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Abstract

SPA is a synthesised, self-timed, ARM-compatible proc-
essor core. The use of synthesis was mandated by a need
for rapid implementation. This has proved to be very effec-
tive, albeit with increased cost in terms of area and per-
formance compared with earlier non-synthesised
processors. SPA is employed in an experimental smartcard
chip which is being designed to evaluate the applicability
of self-timed logic in security-sensitive devices. The Balsa
synthesis system is used to generate dual-rail logic with
some enhancements to improve security against non-inva-
sive attacks. A complete system-on-chip is being synthe-
sised with a only small amount of hand design being
employed to boost the throughput of the on-chip intercon-
nection system.

1. Introduction

The Amulet group has developed a series of ARM-com-
patible microprocessor cores over the last ten years [1, 2, 3],
all of which have followed the design style used in the early,
synchronous ARM hard macrocells - full custom datapaths
with standard cell control blocks [4].

In our latest collaborative project we are developing a
self-timed smartcard chip with a specific focus on the abil-
ity of self-timed circuits to offer improved security through
their resistance to non-invasive attacks and, in particular,
attacks based on power analysis and electromagnetic anal-
ysis. At the outset we planned to re-use an existing Amulet
core in this design but power analysis investigations into
our existing chips showed that their security was poor,
mainly as a result of their use of bundled-data communica-
tion. We needed a new processor core, based on a more
secure self-timed technology, and there was insufficient
time to design a new core in the (rather laborious) full cus-
tom style used previously.

The only satisfactory path open to us was to use synthe-
sis to develop the new processor core. The Philips Tangram
system [5] (from which Balsa takes its inspiration) has been
used in a similar way to implement a clone of the 80C51
microcontroller [6] for use in pagers.

Balsa [7, 8] has proved its value in the DRACO chip [9
where it was used to synthesise the 32-channel DMA co
troller [10], but clearly a processor core is a significant ste
up in complexity. However, this presented an opportunity
drive Balsa forward and to demonstrate its capabilities in
new, challenging area. This paper describes the architect
of the new processor and presents some preliminary resu

In section 2 the general system architecture of the sma
card chip is presented; this is the context in which the pro
essor must operate. The specific requirements for the pr
essor are discussed in section 3. The design methodolog
described in section 4, and the processor itself in section
An adjunct to the processor is the Memory Protection Un
(MPU) described in section 6, and the results and conc
sions from the work are presented in sections 7 and 8.

2. System Architecture

A block diagram of the smartcard chip appears
figure 1. The smartcard chip is a small embedded syst
with the SPA processor at its heart. It has access to mem
on the card which provides program and data storage an
communicates with a smartcard reader via a UART. Th
SPA CPU and the MPU are described in detail later in th
paper; the other components are outlined below.
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Figure 1: Smartcard system architecture
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2.1. CHAIN self-timed on-chip interconnect

The various components on the smartcard chip are con-
nected using the CHAIN on-chip interconnection system
[11]. This is a development of the MARBLE system used
in Amulet3i [12] and, like MARBLE, it is a multi-master
system. Devices are connected to the bus with either initia-
tor or target interfaces and the system provides arbitration
between competing initiators. Having arbitrated for access
to the bus, an initiator can then read or write a device con-
nected to a target. The targets and initiators present a con-
ventional address and data bus interface to their connected
devices. CHAIN itself, however, is implemented with serial
interconnect using a delay insensitive 1-of-4 code. This
results in the signal paths of CHAIN transitioning at rates
in excess of 1GHz which will make power and emission
analysis of this part of the system very difficult for attack-
ers.

The smartcard chip has two initiators, one for SPA and
one for the test interface. All of the other blocks connect to
CHAIN as targets. Because of a desire to keep the perform-
ance of CHAIN as high as possible, for security as well as
throughput, it has been designed by hand throughout and is
the only significant piece of hand design on the chip.

2.2. Smartcard UART and other peripherals

In common with the majority of smartcards the interface
with the smartcard reader is by means of a UART. This is
implemented in Balsa from the published specification
[13]. The interface consists of a clock which is provided by
the reader and a bidirectional data line. These signals are
connected to the UART which is connected to CHAIN via
a target interface. This target also hosts two other peripher-
als - a timer and a random number generator. The timer is
incremented by the clock from the reader and is used to
maintain a source of real-time information for the system.
The random number generator supplies pseudo-random
numbers using a feedback shift register. In a production
smartcard a source of true randomness would be required.

2.3. Memory

A smartcard generally requires two or three types of
memory. RAM is required for working storage and, in the
system described here, 16KB of RAM are provided organ-
ised as 4K 32-bit words. The RAM is of a conventional
design and produced using a memory generator program.
This presents a synchronous interface and a simple self-
timed wrapper is then used to present a dual-rail interface
to the rest of the system. The reading and writing of data to
the RAM can be a major security hole in a smartcard
because of the relatively high currents which are involved.

It is common to encrypt data stored in the RAM to ove
come this but this is not attempted here.

In addition to RAM, some sort of non-volatile memory
is required to hold programs and to maintain data when t
card is unpowered. Traditionally ROM was used for pro
gram storage and EEPROM for persistent data. Recen
some cards have dispensed with ROM and used EEPRO
or Flash for both purposes. In the interest of reducing ri
in a prototype design, we are providing both ROM (32KB
and Flash (2 blocks of 64KB). Of the limited number of fab
rication processes available to us, none provided EEPRO
so we have used Flash in this design. Having two blocks
Flash memory allows code to run from one block while th
other is being programmed. Like the RAM, these blocks a
automatically generated and have self-timed wrappers. T
ROM will contain a bootstrap loader program to allow th
card to be programmed via the UART.

2.4. Test interface

A test interface which is similar to the one which wa
successfully employed on Amulet3i [9] is implemente
here. The provision of a test interface on a chip designed
security is something which must be treated very carefu
in a production design as it represents a major security ho
In this experimental context, however, it is desirable fro
both a test and a debugging point of view. The test interfa
consists of a 32-bit bidirectional bus, a 3-bit control bus an
a clock input. The external test interface is synchronous
this style is best suited to current chip test machinery. T
basic operations provided by the test interface are read
and writing at arbitrary addresses in the on-chip addre
space. Internally, the test interface connects to the CHA
interconnect via an initiator interface. Test code can b
downloaded into on-chip memory and subsequently ex
cuted by the SPA processor and this mechanism forms
basis for the post-manufacture testing.

3. Processor Requirements

The performance requirements for a smartcard applic
tion are, fortunately, not too demanding. A performance
the 10 to 20 MIPS range is adequate for many application
and is certainly sufficient to address the research goals
this work - to demonstrate the security benefits of asynch
nous operation.

Amulet3 [14] is a 100 MIPS core on a 0.35µm CMOS
technology. It was clearly not going to be possible to g
close to this performance with a core synthesised using
tool that had never been applied to a 32-bit processor bef
and which contained no optimisations for datapaths. Ho
ever, we plan to use a more advanced process technol
(0.18µm) which would give a factor of two performance



al-
ent

e
ng
s
de
-

uts
’
he
des

,
cir-
be

.

le
eas-
r,

ht
ord
nd
f
e

es
ore
ted
improvement, so we could afford to lose an order of mag-
nitude of performance in the synthesis process. This
seemed achievable even with a synthesis tool using a rela-
tively immature technology description. It also allows us to
work with a relatively simple microarchitecture, using a
straightforward 3-stage pipeline as described in section 5.

The second requirement was that the processor should
offer full 32-bit ARM compatibility [15]. This is a chal-
lenge to the designer, but one well understood by the team.

The third requirement, most important to the research
goals, was to minimise side-channel information leakage.

At the lowest levels, side-channel information leakage
can be minimised by balancing circuits. A dual-rail circuit
has a symmetry between ‘0’ and ‘1’ actions that reveals lit-
tle through its power consumption and electromagnetic
emissions. Even so, a standard dual-rail register is unsafe
because, though it is symmetric with respect to its two val-
ues, it will still reveal whether a new value is the same as or
different from its predecessor. Reconstructing data streams
from transition information is little harder than doing so
from level information. The solution here is to propagate
‘spacers’ through registers, removing all traces of the old
value before the new one is stored. These and similar tech-
niques were used to develop a new ‘secure’ Balsa back-end.

The back-end takes care of low-level issues, but at the
higher level of design it is still necessary to ensure that
gross activity is as constant as possible. This has been an
interesting culture change for the group, since almost eve-
rything we had learnt in the past about low-power design
[16] had to be unlearnt. Any technique that saves power by
dynamically eliminating unnecessary activity leaks infor-
mation in the power signature! The objective, therefore, is
to develop a processor that does pretty much the same all of
the time and, in particular, has data-independent activity
characteristics.

4. Design Methodology

SPA is intended to be a secure implementation of the
ARM v5 instruction set architecture (ISA). Security here is
security from non-invasive attack by observing information
leakage through variations in power supply current or elec-
tromagnetic radiation [17]. This form of attack relies on
two features of the circuit under attack:

• a timing reference with which to synchronise repeated
observations of circuit behaviour

• the presence of information-bearing changes in power
consumption by the circuit.

It is anticipated that the use of asynchronously commu-
nicating modules will make correlating behaviour from
cycle to cycle more difficult. The use of 1-of-n codes (dual-
rail, 1-of-4) should reduce variations in energy dissipation

due to differences of Hamming weights between data v
ues. Four problems associated with this simple view pres
themselves.

• Symmetry in processing

• Persistent storage

• Timing information leakage

• Keeping some self-timed advantages

4.1. Symmetry in processing

Although all data values in a 1-of-n code have the sam
weight, so making communications ‘balanced’, processi
of 1-of-n data values may involve circuits in which there i
no symmetry of logic between the bits making up each co
group. Consider the DIMS implementation of a dual-rail 2
input AND gate shown in figure 2 [18]. The ‘1’output is

asserted by the single minterm corresponding to both inp
being 1. All three other input combinations result in the ‘0
output being asserted. It is obvious then that although t
codes involved are balanced, operations on these co
need not have balanced logic.

Luckily, a number of useful operations (XOR gates
adders, inversions) can be constructed using balanced
cuits. For other functions, pseudo-balanced versions can
constructed by placing dummy loads on chosen signals

4.2. Persistent storage

Balancing processing and communications is possib
using the above techniques. Balanced storage can also
ily be constructed by storing 1-of-n coded data. Howeve
it may still be possible to determine the difference in weig
between a word loaded into a storage element and the w
previously occupying that place. Conventional latches a
flip-flops dissipate energy in proportion to the number o
bits changed during a load. By explicitly resetting a piec
of storage before loading it we can hide the differenc
between successive values albeit at the cost of slower, m
expensive latches. ‘Secure’ latches can also be construc

C

C

C

C

‘11’

‘00’

‘10’

‘01’

A1

B1

A0

B0

Z1

Z0

Figure 2: Dual-rail 2-input AND gate
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by building a short Muller pipeline, using the return-to-zero
phase to propagate a reset through the latch [19].

4.3. Timing information leakage

Self-timed circuits are often built to exhibit ‘average-
case performance’. Circuit area can be traded off against
worst-case performance to allow (frequent) average-case
operations to be performed more quickly than (rarer) oper-
ation on worst-case data. Unfortunately, this desirable
property can lead to information leakage. Even with bal-
anced codes, variations in timing between operations may
still be visible. These timing variations are well known to
authors of encryption software for secure applications. The
cycle time of software loops is the software analogue of this
hardware timing problem. The software solution of making
each loop take the same amount of time to execute can also
be applied to the hardware. For example, a constant propa-
gation delay adder can be made by forcing the carry ripple
to propagate all the way up the carry chain. This can be
achieved by constructing full-adders which wait for their
full complement of inputs to arrive before asserting their
outputs. An adder built this way will not operate more
quickly in the case that one or more adder stages generate
rather than propagate a carry. This principle can be applied
to many circuits to make their propagation delays constant.

4.4. Keeping some self-timed advantages

Making all operations take the same amount of time
effectively results in a synchronous implementation. We
believe, however, that the careful use of asynchronous fea-
tures in such an implementation can result in a circuit in
which it is harder to make the cycle-to-cycle timing corre-
lation required to perform power analysis. The designers
must choose from a continuum of such implementations
varying from those with fixed-duration operations to those
with varying and overlapping operation delays (either data
dependent but hard to extract or genuinely random). For
SPA we take an approach somewhere in the middle of this
continuum to attempt to test whether a processor with units
with fixed but unequal latencies will result in a more secure
implementation. Some features included to achieve this
objective are:

• Different classes of instructions will still take different
amounts of time to execute, quite independent of the
data processed.

• The self-timed pipeline will make the energy dissipation
signatures of different parts of the processor overlap in
continuously varying ways.

• The CHAIN interconnect system will be operating con-
currently with the processor and at a wildly different op-
erating speed (as it is serial and implemented in a

different circuit style).

The security features of the Balsa synthesised portio
of this first SPA system therefore include:

• Use of dual-rail encoding throughout, requiring the in
troduction of a new Balsa back-end (Balsa had prev
ously been entirely bundled-data based).

• Reduced choice in the Balsa description used to synth
sise SPA leading to more monotonous operation. Th
choice reduction is explained, unit by unit, in section 

• Balanced implementation of the ALU and othe
processing units.

There are many other ways to obfuscate the energy d
sipation and timing of a circuit. These include:

• Inserting random, fixed delays into a circuit to result i
less predictable patterns of operation.

• Inserting dynamically varying delays, based on eith
the pattern of data (possibly leaking information) or b
using some physical process to generate genuinely r
dom delays.

• Reproduction of hardware. A second encryption proce
sor, running a different program, could work in paralle
with the first introducing noise into power supply.

• Connection of intentionally noisy structures to the pow
er supply in order to mask the processor power sign
ture.

These are all possible future directions for our researc
but it was felt that a ‘balanced’ solution was the most appr
priate choice to be able to draw conclusions about the u
of 1-of-n codes and self-timed technology in implementin
secure solutions.

4.5. Using Balsa

The use of synthesis makes it easier to apply consisten
of implementation style across the whole processor. T
same Balsa circuit description can also easily be synth
sised into a number of different circuits with different com
binations of security features with very little effort on the
part of the designer. This was not possible with previou
Amulet processor designs and will almost certainly lead
SPA being implemented in a number of different guise
(should the security benefits become clear).

A number of language-level changes to a Balsa descr
tion are possible which affect security. These are princ
pally related to avoiding choice in order to prevent dat
dependent timing in the synthesised implementation. Ba
allows descriptions to be parameterised and the structure
a circuit to be influenced by this parameterisation. This fe
ture was heavily used to allow flexibility while taking
design decisions relating to the developing Balsa SPA co
and to allow such choice-reducing modifications to b
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turned on or off prior to synthesis. The Balsa system com-
piles descriptions into circuits in two stages. Firstly, the
Balsa compiler processes a Balsa description producing a
‘handshake circuit’ which directly implements that descrip-
tion. Secondly, the Balsa back-end takes that handshake cir-
cuit and produces standard-cell netlists of the circuit and its
constituent handshake components. The choice of data
encoding, handshake protocols and security features in this
netlist synthesis can be chosen by the user prior to running
the back-end tools. The back-end uses a repository of hand-
shake component synthesis instructions written in a simple
technology-independent pseudo-netlist language in order
to build parameter specific versions of each component.

These building instructions are grouped into ‘technolo-
gies’. A core technology, (‘common’), contains the major-
ity of component descriptions for all the implementation
options. Target cell library specific handshake component
descriptions are only provided where there is a clear tech-
nology-specific advantage to be gained from implementing
those components in a non-standard manner. In this way a
new protocol or data-encoding can be ported to a new fab-
rication process with very little effort.

5. Processor Design

As mentioned previously, the SPA core is an implemen-
tation of the ARM v5 ISA. There is full support for inter-
rupts, precise exceptions and coprocessors. It is a Harvard
design although a wrapper allows it to be used in a von Neu-
mann manner if desired. The core is implemented as an
ARM-style, 3-stage Fetch-Decode-Execute design as illus-
trated in figure 3 and described in more detail below.

Because of the limited time available for its design, sim-
plicity was desired, so in general all of the implementation
uses the solutions which were thesimplest to implement in
Balsa whilst still allowing the desired security features.
This does not always provide the optimal solution as on
occasion the simplest conceptual solution is either difficult
or impractical to implement in Balsa, or results in an unac-
ceptable amount of hardware. On occasion, Balsa’s peculi-
arities suggest an unusual and efficient implementation that
would probably not have been arrived at if the design were
captured by schematic entry.

5.1. Fetch

The PC (register 15 in the ARM ISA) exists solely in the
fetch unit, and as such the fetch unit implements all possible
changes to instruction address flow - reset, explicit
branches, interrupts, undefined instruction traps and
instruction and data fetch memory exceptions (handled dif-
ferently in the ARM ISA). Some of these changes in flow
originate from within the fetch unit (interrupts and instruc-

tion fetch aborts), while those originating outside the fetc
unit are sent to it by the execute unit

In common with previous Amulet cores[1, 2, 3], the
processor implements a halting mechanism: any instruct
which explicitly causes a branch to its own address caus
the fetch unit to stop supplying instructions. This is imple
mented by means of a branch type, one of a small numb
of bits communicated to the fetch unit besides the targ
address of the branch.

The origin of the fetch address must be arbitrate
between a sequential address, a branch or an interrupt -
is the only place in the Harvard core that arbitration
required. Interrupts cause a branch to a fixed location a
are taken in preference to the unbranched instructi
stream. They must defer to a branch for a single instructi
fetch as failure to do so would result in either the loss of th
branch or a possible deadlock, depending on the implem
tation.

5.2. Decode

In order to decode the Thumb instruction set as well
the ARM v5 set, two decoders are required. Originally
was intended to decompress Thumb instructions into AR
instructions if necessary and then decode the ARM instru
tions in ignorance of their origin. There is a 1:1 mappin
from Thumb to ARM instructions, but it is not necessaril
easy to perform this mapping on an instruction, especia

Figure 3: SPA 3-stage pipeline
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in the case of branches relative to the instruction address. It
became apparent that the circuit cost of decompressing the
Thumb instructions was about the same as that of decoding
them directly, but increased the latency for Thumb instruc-
tions. As a result of this, it was decided to implement par-
allel decoders and steer instructions to the appropriate
decoder, collecting the decoded instruction from the other
end of the relevant decoder. The two parts of each decoder,
classification and unravelling, are described in more detail
below.

In this architecture every instruction becomes a register-
to-register instruction, with the register numbering
extended to allow current and saved status registers,
coprocessor registers, immediate values, a zero, etc. to be
addressed.

The decoder is an elastic pipeline stage as it always
receives 32-bit words from the fetch unit and, if the instruc-
tions are Thumb instructions, this 32-bit word becomes two
decoded instructions. In addition, both ARM and Thumb
instructions can specify multiple register loads or stores.
This can result in a single 32-bit word theoretically becom-
ing as many as 20 decoded instructions.

5.2.1. Classification

Instruction classification superficially appears trivial, as
the instructions are all of a fixed-length. However, the many
years of development of the instruction set and complete
binary backward-compatibility have resulted in a very dis-
joint instruction coding. Many data processing operations
use exactly the same arrangements of bits and so are clas-
sified together and, conversely, some instruction mnemon-
ics can, depending on the addressing mode, result in wildly
different bit patterns.

Instruction classification does not modify the instruction
in any way, but simply deduces what type of instruction it
is and passes this information, along with the unmodified
instruction, to the next stage. This classification is not
purely according to the assembler mnemonic that would
have been assembled into the instruction in question, but
rather it is a classification that reflects the arrangement of
bits in the instruction word.

The ARM path of this stage must also communicate with
the coprocessor system. If a coprocessor can execute the
instruction, it latches it and starts to carry out whatever
processing it can without committing any irreversible
changes. If no coprocessor can execute it the instruction is
classified as undefined.

5.2.2. Unravelling

This stage takes the 28 bits (all ARM instructions have
a 4-bit condition associated with them which is orthogonal
to the instruction itself) or 16 bits (Thumb) of the instruc-

tion and expands them to 69 bits of control and 36 bits
register specification, as used in the execution unit.

This stage also unrolls any instructions which requi
more than one cycle through the execute unit. The
instructions are coprocessor memory transfers (where
number of cycles is determined by the coprocessor), t
swap instructions (atomic exchange of a register and
memory location) and load or store of multiple register
For these instructions the decode unit issues multip
decoded instructions to the execute unit which is large
unaware of the multi-cycle nature of the original instruc
tion.

All of the multi-cycle instructions involve (possibly
multiple) memory accesses. If a memory abort occurs du
ing a multi-cycle instruction, there is currently no mecha
nism for the execute unit to communicate this to th
decoder and it must consume and discard the unrol
instruction cycles without executing them. This would be
major problem in some systems, but in the context of
smartcard, memory exceptions should be very rare.

5.3. Execute

The execute unit may be conveniently divided into thre
concurrent parts, the memory access unit, the execut
datapath, and the register bank as shown in figure 4. The
ter two are described in more detail below - the memo
access unit simply takes an address, write data if necess
and a few bits specifying the nature of the access a
returns read data if necessary and a positive or nega
abort - an abort is returned every time the memory acce
unit is used.

5.3.1. Execution Datapath

The execution datapath was designed to mask the nat
of its behaviour in order to enhance security. It does this
using all of the channels in the datapath for every instru
tion that is executed The exceptions to this are chann
associated solely with memory accesses. In this design
make no significant effort to hide the identity, parameters
data associated with a memory access in the memory its
so it was not considered important to hide the nature of t
access in the core - the presence of a memory acces
some type will be obvious.

The datapath has three fundamental modes of beh
iour: memory accesses, multiplications and other instru
tions. Unless a multiplication is being performed, th
multiplier is transparent and control of the rest of the dat
path is determined by the value on channel Rs, which
passed through the multiplier to the datapath control un
When multiplication is being performed and the channel R
is required as a multiplier argument, this lack of any sp
cific control data is communicated to the control unit whic
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uses a fixed control state for the datapath - performing no
memory accesses and using the ALU to resolve the carries
for the upper word of a long multiply.

For a memory access, the control data on Rs indicates
that a memory access is required, its parameters and
whether the addressing should be pre- or post-indexed. It
also controls whether the data on Rd is sent to the memory
access unit or not, based on whether the memory access is
a read or a write. As indicated above, the channel through
the CLZ unit is used whether or not the access is a read or
a write. If the access is a write then no data will be returned
by the memory fetch unit and the data read from Rd will be
echoed on Wm.

The use of the Rd and Wm channels for the memory data
allows the ALU and shifter to be used for address compu-
tation, and for Ws to be used for writing back the resultant
address to the base register if necessary.

For instructions that involve neither multiplication nor
memory access large parts of the control data have the same
value as the only parts of the datapath whose behaviour is
not fixed in these circumstances are the ALU (4 bits of con-
trol), the CLZ unit (1 bit) and the shifter (10 bits including
the size of the shift).

5.3.2. Shifter

If the shift distance is specified as an immediate value in
the instruction, and that value is zero, all types of shifts
(logical left and right, arithmetic right and rotate right) will
yield the same result. This means that three of the possible
encodings are redundant and are used for other purposes.

This, and other reuse of the encoding space, make for a v
complex behaviour by the shifter.

In another effort to hide the behaviour of an instruction
the shifter in this architecture re-encodes this behaviour
that it always performs a shift of some kind, with the 0-b
shift becoming the identical 32-bit rotate right.

5.3.3. ALU

As arithmetic operations are expensive to realise, it w
desired to minimise the implementation as far as possib
In Balsa, if an addition and a subtraction of two numbers
described, two arithmetic blocks will be implemented. It i
therefore necessary to explicitly describe the transform
tion of A-B to A+B+1. Using this method, the five different
arithmetic operations all use the same circuit. This is n
only more efficient in area, but also makes identification
the arithmetic operation harder for an attacker.

5.3.4. Count Leading Zeroes unit

The Count Leading Zeroes (CLZ) unit is very expensiv
for its usage, but is required to implement the ARM v5 ISA
completely and it would be prohibitively slow if microco-
ded in the shifter. In this design it is implemented by
recursive function, which is very easy to build in Balsa.

If the most significant half of bits being considered ar
all zero, then a one is appended to the result and the le
significant half of the bits are multiplexed onto the outpu
If they are not all zero, a zero is appended to the result a
the most significant half of the bits are multiplexed onto th
output. This is repeated until just a single bit remains who

Figure 4: SPA Execute Unit
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value is added to both ends of the result; the last bit will be
1 unless all 32 bits are zero, in which case the result would
have been 31 were it not for this modification.

This results in an implementation with 31 bits of AND
function and 31 bits of multiplexing, which is a relatively
cheap and relatively fast implementation.

5.3.5. Multiplier

The multiplier is a 32 by 32 multiplier with 64-bit accu-
mulation. It is implemented by shift-and-add with the sum
being shifted right a single bit each cycle rather than one of
the multiplication operands being shifted left. This means
that only a shift of 1 is needed and only 33 bits of adder. The
addition does not explicitly resolve any carries, but saves
them for resolution in the next cycle.

All carries from the low half of the 64-bit result are
implicitly resolved during the multiplication process, but
the sums and carries from the addition in the last cycle rep-
resent the most significant 32 bits and are added together in
the ALU to resolve them.

No early termination of the multiply is provided as this
would allow deduction of operands more easily from
behavioural information. Similarly, the addition is per-
formed in each cycle, regardless of the value of the relevant
multiplier bit, to prevent behavioural based deduction of
arguments. Additionally, all multiplies are considered to be
long and to have accumulation – the accumulator values
supplied to the multiplier are zero if no accumulation is
really required. Again, this adds slightly to the difficulty of
attack.

5.3.6.  Register Bank

The register bank is the most complex part of the core as
it must implement most of the unusual corners of the ISA
as well as the more regular parts. It operates in a loop where
it performs the following operations in logical sequence:

• Decoded instruction reading

• Condition-code/abort check

• Register reading

• Dispatch of registers and control to datapath

• Reading of datapath results

• Register writing

• Resolution of effects of a memory abort if necessary

• Updating of status registers

While these are a logical sequence there are only three
physically sequential steps at the top level. The first two
operations are easily parallelisable, as are the last three. The
remaining three are implicitly sequenced by the passage of
the register contents through the datapath, and are thus
allowed to share the same sequencing slot at this level.

When a source or destination register is a real regis
(logically numbered 0-14) or a dummy register (reads
zero and discards writes) the effects of reading from or wr
ing to a register are easy to implement. When the destin
tion of a write is the PC (R15) then a branch results an
much more must be done than simply updating a real re
ister. Similarly, if the current status register is the target
a write then a mode change and a branch may result.

The condition-code check is required on every cycle
any ARM instruction may be conditionally executed. Th
abort check is required over and above a branch colo
check as, if a multi-cycle instruction has suffered a memo
abort in an earlier cycle, it must not continue to actual
execute, but should instead be discarded.

If an instruction is a coprocessor instruction then at lea
part of the functionality must execute even if the conditio
code fails, as the execute unit must communicate to t
coprocessor whether it should execute or discard t
instruction. It will be recalled that the coprocessor wi
already have performed some or all of the computatio
required and this signal to the coprocessor is an indicati
that it should commit or flush those results.

6. Memory Protection Unit

As smartcards become more complex and the requi
ment to store and run several applications has emerged
has become desirable to employ some form of memory p
tection unit. An MPU allows the operating system and ea
application to protect its memory space from other applic
tions which may not be trusted. It also affords some prote
tion from glitch attacks which disrupt the normal flow o
execution in the hope of obtaining information from th
card.

The MPU provides a relatively lightweight addres
space access control system and is used to partition
memory address space into regions and set individual p
tection attributes for each region. Up to eight protecte
memory regions of variable size can be defined and t
MPU will allow or deny access to these regions, dependi
on the mode (user/privileged) and type (read/write) of th
attempted access. If the access is allowed then the requ
is passed to the memory system and any data or abort
results is passed back to the processor. If the permissions
not allow the access or if no protected region is hit then t
MPU generates an abort and the access is abandoned.
MPU does not perform address translation.

The MPU can operate in two modes and, by default,
operates as an ARM standard MPU [15]. However, it ca
be switched into secure mode, which provides finer-grain
control of memory regions and additional resources to tra
successful read and write accesses to regions. Figur
shows how the MPU is organized. The MPU is disabled o
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reset and all accesses are allowed. The operating system
can dynamically enable/disable the MPU. Each region can
be enabled individually and is defined through a region
descriptor and a region access permits register.

The MPU operates as a coprocessor and is accessed by
the processor through its normal coprocessor interface: all
region descriptors, access permission registers and read/
write tracking registers appear as coprocessor registers. In
default mode, the region descriptor contains the base
address and size of the region. Regions can have sizes of
4KB to 4GB. In secure mode, the descriptor contains the
start and end addresses of the region and the sizes can vary
from 1 byte to 4GB. Access permissions depend on the
mode and type of access. In privileged mode, attributes are
‘no access’ and ‘read/write access’. In user mode, regions
can be defined as ‘no access’, ‘read-only access’ and ‘read/
write access’.

The incoming address is compared in parallel with all
enabled region descriptors to determine the hit region.
Since regions can overlap, they are prioritized and the
attributes of the highest-numbered hit region are used. If
none of the regions is hit the access is denied. In secure
mode, the MPU keeps track of which regions are success-
fully accessed, both on reads and writes. This is provided
as a means for the operating system to determine which
protection region to change when the need arises.

The self-timed nature of the MPU allows it to handle
denied, allowed and aborted memory accesses as soon as
they are identified and to respond in the shortest possible
time in each situation.

7. Results

At the time of writing the design work is complete and
the design is being validated. A fabrication route has been
identified and it is expected that the device will be fabri-
cated in a 0.18µm process and that samples will be availa-

ble in 2Q 2002.
It was expected from the outset that the use of the sec

dual-rail technology would be expensive in terms of tran
sistors and that the use of synthesis would increase this c
still further over hand designed logic. The preliminary tran
sistor counts obtained thus far confirm these expectatio
For the SPA processor the counts in table 1 have be
obtained (the register bank is a component of the exec
stage but it is shown separately as it contributes sign
cantly to the total count). The table also shows a breakdo
of the Amulet3 core and the relative cost of dual-rail again
bundled data.

The total transistor count for the SPA processor
around 740,000. For comparison, the Amulet3 core co
tains around 104,000 transistors. Amulet3 includes seve
features not provided in SPA, such as a Branch Targ
Cache (in the Fetch unit) and a reorder buffer (in the Re
ister Bank). A more relevant comparison, which gives som
idea of the efficiency of Balsa, is to compare Amulet3
which was hand designed using a bundle-data approa
with Balsa configured to generate bundled-data circuits
total of 205,000 transistors). Here the SPA core contai
almost twice as many transistors as the more comp
Amulet3. Comparing the synthesised secure dual-r
implementation with the synthesised bundled-data versi
shows an overall cost factor of 3.6 in terms of transistor

The register bank is particularly costly in the dual-ra
implementation. This is because there are four read po
and, unlike a bundled data implementation where the p
can simply be bussed to each input that it drives, a han
shake circuit is required for each bit of each input fed b
that port.

Simple optimisations in the Balsa back-end which tran
lates the Balsa intermediate format to the target technolo
netlist have already yielded significant reductions in tra
sistor count and it is expected that further optimisations w
be possible before the device is sent for fabrication.
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Figure 5: SPA MPU organisation Block
Secure
Dual-
Rail

Bundled
Data

Cost
Factor

Amulet3
core

Fetch 33,752 12,428 2.7 23,474

Decode 172,342 80,460 2.1 18,087

Register
Bank

321,482 58,886 5.5 24,426

Execute 198,366 55,714 3.6 37,806

Total 736,878 205,070 3.6 103,793

Table 1: SPA transistor counts
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We are awaiting simulation models from the semicon-
ductor vendor which would allow us to simulate the design
as a transistor netlist. Until these are available it is not pos-
sible to give an estimate of performance or the security ben-
efits.

8. Conclusions

We have described the design of a self-timed, ARM-
compatible core using the Balsa synthesis system. Balsa
has shown itself to be capable of dealing with the complex-
ity of a 32-bit processor and the design has progressed very
rapidly with major changes being readily accommodated at
all stages. This is in contrast to the hand-designed imple-
mentation of Amulet3 where much greater thought went
into the design at an early stage as major changes were very
difficult once implementation was underway. In addition,
synthesis gives the flexibility to explore a range of different
implementations as part of the design process.

We estimate that the SPA design will have consumed
under 2 man-years of effort by the time it is complete. The
Amulet3 core required about 8 man-years. One price of this
rapid development using synthesis is the size of the result -
at least a factor 2 in terms of transistor count seems likely
for processors with similar features and design style.
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