
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Asynchronous Data-Driven Circuit Synthesis
Sam Taylor, Doug A. Edwards, Luis A. Plana, Senior Member, IEEE, and

Luis A. Tarazona D., Student Member, IEEE

Abstract—A method is described for synthesizing asynchronous
circuits based on the Handshake Circuit paradigm but employing
a data-driven, rather than a control-driven, style. This approach
attempts to combine the performance advantages of data-driven
asynchronous design styles with the handshake circuit style of con-
struction used in existing syntax-directed synthesis. The method
is demonstrated on a significant design—a 32-bit microprocessor.
This example shows that the data-driven circuit style provides
better performance than control-driven synthesized circuits.
This paper extends previous reported work by illustrating how
conditional execution, oft-cited as a problem for data-driven
descriptions, is handled within the system, and by a more detailed
analysis of the design example.

Index Terms—Asynchronous design, Balsa, circuit synthesis,
data-driven, digital design, handshake circuits, syntax-directed.

I. INTRODUCTION

B EFORE asynchronous synthesis techniques will be se-
riously considered over their synchronous counterparts,

they must demonstrate that they can achieve competitive per-
formance. The research reported here aims to improve the per-
formance of large synthesized asynchronous circuits. The focus
of the approach is on a handshake circuit representation of the
circuit; that is to say, an abstract representation of the structure
of the circuit which is independent of technologies, protocols,
data encodings, or any other details of the actual circuit imple-
mentation.

The handshake circuit paradigm allows the construction of
large scale circuits by the composition of small handshake com-
ponents that are straightforward to implement in isolation. Hard-
ware descriptions are written in a high-level language and com-
piled in a syntax-directed fashion into the handshake circuit
representation. This means the structure of the resulting circuit
is directly related to the source code, allowing optimizations
and tradeoffs to be made at the source code level. Furthermore,
writing circuit descriptions in languages such as Balsa [1], [2],
[8], and Haste1 is relatively straightforward, even for novices.
However, control overhead in the conventional control-driven
style of handshake circuit synthesis is a major obstacle to per-
formance.

Manuscript received June 27, 2008; revised December 17, 2008. This work
was supported by EPSRC.

The authors are with the Advanced Processor Technologies Group, School of
Computer Science, The University of Manchester, Manchester M13 9PL, U.K.
(e-mail: sam@sam.taylor.name; doug@cs.man.ac.uk; plana@cs.man.ac.uk;
tarazona@cs.man.ac.uk).

Digital Object Identifier 10.1109/TVLSI.2009.2020168

1[Online]. Available: http://www.handshakesolutions.com/Technology/
Haste/

Previous work [32], [33] gives details of how the control over-
head arises in a conventional control-driven synthesis style, an
overview of previous attempts to mitigate its effects [4]–[6],
[10], [13], [22] and an in-depth justification for a data-driven
approach. For definitive background material on handshake cir-
cuit compilation, see [3].

Essentially there are the following three principal effects con-
tributing to the control overhead.

• All inputs are synchronized with each other before any op-
erations within a block can proceed because only control
may activate processing operations and therefore it is nec-
essary for the control to know that the inputs it will use are
available.

• Reads and writes are sequenced to ensure that variables are
not written and read concurrently.

• Data processing operations only begin after the control ini-
tiates them due to the pull style of operation. If the data
processing were to operate in parallel with the control then
the overhead of the control should be reduced.

Data-driven asynchronous design styles are thus much less
prone to the problem of control overhead, however, attempts to
automate transformations to existing Balsa handshake circuits
to produce more efficient structures along the lines of existing
dataflow style compilation strategies [34], [35], [37] were not
successful because it was not clear what the result of such
optimization should look like and it was very difficult to guar-
antee the resulting circuit would behave in the same fashion
as the original. Techniques such as data-driven decomposition
(DDD) [37] rely on pipelining sequential programs and produce
modified circuit behavior. A Balsa designer may depend on
the design behaving in the manner it was written which could
easily not be the case after optimization; indeed if a DDD-type
strategy were to have been applied to the SPA processor [21]
the memory interface would have broken.

The approach presented here attempts to combine the benefits
of a data-driven style with the convenience and flexibility of the
handshake circuit paradigm which allows the robust synthesis of
large circuits. To this end, the handshake circuit structures of the
control-driven Balsa synthesis method have been examined and
data-driven alternatives are proposed. To generate these struc-
tures, a data-driven description style is proposed and a compiler
has been developed to compile these description into a hand-
shake circuit representation. This compiler is integrated into the
Balsa design flow enabling the use of existing Balsa tools for
moving from the handshake circuit representation to a gate-level
circuit.

The organization of this paper is as follows. Section II re-
views other related work. Section III examines how “classic”
Balsa handshake circuit templates can be more efficiently re-
placed by data-driven variants. Section IV examines problems

1063-8210/$26.00 © 2009 IEEE

Authorized licensed use limited to: The University of Manchester. Downloaded on October 26, 2009 at 10:28 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

with conditional structures and introduces new handshake com-
ponents required for a data-driven system. Section V introduces
a new data-driven Balsa language. Section VI describes the im-
plementation of a significant design example. Finally, the per-
formance, area and power consumption are compared for the de-
sign example synthesized both by “classic” Balsa and the new
data-driven Balsa.

II. RELATED WORK

A. Data-Driven Approach

The syntax-directed synthesis approach generates con-
trol-driven structures, but it is noticeable that in clocked design
much emphasis is placed on pipelined datapath design; sim-
ilarly most asynchronous techniques are based on dataflow
pipelined style approaches.

Muller [18], [19] described the first asynchronous pipelines
using C-elements as latches with combinational logic between
the latch stages. The latency of each pipeline stage can be re-
duced by incorporating logic within registration stages. This has
led to the concept of pipeline templates which define the regis-
tration control of a stage and allow for transistor-level designs
to be incorporated within them. Williams [36] developed the
PC0 dual-rail pipeline. Subsequently Lines [15] developed the
concept of templates based on precharge half- and full- buffers.
Other implementation styles, aimed at high performance, often
requiring careful timing control include GasP from Sun Labo-
ratories [25], [30] and the IPCMOS pipelines from IBM [25].
Singh and Nowick [26]–[28] have developed a range of high
performance pipeline styles with a variety of tradeoffs; these pa-
pers contain an excellent review of asynchronous pipeline tech-
niques.

While the works described above are indicative of the interest
in pipelining techniques, they are not directly applicable to the
problem addressed in this paper: they are concerned with cir-
cuit level implementations of pipeline architectures rather than
the problems of how to specify the composition of data-driven
circuits from a behavioral synthesis language.

Sparsø [29] analyzed the performance of a variety of pipeline
topologies in terms of token flow through the structures and
quantified performance in terms of forward and reverse latency,
and cycle time. Again, although this material leads to a good
understanding of the complexity of pipeline structures, it is not
directly applicable to automated synthesis techniques.

B. Other Synthesis Systems

Automated synthesis techniques for large scale systems do
not have to be restricted to a syntax-directed handshake circuit
approach.

1) Desynchronization-Based Methods: These involve con-
verting conventional synchronous design descriptions into asyn-
chronous designs [7], [14]. Typically existing CAD tools are
used for much of the datapath synthesis and asynchronous con-
trol synthesis tools are used to produce controllers that replace
the global clock. This approach has the advantage that designers
need little specialist knowledge of asynchronous techniques. A
drawback is that by using a design targeted at a synchronous im-
plementation, potential advantages of asynchronous techniques

are not exploited. For example, concurrency is restricted to the
synchronous pipeline structure and so the fine-grained concur-
rency possible in asynchronous design is not exploited. It is also
difficult to exploit the possibility for asynchronous designs to
use data-dependent delays instead of the worst-case delays of
synchronous design.

2) Communicating Hardware Processes (CHP)-Based
Methods: The CSP [12]-based CHP language is the basis of
some asynchronous synthesis systems [17], [23], [31]. These
systems use manual or automatic program transformations
to refine a design into a more concurrent version. The final
program is then translated into a production-rule set which is
used to generate a transistor implementation of the design.

The Caltech synthesis tools (CAST) have been used to pro-
duce some high performance circuits [16] but these rely on sig-
nificant manual intervention in the synthesis flow to arrive at the
most effective program transformations and also rely on the use
of the PCHB (precharge half-buffer) circuit style. This circuit
style is not widely used and requires a specialized cell library.

The automatic program transformations employed in CAST
are not behavior preserving and are only correct for designs that
meet particular requirements. An inexperienced designer may
struggle to understand and meet these requirements.

C. Handshake Circuit Optimizations

Attempts have been made to apply control resynthesis to the
control of both Tangram/Haste [13] and Balsa [4], [5]. Control
resynthesis attempts to improve the performance of the control
tree by clustering sections of the tree, determining the overall
behavior, and synthesizing a new controller to implement this
behavior using a controller synthesis tool [6], [9], [10]. By re-
moving the communications between clusters of components,
the resulting controller should improve performance over the
original control tree.

Control resynthesis is effective but limited. Improving the
speed of the control tree will obviously help reduce control over-
head but only so much improvement can be gained. The control
still synchronizes with data at the same points and so the sequen-
tial operation of the control-driven structure is still maintained.
Control resynthesis is complementary to other approaches to
improving control overhead including the data-driven style in-
troduced in this paper

Hansen and Singh [11] describe source-to-source transfor-
mation of the original specification into a new one using a va-
riety of concurrency-enhancing optimizations: automatic par-
allelization, automatic pipelining, arithmetic optimization, and
reordering of channel communication. Considerable speedups
are claimed. However, some of the examples used start with ex-
tremely naive code sequences, so it is easy to obtain significant
improvements. Unlike the techniques described in this paper,
their work is not guaranteed to preserve the original behavior
of the hardware and frequently the designer is given responsi-
bility for ensuring that the behavioral changes are acceptable.
This reduces the usefulness of an “automated” approach as it
is necessary for the designer to understand the nature of the
transformations to ensure they are safe, In contrast, the work
described in this paper maintains the source-level predictability
of the description—“what you write is what you get” and the

Authorized licensed use limited to: The University of Manchester. Downloaded on October 26, 2009 at 10:28 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAYLOR et al.: ASYNCHRONOUS DATA-DRIVEN CIRCUIT SYNTHESIS 3

performance improvements are made over highly optimized and
efficient control-driven descriptions.

Nielsen [20] has explored optimizations of circuits synthe-
sized by Balsa; the work is concerned with resource allocation
and bindings to explore the optimization space but within the
confines of the conventional control-driven approach offered by
Balsa. The work has recently been extended to Haste. A similar
approach taken by the Moods system [24]. No attempt is made
to generate data-driven circuits in these approaches although it
is noted that the control structure arising from syntax-directed
translation results in poor performance.

III. DATA-DRIVEN CIRCUIT STRUCTURES

In the context of handshake circuits, a data-driven style
should achieve greater speed performance because of the
following:

• all control is activated in parallel;
• sequencing is localised to storage elements; read and write

sections of control can operate in parallel as the localised
sequencing ensures that storage elements are not concur-
rently read and written;

• control and datapath can operate in parallel because of the
push nature of data processing.

There are possible disadvantages to data-driven circuits; they
are likely to require more area and to consume more energy.
The localized control of the data-driven style consumes more
area than the control-driven tree as instead of appearing once,
the control is distributed in many places. This effect is exagger-
ated in delay-insensitive implementations where an increased
amount of completion detection is required and the implementa-
tion of push-style variables is particularly expensive. However,
the increased concurrency in this distributed control is a major
factor in the increased performance. Energy consumption due to
switching can also be expected to increase as a result of the in-
crease in concurrent activity. Speculation can also be expected
to have an impact on energy consumption as this involves extra
switching activity in the datapath that need not occur in the con-
trol-driven style.

The data-driven circuit style will be introduced in this section
by comparison with conventional handshake circuits generated
by the Balsa system because the source code is freely avail-
able making it feasible to experiment with the system. How-
ever, it should be emphasized that the results here apply to any
system using a similar syntax directed compilation method such
as Haste. The data-driven style was largely developed by exam-
ining and adapting handshake circuit structures so comparison
provides the most instructive method of introduction. Some of
the eight new handshake components required to support the
new style are mentioned. More details can be found in [32].

A. Input

The conventional Balsa input structure is shown in Fig. 1.
This structure is produced by the active enclosure construct
shown below.

Fig. 1. Balsa input structure.

Fig. 2. Data-driven input structure.

In Balsa, channels (that is data wrapped in a request/acknowl-
edge handshake) stand on the left-hand side of an expression
and the symbol -> denotes a read from the channels, either into
a variable or into another channel, or to a code block that has
channel-like interfaces. Similarly the symbol <- denotes writing
to the channel on the left hand side of an expression. In this ex-
ample, the activation of the input command is used to initiate
pulling data from the environment on the input channels and

. The Fork component passes the activation request in parallel
to the two FalseVariable components. These are used to
hold open data (the data on the channels and is not released
until the handshakes on those channels complete) and imple-
ment multicast on the input channels. The body of the structure
is activated following the signal ports of the FalseVariable com-
ponent being synchronized at the Sync component. This activa-
tion indicates the availability of the data for the body to then pull
it from the read ports of the when required.

The data-driven style makes use only of push structures. In-
stead of using the to implement multicast, an alternative
push structure must be used. As the input channels are now push
channels, there is no need to pull the input data. For inputs that
are used in only one place, the data can be pushed directly to the
body. For inputs that are used more than once, a duplicate of the
data must be sent to all the required places. The Dup component
is used to implement this broadcast behaviour. Fig. 2 shows the
data-driven version of the circuit example given in Fig. 1.

An advantage of this approach is that the input channels do
not need to be synchronized before activating the body as the
body no longer needs an activation to indicate the availability of
the data; the data will be pushed to the required places at some
point.

The obvious drawback with this approach is that, as the orig-
inal structure implemented multicast, the body was free to select

Authorized licensed use limited to: The University of Manchester. Downloaded on October 26, 2009 at 10:28 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 3. Balsa data processing structure.

which read ports, if any, of the to use. Where conditional
structures are used, the data is only conditionally required. In
the broadcast structure, the data is sent to all possible destina-
tions whether they need it or not. The resolution of this problem
is discussed in Section IV.

B. Variables

They are implemented by the Variable handshake component.
This component has a passive input known as the write port and
one or more passive outputs known as the read ports. The con-
trol-driven approach allows data to be written to the Variable
component by pushing to the write port and read from the vari-
able by pulling from the read ports. The language ensures that
the variable is not written at the same time it is read. To the de-
signer, a Balsa variable therefore looks very much like a variable
found in most imperative programming languages.

In the data-driven style, the storage component is called the
VariablePush and has active push “read” ports. Unlike the orig-
inal Variable component, this component has a write-once, read-
once behavior; each time a data value is written it is automati-
cally pushed on all read ports and the handshake on all read ports
must then complete before the next write data is accepted. This
makes a data-driven variable much more akin to a channel that
has storage, thereby allowing each end of the channel to com-
plete independently. In the control-driven style, one is free to use
each read port one or more times or not at all. The drawback of
the write-once read-once nature of data-driven variables is that
each port must be used once and only once. This allows more
flexibility in the control-driven style but where the designer uses
this flexibility, they do so at the cost of performance.

In common with the data-driven input structure from the pre-
vious section, the drawback of this approach is that the data that
is pushed on the read ports of the variable may not actually be
required by the destination.

C. Data processing

The original Balsa data-processing structure is a pull struc-
ture implemented using the Fetch component to initiate a read
of the required data from the required Variable or FalseVariable
components, pull it through pass-through data components, and
then push it to the destination. The following Balsa code pro-
duces the example handshake circuit structure shown in Fig. 3.

Fig. 4. Data-driven data processing.

TABLE I
CONTROL COMPLEXITY FOR N-BIT DATAPATH

The input channels and are read (->) by the code block that
follows. Here the sum of and is written (<-) to the destination
channel and concurrently is written to channel .

As shown in the preceding sections, in conventional Balsa,
Variables and FalseVariables have passive read ports whereas in
the data-driven style, data is always pushed to all places where
it may be required. In the data-driven style this data is pushed
straight through the push datapath components to the destination
as shown in Fig. 4.

The handshake circuit graph for the data-driven circuit is cer-
tainly a lot smaller but what impact does it have on the control
part of the circuit? Table I summarizes the key parameters in a
typical dual-rail implementation of the control circuitry for the
two approaches.

IV. CONDITIONAL STRUCTURES

A. Conditional Execution

Conditional execution is supported by the case and if
structures in Balsa. This section will take the case construct
as an example as it is more commonly used than if, and the
implementation of if is fundamentally the same as that of
case with a few extensions.

The following Balsa code is an example of the use of the
case construct. The control input is used to determine
whether to send the sum of and or just to the output

. This code is compiled into the handshake circuit shown in
Fig. 5.

Authorized licensed use limited to: The University of Manchester. Downloaded on October 26, 2009 at 10:28 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAYLOR et al.: ASYNCHRONOUS DATA-DRIVEN CIRCUIT SYNTHESIS 5

Fig. 5. Balsa conditional structure.

Fig. 6. Data-driven conditional structure.

As usual, the handshake circuit operates by requesting the
three inputs, synchronizing on their arrival and then activating
the body. The body pulls from the FalseVariable into a Case
component (@) that decides which of its sync outputs to acti-
vate based on the value of the control data that has been input.
The standard data-processing structure is then used to pull the
required data and send it to the output. Additionally in this ex-
ample, the CallMux component merges the two possible
sources for output onto a single output channel. As the Case
component will only activate one of its outputs at any time the
CallMux will only receive an input on one input channel at a
time, thereby avoiding any hazards.

The data-driven equivalent of this circuit is shown in Fig. 6.
The difference between the data-driven style and the control-
driven style is that as all inputs are pushed (see Sections III-A
and III-B) all the data processing operations are initiated, even
though the result may not be required. In order for the circuit
to operate correctly these extra results must not be allowed to
propagate. The FetchReject component is introduced to
“reject” the unwanted data. FetchReject is so named because it
is rather like a push version of the Fetch component. Instead
of pulling data and sending it to the output, it waits for pushed
data to arrive on the input and then either passes it through to
the output or completes on the input channel without sending
anything on the output, thereby “rejecting” the data. Two sync
ports are provided on the component, the activation port which
is used to instruct that the data should be passed and the reject
port which is used to instruct that the data should be rejected.

Once the FetchReject components are in place, all that re-
mains is to connect the activation and reject ports to the correct
outputs of the Case component. In this simple example, one is
activated while the other is rejected. This arrangement allows
the CallMux component to be used as in the original Balsa cir-
cuit because concurrent input handshakes are avoided by cor-
rectly using the FetchReject components.

As the data-driven style does not require synchronization of
the inputs, there is potential for performance improvements over
the control-driven circuit. The logic in the Case component is
able to proceed as soon as the control data arrives, and in parallel
with the data processing rather than always having to complete
before initiating the pull data processing. However, the data-
driven style is essentially speculating on needing the results of
all operations. When using a conditional structure the unwanted
results must be rejected and the overhead of this operation may
harm performance. However, it is believed that generally this
overhead should rarely be significant for the following reasons.

As the rejection will often occur in parallel with other useful
operations, its effect on the overall performance should be lim-
ited. Only where the reject takes longer than useful processing
will it reduce the overall performance as both must be completed
before the next “cycle” of the operation. The reject operation it-
self is quite efficient but if the arrival of the data is slow then the
overall impact may be greater.

In cases where there is no operation in parallel with the reject,
it may often be the case that the data will arrive in advance of the
reject signal and the rejection will therefore be concluded quite
swiftly. Note that in the Balsa circuit, it is still necessary for all
the inputs to arrive before the operation can complete even if no
data processing is actually performed. Furthermore, in the Balsa
circuit, the logic in the Case component does not begin evalu-
ating until all the inputs have arrived whereas in the data-driven
approach the evaluation can occur in parallel with the arrival of
the inputs and so the FetchReject may have received the reject
by the time the data arrives so it will at least be immediately re-
jected, albeit following a possible additional delay through some
data processing logic. In the conventional Balsa case, all the in-
puts must arrive before the process of deciding what to do with
them can begin.

Even so, it may be the case that unbalanced datapaths could
cause a problem. Consider the example shown in Fig. 6. Here
one of the operations is an addition while the other is simply
passing through the data from input unchanged. The addition
is most likely to incur a significantly longer delay than the pass-
through operation. If the second operation is selected frequently,
and assuming the environment can supply inputs and consume
outputs quickly enough, there is the potential for the rejection of
the add operation to reduce the throughput of the overall circuit.

However, experience in designing with Balsa has shown that
the delay of the control nearly always exceeds that of the data-
path so it is reasonable to be optimistic that many datapath de-
lays incurred as a result of speculation will be entirely masked
by the delay of the control that works out whether or not to re-
ject. Additionally, the inputs needed for the datapath operation
may arrive earlier than those for the control allowing the data-
path to complete before the control signals arrive at the FetchRe-
jects.

Authorized licensed use limited to: The University of Manchester. Downloaded on October 26, 2009 at 10:28 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 7. Balsa conditional input structure.

Fig. 8. Data-driven conditional input structure.

B. Conditional Input

Conditional inputs may occur in Balsa code when an input is
made as part of the body of a conditional structure. For example,
in the code below, channel is a conditional input in the else
clause of the case construct.

During the operation of this code, data is only pulled on input
channel if the else clause is activated. Otherwise no commu-
nication occurs on channel . This code is compiled into the
handshake circuit shown in Fig. 7.

The important thing to notice when this circuit is converted
to the data-driven style is that when data arrives on input , it
is always used; there is no need to reject any data if the else
clause of the case is not executed, as the input never arrives. Of
course, in a data-driven style there may be a request pending
on channel but this should be acknowledged by a subsequent
cycle of the circuit when the else clause is executed. It is im-
portant that, until the else clause is taken, this request is not
propagated to a downstream component which may acknowl-
edge out of sequence possibly causing erroneous behavior. To
avoid this possibility the FetchPush component is used. This
component can be considered as a push version of Fetch, or a
version of FetchReject without a reject.

To further explain the above, consider the example in Fig. 8
which is the data-driven equivalent of the example in Fig. 7.
The FetchPush component is used on channel to ensure any
request on is not passed to the CallMux component before the
Case has decided that that operation should occur. This ensures
the inputs to the CallMux cannot occur concurrently.

Combining conditional and unconditional inputs in an ex-
pression is more challenging. Consider the following code
example, only a small modification to the last example given
above: the data on one of the channels is used twice.

In this example, if the else clause is not taken then any data
that is pending on is not to be rejected but data on into
the adder must be rejected. In general, this problem will occur
any time conditional inputs are combined in an expression with
unconditional inputs. In order to avoid this problem, a scheme
could be devised to reject the unconditional inputs before they
are combined with the conditional inputs [32]. However, such a
scheme reverses part of the advantage of adopting a push style
as the datapath operations are once again stalled waiting for con-
trol to decide whether the result of the operation is required, in-
stead of control and datapath operating in parallel. Furthermore
this scheme presents additional complexity in compilation as
the placing of rejections is now much less straightforward. For
these reasons, such a scheme has not been used. Instead, combi-
nations of conditional and unconditional inputs within expres-
sions are considered invalid by the compiler, avoiding the need
to produce an implementation at the expense of some reduction
in flexibility. However, as discussed in Section V-G, users are
still able to implement this scheme in the source description if
they choose to.

C. Nested Conditionals

Conditional structures in Balsa can be nested within one an-
other as demonstrated by the following code.

In the control-driven style the output activations from one
conditional structure are simply used to activate the nested con-
ditional. In the data-driven style, the evaluation of the logic in

Authorized licensed use limited to: The University of Manchester. Downloaded on October 26, 2009 at 10:28 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAYLOR et al.: ASYNCHRONOUS DATA-DRIVEN CIRCUIT SYNTHESIS 7

Fig. 9. Data-driven nested conditional structure.

Fig. 10. Data-driven one-place buffer description and handshake circuit.

all Case components proceeds concurrently, but the output acti-
vations of nested conditionals must be delayed pending an acti-
vation from the outer structure as shown in Fig. 9. This example
demonstrates the use of the CasePush and CasePushR compo-
nents.

CasePush is used where it is necessary to synchronise with
an activation before output activations are made from the Case
component. This is true for the Case component whose input is
channel as data will only arrive on when it is required.

It may be necessary to reject the input to a CasePush if data
will arrive that is not required, as in this example with the Case
component whose input is channel . CasePushR is simply a
CasePush with a reject input that upon activation will discard
the input data without activating any outputs. The reject port is
then activated on all conditions where the activate port is not.

V. NEW INPUT LANGUAGE

This section will briefly introduce the high-level language
that is translated in a syntax-directed fashion into the new cir-
cuit structures. Note that the language was primarily conceived
as a means to an end; that is, to generate the data-driven hand-
shake circuits. In the same way that all valid Balsa descriptions
may be compiled to functional circuits, so all data-driven de-
scriptions may similarly be compiled to data-driven structures.
This means that the language reflects the dataflow style of the
circuits and is less flexible and less familiar than the sequential
programming language style possible in Balsa.

Fig. 11. Balsa one-place buffer description and handshake circuit.

The language is designed to resemble conventional Balsa
wherever possible. Unlike Balsa where a circuit consists
of commands linked by sequential or parallel control, the
data-driven approach consists of lists of commands that op-
erate independently and in parallel. Unlike the control-driven
approach, control sections of the circuit do not wait for an
activation but proceed as far as they are able, pausing only
when awaiting data.

A. Hello World!

The equivalent of a Hello World program in Balsa is the one-
place buffer. This serves equally well as an introduction to the
data-driven language and is shown in Fig. 10.

It can be seen from this small example that much of the lan-
guage is very similar to conventional Balsa. The declaration of
the procedure and the input and output ports is identical. Un-
like conventional Balsa, the procedure input ports will always
be passive due to the push style of implementation. Internally to
the procedure the input ports are treated as read-only channels
and the output ports as write-only channels.

The main new feature in evidence here is the division of the
procedure into blocks consisting of input and output declara-
tions and a body containing the commands that use the inputs
and generate the outputs. Unlike Balsa, the control structures of
the circuit are largely implicit. Blocks implicitly operate in par-
allel, as do the list of commands within the blocks. The only syn-
chronization between the two blocks in this example takes place
at the variable; the read must complete before the next write can
overwrite the data in the variable. This allows the variable reads
and writes to overlap to the largest possible extent.

The handshake circuit for this buffer is simply a VariablePush
component; this should be compared with the control-heavy
Balsa generated circuit of Fig. 11.

B. Variables

The control-driven style of Balsa allows variables to be ac-
cessed in a very general fashion, so as to appear very similar to
variables in a standard programming language. Variables can be

Authorized licensed use limited to: The University of Manchester. Downloaded on October 26, 2009 at 10:28 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 12. Simplified register cell.

read and written in any arbitrary sequence. The Variable com-
ponent has passive read and write ports and the control tree initi-
ates communication on these as required. In the data-driven ap-
proach, the VariablePush immediately pushes any data written
to it out of its active read ports. This means that a variable must
always be read after it has been written. Variables therefore re-
semble less those of standard programming languages and are
much more similar to channels. In fact, it may be more helpful
to think of a variable in the data-driven style as a channel that
contains storage, or even as a type of channel which each com-
municant can use at different times, rather than having to syn-
chronize like a normal channel.

Reflecting this, variables are specified as inputs and outputs
(to blocks—procedure ports only connect using channels) in
precisely the same fashion as channels. In the following discus-
sion use of the term channel generally implies a channel or vari-
able except where otherwise stated.

C. Input Control

In a control driven approach, it is necessary for the control
and data to synchronize to release the data once all required
reads had been completed on the channel. As reads are now to
be pushed, this synchronization is unnecessary as the release
of all the read ports will indicate that all reads on the channel
are completed. In the data-driven approach, therefore, inputs are
merely specified as arriving at some point during the operation
of the commands; the control waits for the arrival of inputs at
any points where they are read (if they have not arrived already).

D. Write Command

The write command (e.g., <-) is used to output the result
of an expression to an output channel (or variable). The channels
written to must have been declared as an output from the block.

Compilation of the write command involves compiling the
expression into appropriate push datapath components and con-
necting the result to the destination.

E. Arrays

Channels and variables can be arrayed in a similar fashion to
Balsa. However there are some differences in the semantics of
variable arrays. The code below demonstrates the full flexibility
offered by Balsa for using arrayed variables.

First, a single value is written to the entire array, then an in-
dividual element is read or written, and then the entire array is
read as a single value. The strategy adopted by Balsa is to imple-
ment the arrayed variable using multiple Variable components,
one for each element in the array. The control can then initiate
reads and writes of the passive ported Variables individually or
as a group, splitting the write data and combining the read data
as required.

A data-driven equivalent of this circuit structure presents sub-
stantial problems. Once each Variable component has been con-
verted to VariablePush components, it is necessary to write to
each VariablePush before it is read. After writing to a single el-
ement in the array, only that element would be available to read.

One option is to leave the management of the structure to the
user, who must only attempt to read elements of the array that
are written. Alternatively the user could be restricted to always
writing to every element if they wish to use runtime indexing
or an elaborate scheme to write-back the original data to those
variable elements that are not written could be devised. This
would ensure that every time any element in the array is written,
all the other elements are also written (with unchanged data). To
the read side, the arrayed variable always appears as if the entire
array has been written.

None of these suggestions have been fully adopted. An ar-
rayed variable declared in the data-driven language in the same
fashion as a Balsa variable generates a single VariablePush that
holds an entire value of the array type. The whole of the array
must therefore be written to at once.

Variables can also be declared in a similar fashion to arrayed
channels producing multiple variables in the implementation.
Each of these variables must be written individually; the whole
array may not be written by a single command. This second type
of variable can be used by the user to generate a fairly close
approximation of the functionality of the multi-variable Balsa
structure by implementing, in the source description, the second
of the schemes offered above. Although the functionality may
be similar, the area used is substantially greater.

Authorized licensed use limited to: The University of Manchester. Downloaded on October 26, 2009 at 10:28 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAYLOR et al.: ASYNCHRONOUS DATA-DRIVEN CIRCUIT SYNTHESIS 9

F. Structural Iteration

Structural iteration is a very useful language feature espe-
cially when combined with arrayed channels and variables. Es-
sentially it allows the same code to be compiled multiple times
with different channel and variable connections. For example,
the following code is a simplified excerpt from the data-driven
description of the register bank of the nanoSpa processor.

The code generates REGCOUNT instances of the circuit in
Fig. 12. (The position of the channels that take data to the read
ports are indicated on the diagram but the code for the read ports
is not given above.)

Effectively this code generates a register “cell” for each reg-
ister. In each “cycle” of operation the write control and data

is duplicated to each cell and that cell compares the reg-
ister address in the control against its own index. If they match
then the write back data is written to that register, otherwise the
original value from the register is written.

G. Restrictions

1) Combining Inputs: A conditional input is an input that
is part of the body of a conditional structure. As explained in
Section IV-B, such inputs cannot be combined with uncondi-
tional inputs in any expression: the following code will produce
a compiler error since the operation cannot be used where
the input of is conditional and is not.

This restriction can be worked around by declaring another
channel and making both inputs to the expression conditional
as follows.

Note that by using this technique, less advantage is taken of
the speculation as the case must be resolved before the channel
is written and the expression begins evaluation. Note also how-
ever, that the speculative evaluation of the addition is avoided
in the case where the else clause is not chosen. This may be ex-
ploited for the purposes of improving performance or reducing
energy consumption.

2) All Inputs and Outputs Must Be Used: All inputs and out-
puts that are declared must appear in the body of the block.
(They must also be declared if they appear.) It is only neces-
sary for the possibility to exist for each output to be produced.
It is not necessary for every, or indeed any, output to actually
be produced by the block when it is operating. Once an input
is declared it will be assumed that a value will arrive from that
channel or variable, but an output declaration means only that
the block is the one that writes to the channel/variable, not that
a value will definitely be written in any particular “cycle” of the
block.

3) Output to Input Dependencies Must Not Be Disjoint: An
output depends on an input if the input must arrive before the
output can be produced. For example in the following code
depends on and , depends on and and depends on
and .

Authorized licensed use limited to: The University of Manchester. Downloaded on October 26, 2009 at 10:28 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

This gives three sets of input dependencies for each output:
, , . These are not disjoint as appears in

the first two and appears in the first and third. This code is
therefore valid, however the following is not valid.

The sets of input dependencies for this code are: ,
, and . The set containing and is disjoint from

the other two sets. A separate block should be used to produce
.

This rule helps to ensure the design is understandable as each
block has a single “cycle” of operation due to the fact that all in-
puts are synchronized somewhere, though not necessarily with
all others. For example, if the following code were valid then its
meaning would be open to question but presumably, following
the method of operation so far defined, will be written every

time arrives, would be written every time arrives and
there would be no synchronization between the two operations.

In Balsa, if one were to write: <- <- , then there is an
explicit synchronization that takes place in the control. The data-
driven style is designed to avoid making such synchronizations.
In Balsa, there will be one communication on and one on
before another takes place on either channel. In the data-driven
style there could be infinite communications on before any
occur on or vice versa. This could make designs much more
difficult to understand.

VI. DESIGN EXAMPLE—NANOSPA

The benefits and drawbacks of the data-driven style have
been explored using a large design example—nanoSpa which
is a 32-bit microprocessor implementing what is essentially
a slightly cut-down version of the ARM instruction set and
which is a development of SPA [21], the first large scale design
described in Balsa.

The nanoSpa has been gradually developed with the sole ob-
jective of making a Balsa synthesized asynchronous ARM of
the maximum possible performance. Development has reached
the stage where the processor implements all the main features
of the instruction set and benchmark programs can be run in
simulation to produce a good idea of the performance (which
is almost ten times that of the original SPA). This makes it an
excellent example in demonstrating whether a data-driven cir-
cuit can offer performance improvements over the best available
conventional Balsa circuit. The demonstrator was chosen to do
the following:

• demonstrate that the data-driven synthesis flow can be used
to construct a significant design;

• compare the performance of a high performance Balsa de-
sign with the closest possible equivalent in the data-driven
style;

• demonstrate the integration into the existing Balsa de-
sign-flow and the use of mixed Balsa and data-driven
designs;

• attempt some level of qualitative comparison between the
features and flexibility offered to the designer in both de-
scription styles.

A. Data-Driven nanoSpa

The data-driven nanoSpa has been described in the new
data-driven input language. The description is roughly the same
length as the Balsa original (3000 lines). As far as possible,
the micro-architecture of the processor has been precisely
copied from the Balsa description. As a consequence, most of
the synthesized datapath logic is the same as the Balsa nanoSpa,
and the control contains most of the significant differences.

Authorized licensed use limited to: The University of Manchester. Downloaded on October 26, 2009 at 10:28 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAYLOR et al.: ASYNCHRONOUS DATA-DRIVEN CIRCUIT SYNTHESIS 11

Fig. 13. Data-driven nanoSpa decode structure.

The intention is to attempt to explore the advantage gained by
using the data-driven style in describing a design that is as close
as possible to a Balsa description, rather than by tailoring the
design specifically to suit the data-driven style.

The two major exceptions where it was necessary to make
significant changes to the architecture are in the decode unit, due
to its use of (temporal) iteration, and the register bank, due to
its reliance on Balsa-style variables. These issues are discussed
below.

B. Decode

Unusually for a RISC-style processor, the ARM instruction
set contains support for multi-cycle load and store instructions.
These load and store multiple instructions allow
any given subset of registers to be loaded from or stored to
contiguous words in memory using a single instruction. The
nanoSpa implements these instructions in the decode stage
by simply generating and issuing multiple single memory
transfer operations to the execute unit. The iterative decode
for instructions makes use of the Balsa while loop
structure to repeatedly generate memory transfer operations.
In the control-driven style the handshake for the inputs to the
decode can enclose all of this iterative operation allowing the
inputs to be read repeatedly by each iteration.

In a data-driven style, iteration is implemented in a different
way: instead of enclosing several variable and channel reads
within a single input handshake, the input handshake is repeated
as many times as required, each time reading variables and chan-
nels only once. It is quite straightforward to rearrange the struc-
ture of the decode to implement the multi-cycle instructions as
shown in Fig. 13. In this structure the whole decode can be
viewed as iterative with regular instructions simply being a spe-
cial case requiring only a single iteration. When an instruction
arrives at decode it is passed through the multiplexer to the de-
code logic. If the instruction is an , the necessary data
for the next iteration is passed back to the multiplexer and the
control signal is set so as to reinject the data as the next instruc-
tion. When the is finished, or after a single cycle if the
instruction is a regular instruction, the multiplexer is signalled
to inject the next instruction being sent from fetch. Although

Fig. 14. Data-driven nanoSpa register structure.

this may not be the most efficient implementation, it has the im-
portant advantage that the two blocks shown in the shaded area
in Fig. 13 (for regular or instructions) can be copied
directly to the data-driven description.

C. Register Bank

The Balsa nanoSpa register bank uses the general read and
write structure for variable arrays discussed previously. The
passive-ported Variable component allows reads and writes to
occur to variables in any arbitrary order. As discussed earlier, it
is not so easy to provide this general structure when using push
style variables. In order to read from any variable, it is necessary
for that variable to push its data. Therefore, in order to imple-
ment the register bank in the data-driven style it is necessary to
write to every variable (i.e., register) during every cycle. The
data-driven register bank write structure is illustrated in Fig. 14.
The write control and data are here duplicated to individual write
control units belonging to each register. These individual units
decide whether to write the data to their respective register. If
they do not write the data, they recycle the existing value and
write this to the register instead. The subsequent read may there-
fore pick the appropriate data from any register as all registers
will push data.

The data-driven register bank structure results in an individual
cell for each register that controls the writes to that particular
register (see Fig. 14). A read unit is generated for each read
port. This structure results in improved performance but also
significantly increases the area over the Balsa counterpart. It
will also significantly increase the energy consumption as every
register is written on every cycle.

D. Simulation Results

1) Individual Modules: Rather than simulating the entire
processor, it is more instructive to examine the results from sim-
ulating individual modules within the processor. This avoids

Authorized licensed use limited to: The University of Manchester. Downloaded on October 26, 2009 at 10:28 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE II
PERFORMANCE OF DUAL-RAIL AND SINGLE-RAIL NANOSPA MODULES

issues associated with the pipelining and processor architec-
ture and demonstrates the performance improvements gained by
using the data-driven logic style. The environments used in the
test benches for these simulations all have zero delay. Gener-
ally, this favours the control-driven approach as, for example,
the cost of synchronizing inputs that all arrive simultaneously is
minimal. The results then show (to a close approximation) the
minimum improvement achieved by the data-driven style. The
fact that the data-driven style does not synchronize all inputs
before beginning the operation and does not wait until the oper-
ation is complete before releasing them can potentially further
improve performance.

The fetch, decode, and execute units together with some in-
dividual modules from the execute unit have been simulated.
These latter modules were simulated, where appropriate, with
different input data to demonstrate the data-dependent varia-
tion in performance. The relative performance of the modules
in nanoSpa for both dual-rail and single-rail implementations
are shown in Table II. The Gates/cycle figure is the number of
gates the request-in signal goes through before emerging as an
acknowledge signal to its data provider. It is a measure of max-
imum throughput of each module in the design. The relative
areas of the units within nanoSpa (as measured by transistor
count) are shown in Table III.

2) Register Bank Hybrid Design: The register bank has been
highlighted as a particular problem in terms of area and en-
ergy consumption. A possible solution that may be easily imple-
mented is to use the conventional Balsa register bank in place
of the data-driven register bank. As the interface to both reg-
ister bank designs is the same and the two design styles are in-
tegrated into the same flow, it is trivial to produce this hybrid
design. This provides an excellent example of how designs with
mixed Balsa and data-driven modules can be used. The lower
area and energy requirements of the control-driven style can be
exploited for noncritical modules, while the performance of the
data-driven style is exploited for others.

3) Processor Performance: The processor was simulated at
the transistor level using nanoSim to measure both speed and

TABLE III
DUAL-RAIL AND SINGLE-RAIL NANOSPA AREA

energy consumption with the processor running the Dhrystone
benchmark. Table IV compares the energy consumption for a
single Dhrystone loop and the performance of the control-driven
design, the data-driven design and a hybrid design with a con-
ventional Balsa register bank.

The dual-rail control-driven nanoSpa achieves 54 Dhrystone
MIPS. The data-driven version achieves 85 Dhrystone MIPS,
an improvement of 1.6 times the original. As can be seen from
Table III, the area is significantly increased, from 320749 to
956753 transistors. As anticipated, a significant proportion of
this increase is found in the register bank (from 68456 to 376914
transistors). If the increase in register bank area is ignored, then
the data-driven nanoSpa is just over twice the size of the original
Balsa version. As expected (for the reasons given in Section III),

Authorized licensed use limited to: The University of Manchester. Downloaded on October 26, 2009 at 10:28 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAYLOR et al.: ASYNCHRONOUS DATA-DRIVEN CIRCUIT SYNTHESIS 13

TABLE IV
PERFORMANCE AND ENERGY CONSUMPTION PER DHRYSTONE LOOP

TABLE V
ENERGY CONTRIBUTION BY NANOSPA MODULE

the energy consumption is considerably greater for the fully
data-driven version. Table V shows the contribution of the var-
ious modules to the energy consumption. It confirms that the
largest energy consumer in the data-driven approach is the reg-
ister bank, whereas for the Balsa implementation, the execute
unit is the most significant. The dual-rail hybrid design achieves
68 Dhrystone MIPS (a speed improvement of 1.25) in dual-rail
and uses 651057 transistors. Performance has been traded for
reductions in area and energy consumption. In this case, the de-
code unit is now the most significant energy consumer. A lesson
that can be drawn from these figures is that a careful analysis is
required to identify those parts of the design contributing to bad
performance in speed, energy, or area.

4) Single-Rail Performance: Tables II–V also show the re-
sults for the single-rail back-end. The performance improve-
ment for the data-driven single-rail back-end (1.4) is some-
what less than for dual-rail, probably because the control is more
complex in dual-rail, but offers better opportunity for optimiza-
tion in the data-driven case. It can be seen that the area penalty is
much smaller for single-rail than that for dual-rail. Again, much
of the increase is in the register bank (from 30480 to 79480 tran-
sistors). If the increase in register bank area is ignored then the
data-driven design is only approximately 18% larger. The en-
ergy figures for the dual-rail back-end are considerably worse
than for single-rail, one reason being that in dual-rail, data is
pushed by twice switching one wire for each bit, whereas in

single-rail, only one wire for each bit is switched (once) and
only if the value of that bit changes.

VII. CONCLUSION

This paper has described contributions in the field of asyn-
chronous digital circuit synthesis. The existing handshake cir-
cuit synthesis method has been examined and performance has
been postulated as a major weakness. The overhead of the con-
trol-driven style of compilation has been identified as a signifi-
cant contributing factor to the shortcomings in performance of
the existing synthesis method. However, the handshake circuit
paradigm is attractive because it is both flexible and robust,
independent of any particular implementation style, straight-
forward to understand, and the transparent compilation allows
source-level optimization.

A data-driven style of circuit would seem to offer potential
for increased performance. Therefore an alternative data-driven
style of handshake circuit structure has been proposed along
with a language from which this circuit style may be compiled.
The compiler to translate this language into handshake circuits
has been implemented and integrated into the existing Balsa
framework.

The data-driven style has been successfully demonstrated by
the implementation of a complex 32-bit microprocessor design
using the Balsa synthesis system. The potential improvements
over the control-driven style have been demonstrated by com-
parison of this design with the equivalent control-driven imple-
mentation. The results are transferable to other synthesis sys-
tems based on handshake circuits such as Haste.

The increased area and energy requirements of the
data-driven style have been briefly noted but these are un-
likely to be disproportionate to the performance gains and
could be decreased by further work on modified or alternative
back-end implementation styles. Future work should also
address new structures to better support the register banks.

Due to the variables and sequential and iterative control struc-
tures, it is possible in Balsa to write a naive sequential pro-
gram that appears very similar to a conventional programming
language. Such a program will compile and produce a func-
tioning (but slow) circuit. In the data-driven style, it is neces-
sary for the programmer to think in a different, more “asyn-
chronous” manner as such sequential descriptions are not pos-
sible. It is also similarly necessary to do so when using con-
ventional Balsa if good performance is required. The rewards
of adopting a data-driven style with respect to performance are
clear but the method introduced herein, being intentionally de-
signed to be data-driven, is superior to adopting a data-driven
approach with control-driven compilation. By using the hand-
shake circuit paradigm and integrating the new style into the
Balsa framework, it is straightforward to combine both styles in
the same design-flow and so greater flexibility is offered to the
designer.

The data-driven style has addressed the issue of the structure
of handshake circuits and control overhead. In general, the per-
formance of synthesized asynchronous circuits is still not com-
petitive with their synchronous counterparts. More work is re-
quired at all levels of the design-flow before competitive perfor-
mance is achieved.

Authorized licensed use limited to: The University of Manchester. Downloaded on October 26, 2009 at 10:28 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

REFERENCES
[1] A. Bardsley, “Balsa: An asynchronous circuit synthesis system,”

M.Phil. thesis, Sch. Comput. Sci., Univ. Manchester, Manchester,
U.K., 1998.

[2] A. Bardsley, “Implementing balsa handshake circuits,” Ph.D. disserta-
tion, Sch. Comput. Sci., Univ. Manchester, Manchester, U.K., 2000.

[3] Kees van Berkel, Handshake Circuits: An Asynchronous Architecture
for VLSI Programming. Cambridge, U.K.: Cambridge University
Press, 1993, vol. 5, Int. Series on Parallel Computation.

[4] T. Chelcea, S. Nowick, A. Bardsley, and D. Edwards, “A burst-mode
oriented back-end for the balsa synthesis system,” in Proc. Des., Autom.
Test Eur. Conf., 2002, pp. 330–337.

[5] T. Chelcea and S. M. Nowick, “Resynthesis and peephole transfor-
mations for the optimization of large-scale asynchronous systems,” in
Proc. ACM/IEEE Des. Autom. Conf., Jun. 2002, pp. 405–410.

[6] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.
Yakovlev, “Petrify: A tool for manipulating concurrent specifications
and synthesis of asynchronous controllers,” IEICE Trans. Inf. Syst.,
vol. E80-D, no. 3, pp. 315–325, Mar. 1997.

[7] J. Cortadella, A. Kondratyev, L. Lavagno, and C. P. Sotiriou, “Desyn-
chronization: Synthesis of asynchronous circuits from synchronous
specifications,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 25, no. 10, pp. 1904–1921, Oct. 2006.

[8] D. Edwards, A. Bardsley, L. Janin, L. Plana, and W. Toms, Balsa: A Tu-
torial Guide. Manchester, U.K.: The University of Manchester, 2006.

[9] F. Fernández-Nogueira and J. Carmona, “Logic synthesis of handshake
components using structural clustering techniques,” Integr. Circuit
Syst. Des. Power Tim. Model., Opt. Simulation, pp. 188–198, 2009.

[10] R. M. Fuhrer, S. M. Nowick, M. Theobald, N. K. Jha, B. Lin, and L.
Plana, Minimalist: An environment for the synthesis, verification and
testability of burst-mode asynchronous machines Columbia University,
New York, Tech. Rep. TR CUCS-020-99, Jul. 1999.

[11] J. Hansen and M. Singh, “Concurrency-enhancing transformations for
asynchronous behavioral specifications: A data-driven approach,” in
Proc. Int. Symp. Asynch. Circuits Syst., 2008, pp. 15–25.

[12] C. A. R. Hoare, Communicating Sequential Processes. Englewood
Cliffs, NJ: Prentice-Hall, 1985.

[13] T. Kolks, S. Vercauteren, and B. Lin, “Control resynthesis for control-
dominated asynchronous designs,” in Proc. Int. Symp. Async. Circuits
Syst., Mar. 1996, pp. 233–243.

[14] A. Kondratyev and K. Lwin, “Design of asynchronous circuits using
synchronous CAD tools,” IEEE Des. Test Comput., vol. 19, no. 4, pp.
107–117, 2002.

[15] A. Lines, “Pipelined asynchronous circuits,” Ph.D. dissertation, Dept.
Comput. Sci., California Inst. Technol., Pasadena, 1995.

[16] A. J. Martin, A. Lines, R. Manohar, M. Nyström, P. Pénzes, R. South-
worth, and U. Cummings, “The design of an asynchronous MIPS
R3000 microprocessor,” Adv. Res. VLSI, pp. 164–181, 1997.

[17] A. J. Martin, “Programming in VLSI: From communicating processes
to delay-insensitive circuits,” in Developments in Concurrency and
Communication, ser. UT Year of Programming Series, C. A. R. Hoare,
Ed. New York: Addison-Wesley, 1990, pp. 1–64.

[18] D. E. Muller, “Asynchronous logics and application to information
processing,” in Symposium on Application Switching Theory to Space
Technology. Stanford, CA: Stanford University Press, 1962, pp.
289–297.

[19] D. E. Muller and W. S. Bartky, “A theory of asynchronous circuits,” in
Proc. Int. Symp. Theory of Switch., Apr. 1959, pp. 204–243.

[20] S. F. Nielsen, “Behavioral synthesis of asynchronous circuits,” Ph.D.
dissertation, Dept. Inf. Math. Model., Tech. Univ. Denmark, Lyngby,
2005.

[21] L. A. Plana, P. A. Riocreux, W. J. Bainbridge, A. Bardsley, J. D. Gar-
side, and S. Temple, “SPA—A synthesisable amulet core for smartcard
applications,” in Proc. Int. Symp. Async. Circuits Syst., Apr. 2002, pp.
201–210.

[22] L. A. Plana and S. M. Nowick, “Architectural optimization for low-
power nonpipelined asynchronous systems,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 6, no. 1, pp. 56–65, Mar. 1998.

[23] M. Renaudin, P. Vivet, and F. Robin, “A design framework for asyn-
chronous/synchronous circuits based on CHP to HDL translation,” in
Proc. Int. Symp. Async. Circuits Syst., Apr. 1999, pp. 135–144.

[24] M. Sacker, A. Brown, P. Wilson, and A. Rushton, “Data-driven asyn-
chronous circuits,” in Proc. IEEE Int. Symp. Async. Circuits Syst., Apr.
2004, pp. 125–134.

[25] S. Schuster, W. Reohr, P. Cook, D. Heidel, M. Immediato, and K.
Jenkins, “Asynchronous interlocked pipelined cmos circuits operating
at 3.34.5 GHz,” in Proc. ISSCC, 2000, pp. 292–293.

[26] M. Singh and S. M. Nowick, “The design of high-performance dynamic
asynchronous pipelines: High-capacity style,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 15, no. 11, pp. 1270–1283, Nov. 2007.

[27] M. Singh and S. M. Nowick, “The design of high-performance dy-
namic asynchronous pipelines: Lookahead style,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 15, no. 11, pp. 1256–1269, Nov.
2007.

[28] M. Singh and S. M. Nowick, “Mousetrap: High-speed transition-sig-
naling asynchronous pipelines,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 15, no. 6, pp. 684–698, Jun. 2007.

[29] , J. Sparsø and S. Furber, Eds., Principles of Asynchronous Circuit De-
sign: A Systems Perspective. Norwell, MA: Kluwer Academic, 2001.

[30] I. Sutherland and S. Fairbanks, “GasP: A minimal FIFO control,” in
Proc. Int. Symp. Adv. Res. Asynch. Circuits Syst., Mar. 2001, pp. 46–53.

[31] TIMA Laboratories, Grenoble, France, “TIMA asynchronous synthesis
tools,” 2002. [Online]. Available: http://tima.imag.fr/cis/

[32] S. M. Taylor, “Data-driven handshake circuit synthesis,” Ph.D. disser-
tation, Sch. Comput. Sci., Univ. Manchester, Manchester, U.K., 2007.

[33] S. Taylor, D. Edwards, and L. Plana, “Data-driven asynchronous cir-
cuits,” in IEEE Int. Symp. Asynch. Circuits Syst., Newcastle upon Tyne,
U.K., Apr. 2008, pp. 3–14.

[34] J. Teifel and R. Manohar, “ Static tokens: Using dataflow to automate
concurrent pipeline synthesis,” in Proc. Int. Symp. Asynch. Circuits
Syst., Apr. 2004, pp. 17–27.

[35] G. Venkataramani, M. Budiu, T. Chelcea, and S. C. Goldstein, “C to
asynchronous dataflow circuits: An end-to-end toolflow,” presented at
the IEEE Int. Workshop Logic Synth., Temecula, CA, Jun. 2004.

[36] T. E. Williams, “Latency and throughput tradeoffs in self-timed asyn-
chronous pipelines and rings,” Stanford Univ., Stanford, CA, Tech.
Rep. CSL-TR-90-431, Aug. 1990.

[37] C. G. Wong and A. J. Martin, “High-level synthesis of asynchronous
systems by data-driven decomposition,” in Proc. ACM/IEEE Des.
Autom. Conf., Jun. 2003, pp. 508–513.

Sam Taylor received the B.Sc. and Ph.D. degrees in computer science from the
University of Manchester, Manchester, U.K., in 2003 and 2007, respectively.
His Ph.D. dissertation, from which much of the work in this paper was drawn,
was on the synthesis of data-driven asynchronous circuits using a handshake
circuit approach.

He was a Senior Engineer with Silistix Ltd., U.K., until August 2008. He
is currently with the Wellcome Trust/Cancer Research UK Gurdon Institute,
Cambridge, U.K.

Doug A. Edwards received the B.Sc. degree in physics and electronic engi-
neering and the M.Sc. and Ph.D. degrees studying the properties of Zinc Sul-
phide Silicon Heterojunctions from the University of Manchester, Manchester,
U.K.

He is currently a Reader with the School of Computer Science, the Univer-
sity of Manchester. After a period with Ferranti Ltd. as a Process Engineer im-
proving the yield of CDI integrated circuits, he joined the School of Computer
Science researching high density memory technology, high speed optical net-
works and hardware accelerators for printed circuit layout. His current research
interests include computer-aided design for the synthesis of asynchronous cir-
cuits and has led the team which has developed the Balsa synthesis system.

Luis A. Plana (M’97-SM’07) received the Ingeniero Electrónico degree from
Universidad Simón Bolívar, Venezuela, the M.S. degree in electrical engineering
from Stanford University, Stanford, CA, and the Ph.D. degree in computer sci-
ence from Columbia University, New York.

He is a Research Fellow with the School of Computer Science, University of
Manchester. Before coming to Manchester, he worked with Universidad Politéc-
nica, Venezuela, for over 20 years, where he was a Professor and Head of the
Department of Electronic Engineering. His research interests include the design
and synthesis of asynchronous, embedded, and globally asynchronous, locally
synchronous (GALS) systems.

Luis A. Tarazona D. (S’07) received the Ingeniero Electrónico degree from
Universidad Nacional Experimental Politénica, Venezuela, and the M.S. degree
in communications and signal processing from the University of Bristol, Bristol,
U.K. He is currently pursuing the Ph.D. degree from the School of Computer
Science, University of Manchester, Manchester, U.K.

He is on leave from his post as a Lecturer with Universidad Politécnica,
Venezuela. His research interests include the design and synthesis of asyn-
chronous systems, digital circuits, and digital signal processing.

Authorized licensed use limited to: The University of Manchester. Downloaded on October 26, 2009 at 10:28 from IEEE Xplore. Restrictions apply.

