Analogies can be drawn between our proposed notion and
the notion of Burst-mode circuits, presented in [11, 12], from the point of view
of allowing multiple signal changes on each transition and taking into account
I/Ocausality. On the other hand, the former can be viewed as a generalisation
of Burst-mode circuits. This is because it uses PN as a model of computation
which allows the bursts/bundles to be introduced in a �exible way, based on
subsets of events bundled in bursts and independent bursts, preserving a level
of true concurrency between them.

The transitions in the PN belong to a �xed unique locality. The allocation
of localities to the transitions is achieved by partitioning the PT net using a
locality mapping function γ. This means if two transitions return the same
value for γ they will be co-located.

A PN with localities is a tuple denoted by NL = (P, T, F, µ0, γ), where the
underlying PN is denoted by UND(NL) = (P, T, F, µ0) and γ : T → N is the
location mapping for the transition set T . γ(t) returns an integer value which
denotes the locality of the transition t. Initially, for all t ∈ T , γ(t) is set to 0,
which denotes that the transition is unallocated.

In general, a net can be partitioned giving rise to the formation of smaller
nets that constitute the original graph.

Let Σ = {P, T, F, µ0} be a PN. Then, a partition can lead to the division of
the net into n smaller nets which can be denoted by,

Σi = (Pi, Ti, F ∩ (Pi × Ti ∪ Ti × Pi), Pi . µ0),

for i = 1 to n, where n is a set of integers, each Ti ⊆ T so that (T1∩T2∩....Tn) 6=
Ø and each Pi ⊆ P so that (P1 ∩ P2 ∩ ....Pn) 6= Ø, Pi . µ0 is de�ned by the
following:

If µ0 : P → {0, 1}, then ∀p ∈ Pi, µ0i : Pi → {0, 1}|µ0i(p) = µ0(p).
Depending on the rules applied to the partitioning process, the above general

de�nition can be altered to meet the requirements of a given methodology. The
rules applied in our proposed partitioning methodology is presented in 6.

6 Notion of partitioning correctness

As discussed above, a synchronous system can be desynchronised into a dis-
tributed architecture by unbundling the inputs and forming localities. The



formation of these localities should satisfy some correctness properties to en-
sure correct desynchronisation. The partitioning of the GALS deployment of a
synchronous system is correct w.r.t. the original synchronous system if there is a
behavioural equivalence between the GALS system and the initial synchronous
speci�cation.

This is formally de�ned in the following way:
Let Σ = {P, T, F, µ0} be a PN. The partitioning Σ = Σ1 ∪ Σ2 ∪ ....Σn, each

belong to localities L1, L2...Ln, respectively, is correct at a marking µ i� for all
steps of transitions U1 ⊆ T1,..Un ⊆ Tn, where U1, ...Un are enabled in Σ1, ...Σn,
respectively, the combined step U1 ∪ U2 ∪ ...Un is enabled in Σ. This denoted
as,

(µ . P1)[U1 >Σ1 ∧(µ . P2)[U2 >Σ2 ∧...(µ . Pn)[Un >Σn⇒ µ[U1 ∪ U2 ∪ ...Un >Σ,

for all U1 ⊆ T1, U2 ⊆ T2..., Un ⊆ Tn.

In1 In2

Loc=1 Loc=2

(a) Con�ict-
choice place

In1 In2

Loc=1 Loc=2

(b) con�ict-merge
place

Figure 10: Con�ict between transitions

Con�ict Resolution In order to adhere to the above criterion, the locality
allocation should satisfy correctness properties for con�ict resolution. For ex-
ample, an incorrect partition is shown in Figure 10(a). The net Σ is partitioned
into Σ1 and Σ2 belonging to localities L1 and L2, respectively, so that the transi-
tion t1 is allocated to locality L1 and t2 is allocated to L2 and therefore, T1 = t1
and T2 = t2. Now, substituting p for µ, leads to markings {p}[{t1} >Σ1 and
{p}[{t2} >Σ2 in each of the localities but {p}[{t1, t2} >Σ is not true. Hence, the
partitioning is incorrect. Such an occurrence that leads to an incorrect partition
can be similarly shown for Figure 10(b).

The notion imposes the transitions in con�ict to be placed in the same
locality. The locality optimisation technique can lead to occurrence of such a
situation. Hence, care must be taken while inserting the input/output bridges
in the partitions. Therefore, the correctness can be guaranteed if the following
condition holds true:

Let Σ = {P, T, F, µ0} be an elementary net system that has been partitioned
into Σ1, Σ2, ...,Σn. If transitions from the partitions do not share preconditions
or postconditions , or

•T1 ∩ •T2 ∩ ... • Tn = T1 • ∩T2 • ∩...Tn• = Ø



then the partitioning is correct.
Therefore, if outputs can disable each other, i.e. they are in con�ict, they

cannot be in di�erent localities. These outputs must be in the same locality
and this con�ict should be interpreted as choice which takes place within the
locality.

Note If there exists a step {I1, I2, O1, O2, } enabled under a marking s, each
action in it is allowed if it is not in con�ict with another action in it. If some
of the enabled transitions are in con�ict and can't �re as a step, the inputs
are allowed to be resolved by the environment choice, or within each locality
if the con�ict is between outputs. In a globally clocked system there are no
non-persistent steps because there is no true concurrency (synchronous simul-
taneous actions). The con�icts in such systems can be resolved statically, in a
deterministic way, by scheduling them using some mechanisms such as priorities
or cost functions.

As soon as we start desynchronisation, i.e. unbundling, we enter the world
where concurrency may introduce hazards due to dynamic con�ict resolution or
dynamic re-scheduling of steps. This may not be implemented physically using
logic blocks with certain min delays (i.e. certain resolution limits).

Step Persistency Another correctness property that the partitioned blocks
must satisfy is Step-persistency. The reason for identifying and handling non-
persistency is already presented in Section 3. The non-persistent transitions can
be identi�ed and made persistent by using the following procedure: 1) For each
output transition in the net, identify the set Out of output transitions that are
dependant on more than one input transition. 2) For each output transition
in Out, return the set In of input transitions, on which the output depends.
3) For each input in In, check if it causes more than one output transition.
4) Return the set persist of input signals for which (3) is true. 5) Return the
output transition O1, such that O1 ∈ Out and the input that causes it belongs
to the set persist. 6) Connect the output obtained in (5) with each of the input
signals in the set persist through an output-input transition pair as shown by
the shaded region in Figure 11(b).

The signals that are inserted are sets of output-input transition pairs, de-
noted by Ox and Ix, which behave as internal or silent events for the overall
system. These signals satisfy the notion of validity of signal insertion discussed
in Section 2.

Therefore, at the model level, the system depicted in Figure 7 is transformed
into the system depicted in Figure 11(b).

7 Allocation of Localities

In order to obtain the partition sets of transitions, the information about the
locations of each input and output transitions of the PN is required. We derive
the localisation of each input and output transitions of the synchronous circuit
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Figure 11: Persistency check

from the input-output dependencies. For example, if output transition y is
computed in locality L, then so does the input signals, x in this case, that are
required for the execution of y. Therefore, the input x must also be located in
L. Such a localisation will directly in�uence the localisation of internal signals.
Adherence to this property prevents the occurrence of deadlocks, arising due
to unavailability of input signals in some localities, since input signals are not
shared by the di�erent localities. This locality allocation approach leads us to
partitioned blocks denoted by the following de�nition.

Let Σ = {P, T, F, µ0} be an elementary net system. Then, the partitioning
leads to the division of the net into n smaller nets, denoted by

Σi = (Pi, Ti, F ∩ (Pi × Ti ∪ Ti × Pi), µ0 . Pi),

for i = 1 to n, where n is a set of integers, each Ti ⊆ T so that (T1∩T2∩....Tn) =
Ø and each Pi ⊆ P so that (P1 ∩ P2 ∩ ....Pn) 6= Ø.

This work does not address the problem of �nding the optimum localisation
of the computations w.r.t the performances of the resulting distributed system.
The localisation of all the actions of the synchronous system is derived directly
from the localisation of the input and output signals. This section also presents
an optimisation for the locality allocation methodology by redistributing tran-
sitions over localities to avoid locality overloading arising from large input fan
outs. In order to allocate localities to the transitions of a system, we require to
de�ne some methods which are presented as algorithms in [8, 9].

This algorithm incorporates a bi-directional subnet traversal in order to al-
locate localities to the transitions it visits. It takes as input a Petri net model
of a synchronous system denoted by Σ. The output of the algorithm is a Petri
net model of the synchronous system Σ, with locality information added to each
transition in the model.

To guarantee partitioning correctness as discussed in Section 6, the net is
checked for step-persistency before the locality allocation algorithm is applied.
Relevant signals are inserted if there is any persistency violation. The partition-
ing algorithm presented in [8], also satis�es the correctness criterion, namely,
con�ict-resolution. This is because the algorithm places all the signals, in con-
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�ict, in the same locality. The application of the algorithm presented in [8] to
the system, shown in Fig. 11(a), leads to a partitioned model shown in Fig. 12.

Each of the localities formed as above can either be implemented fully asyn-
chronously or have its internal clock in order to control all the internal compu-
tations and generation of output signals. For this appropriate wrappers can be
built that will generate local clock enables. These wrappers can be synthesised
using existing PN based synthesis tools. More details on synthesis of wrappers
can be found in [3, 8].

8 Conclusion

This paper addressed the problem of synthesising a GALS system by a desyn-
chronisation methodology which employed PN as its model of abstraction. The
granularity of desynchronised systems, thus constructed using PNs, is smaller
than the ones obtained from the previous method [3] and thus is easier to au-
tomate and apply even for large complex circuits. The GALS system can be
obtained by applying the theory of localities to a synchronous system model
preserving the synchronous properties of the input output signals.

This work presented a desynchronisation approach with a relatively clear
route to automated synthesis, while preserving the IO behaviour of the syn-
chronous systems.

Future Work The proposed methodology needs to be automated to reduce
design time and designer intervention. The locality allocation can be further
optimised to meet various criteria, e.g. to minimise interconnection between
localities and to increase the component speed. It could also be possible to
apply other ways of unbundling transitions (e.g. not necessarily consider all
inputs to be desynchronised) and thus obtain di�erent conditions for persistent
steps.
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