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Abstract—Amethod is described for synthesising asynchronous
circuits based on the Handshake Circuit paradigm but employing

a data-driven, rather than a control-driven, style. This approach
attempts to combine the performance advantages of data-driven
asynchronous design styles with the handshake circuit style
of construction used in existing syntax-directed synthesis. The
method is demonstrated on a significant design — a 32-bit
microprocessor. This example shows that the data-driven circuit
style provides better performance than control-driven synthesised
circuits.

The paper extends previous reported work by illustrating how
conditional execution, oft-cited as a problem for data-driven
descriptions, is handled within the system, and by a more detailed
analysis of the design example.

I. INTRODUCTION

Before asynchronous synthesis techniques will be seriously

considered over their synchronous counterparts, they must

demonstrate that they can achieve competitive performance.

The research reported here aims to improve the performance

of large synthesised asynchronous circuits. The focus of the

approach is on a handshake circuit representation of the circuit;

that is to say, an abstract representation of the structure of

the circuit which is independent of technologies, protocols,

data encodings or any other details of the actual circuit

implementation.

The handshake circuit paradigm allows the construction of

large scale circuits by the composition of small handshake

components that are straightforward to implement in isolation.

Hardware descriptions are written in a high-level language

and compiled in a syntax-directed fashion into the handshake

circuit representation. This means the structure of the resulting

circuit is directly related to the source code, allowing optimi-

sations and trade-offs to be made at the source code level.

Furthermore, writing circuit descriptions in languages such as

Balsa [1], [2], [8] and Haste [12] is relatively straightforward,

even for novices. However, control overhead in the conven-

tional control-driven style of handshake circuit synthesis is a

major obstacle to performance.

Previous work [34], [33] gives details of how the control

overhead arises in a conventional control-driven synthesis

style, an overview of previous attempts to mitigate its ef-

fects [4], [5], [6], [10], [14], [23] and an in-depth justification

for a data-driven approach. For definitive background material

on handshake circuit compilation, see [3].

Essentially there are three principal effects contributing to

the control overhead:
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• All inputs are synchronised with each other before any

operations within a block can proceed because only

control may activate processing operations and therefore

it is necessary for the control to know that the inputs it

will use are available.

• Reads and writes are sequenced to ensure that variables

are not written and read concurrently.

• Data processing operations only begin after the control

initiates them due to the pull style of operation. If the data

processing were to operate in parallel with the control

then the overhead of the control should be reduced.

Data-driven asynchronous design styles are thus much less

prone to the problem of control overhead, however, attempts to

automate transformations to existing Balsa handshake circuits

to produce more efficient structures along the lines of existing

data-flow style compilation strategies [35], [36], [38] were

not successful because it was not clear what the result of

such optimisation should look like and it was very difficult

to guarantee the resulting circuit would behave in the same

fashion as the original. Techniques such as data-driven decom-

position (DDD) [38] rely on pipelining sequential programs

and produce modified circuit behaviour. A Balsa designer may

depend on the design behaving in the manner it was written

which could easily not be the case after optimisation; indeed

if a DDD-type strategy were to have been applied to the SPA

processor [22] the memory interface would have broken.

The approach presented here attempts to combine the bene-

fits of a data-driven style with the convenience and flexibility

of the handshake circuit paradigm which allows the robust

synthesis of large circuits. To this end, the handshake circuit

structures of the control-driven Balsa synthesis method have

been examined and data-driven alternatives are proposed. To

generate these structures, a data-driven description style is

proposed and a compiler has been developed to compile

these description into a handshake circuit representation. This

compiler is integrated into the Balsa design flow enabling the

use of existing Balsa tools for moving from the handshake

circuit representation to a gate-level circuit.

The organization of the paper is as follows. Section II

reviews other related work. Section III examines how “classic”

Balsa handshake circuit templates can be more efficiently

replaced by data-driven variants. Section IV examines prob-

lems with conditional structures and introduces new handshake

components required for a data-driven system. Section V intro-

duces a new data-driven Balsa language. Section VI describes

the implementation of a significant design example. Finally,

the performance, area and power consumption are compared

for the design example synthesised both by “classic” Balsa

and the new data-driven Balsa.



2

II. RELATED WORK

A. Data-driven approach

The syntax-directed synthesis approach generates control-

driven structures, but it is noticeable that in clocked design

much emphasis is placed on pipelined datapath design; sim-

ilarly most asynchronous techniques are based on data-flow

pipelined style approaches.

Muller [20], [19] described the first asynchronous pipelines

using C-elements as latches with combinational logic between

the latch stages. The latency of each pipeline stage can be

reduced by incorporating logic within registration stages. This

has led to the concept of pipeline templates which define

the registration control of a stage and allow for transistor-

level designs to be incorporated within them. Williams [37]

developed the PC0 dual-rail pipeline. Subsequently Lines [16]

developed the concept of templates based on precharge half-

and full- buffers. Other implementation styles, aimed at high

performance, often requiring careful timing control include

GasP from Sun Laboratories [31], [26] and the IPCMOS

pipelines from IBM [26]. Singh and Nowick [29], [28], [27]

have developed a range of high performance pipeline styles

with a variety of trade-offs; these papers contain an excellent

review of asynchronous pipeline techniques.

Whilst the works described above are indicative of the inter-

est in pipelining techniques, they are not directly applicable to

the problem addressed in this paper: they are concerned with

circuit level implementations of pipeline architectures rather

than the problems of how to specify the composition of data-

driven circuits from a behavioural synthesis language.

Sparsø [30] analysed the performance of a variety of

pipeline topologies in terms of token flow through the struc-

tures and quantified performance in terms of forward and

reverse latency, and cycle time. Again, although this material

leads to a good understanding of the complexity of pipeline

structures, it is not directly applicable to automated synthesis

techniques.

B. Other synthesis systems

Automated synthesis techniques for large scale systems do

not have to be restricted to a syntax-directed handshake circuit

approach.

1) De-synchronisation based methods: These involve con-

verting conventional synchronous design descriptions into

asynchronous designs [7], [15]. Typically existing CAD tools

are used for much of the datapath synthesis and asynchronous

control synthesis tools are used to produce controllers that

replace the global clock. This approach has the advantage

that designers need little specialist knowledge of asynchronous

techniques. A drawback is that by using a design targeted at

a synchronous implementation, potential advantages of asyn-

chronous techniques are not exploited. For example, concur-

rency is restricted to the synchronous pipeline structure and so

the fine-grained concurrency possible in asynchronous design

is not exploited. It is also difficult to exploit the possibility for

asynchronous designs to use data-dependent delays instead of

the worst-case delays of synchronous design.

2) CHP based methods: The CSP[13]–based Communi-

cating Hardware Processes (CHP) language is the basis of

some asynchronous synthesis systems [18], [24], [32]. These

systems use manual or automatic program transformations

to refine a design into a more concurrent version. The final

program is then translated into a production-rule set which is

used to generate a transistor implementation of the design.

The Caltech synthesis tools (CAST) have been used to

produce some high performance circuits [17] but these rely on

significant manual intervention in the synthesis flow to arrive

at the most effective program transformations and also rely on

the use of the PCHB (precharge half-buffer) circuit style. This

circuit style is not widely used and requires a specialised cell

library.

The automatic program transformations employed in CAST

are not behaviour preserving and are only correct for designs

that meet particular requirements. An inexperienced designer

may struggle to understand and meet these requirements.

C. Handshake Circuit Optimisations

Attempts have been made to apply control re-synthesis to

the control of both Tangram/Haste [14] and Balsa [4], [5].

Control re-synthesis attempts to improve the performance of

the control tree by clustering sections of the tree, determining

the overall behaviour, and synthesising a new controller to

implement this behaviour using a controller synthesis tool

[6], [10], [9]. By removing the communications between

clusters of components, the resulting controller should improve

performance over the original control tree.

Control re-synthesis is effective but limited. Improving the

speed of the control tree will obviously help reduce control

overhead but only so much improvement can be gained. The

control still synchronises with data at the same points and so

the sequential operation of the control-driven structure is still

maintained. Control re-synthesis is complementary to other

approaches to improving control overhead including the data-

driven style introduced in this paper

Hansen and Singh [11] describe source-to-source transfor-

mation of the original specification into a new one using a vari-

ety of concurrency-enhancing optimizations: automatic paral-

lelisation, automatic pipelining, arithmetic optimisation, and

reordering of channel communication. Considerable speed-

ups are claimed. However, some of the examples used start

with extremely naive code sequences, so it is easy to obtain

significant improvements. Unlike the techniques described in

this paper, their work is not guaranteed to preserve the original

behaviour of the hardware and frequently the designer is given

responsibility for ensuring that the behavioural changes are

acceptable. This reduces the usefulness of an “automated”

approach as it is necessary for the designer to understand

the nature of the transformations to ensure they are safe, In

contrast, the work described in this paper maintains the source-

level predictability of the description - “what you write is what

you get” and the performance improvements are made over

highly optimised and efficient control-driven descriptions.

Nielsen [21] has explored optimisations of circuits synthe-

sised by Balsa; the work is concerned with resource allocation
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and bindings to explore the optimisation space but within the

confines of the conventional control-driven approach offered

by Balsa. The work has recently been extended to Haste. A

similar approach taken by the Moods system [25]. No attempt

is made to generate data-driven circuits in these approaches

although it is noted that the control structure arising from

syntax-directed translation results in poor performance.

III. DATA-DRIVEN CIRCUIT STRUCTURES

In the context of handshake circuits, a data-driven style

should achieve greater speed performance because:

• All control is activated in parallel.

• Sequencing is localised to storage elements; read and

write sections of control can operate in parallel as the

localised sequencing ensures that storage elements are

not concurrently read and written.

• Control and datapath can operate in parallel because of

the push nature of data processing.

There are possible disadvantages to data-driven circuits; they

are likely to require more area and to consume more energy.

The localised control of the data-driven style consumes more

area than the control-driven tree as instead of appearing

once, the control is distributed in many places. This effect

is exaggerated in delay-insensitive implementations where an

increased amount of completion detection is required and the

implementation of push-style variables is particularly expen-

sive. However, the increased concurrency in this distributed

control is a major factor in the increased performance. Energy

consumption due to switching can also be expected to increase

as a result of the increase in concurrent activity. Speculation

can also be expected to have an impact on energy consumption

as this involves extra switching activity in the datapath that

need not occur in the control-driven style.

The data-driven circuit style will be introduced in this

section by comparison with conventional handshake circuits

generated by the Balsa system because the source code is

freely available making it feasible to experiment with the

system. However, it should be emphasised that the results

here apply to any system using a similar syntax directed

compilation method such as Haste. The data-driven style

was largely developed by examining and adapting handshake

circuit structures so comparison provides the most instructive

method of introduction. Some of the eight new handshake

components required to support the new style are mentioned.

More details can be found in [33].

A. Input

The conventional Balsa input structure is shown in figure 1.

This structure is produced by the active enclosure construct

shown below.

a, b -> then

<body - a used once, b used twice>

end

In Balsa, channels (that is data wrapped in a re-

quest/acknowledge handshake) stand on the left-hand side of

an expression and the symbol -> denotes a read from the

channels, either into a variable or into another channel, or

b

FV

FV

Sync

Component

Fork
Component

a

activate

body

Figure 1. Balsa input structure.

to a code block that has channel-like interfaces. Similarly

the symbol <- denotes writing to the channel on the left

hand side of an expression. In this example, the activation

of the input command is used to initiate pulling data from

the environment on the input channels a and b. The Fork

component passes the activation request in parallel to the two

FalseVariable (FV) components. These are used to hold open

data (the data on the channels a and b is not released until

the handshakes on those channels complete) and implement

multicast on the input channels. The body of the structure

is activated following the signal ports of the FalseVariable

component being synchronised at the Sync component. This

activation indicates the availability of the data for the body to

then pull it from the read ports of the FV when required.

The data-driven style makes use only of push structures.

Instead of using the FV to implement multicast, an alternative

push structure must be used. As the input channels are now

push channels, there is no need to pull the input data. For

inputs that are used in only one place, the data can be pushed

directly to the body. For inputs that are used more than once,

a duplicate of the data must be sent to all the required places.

The Dup component is used to implement this broadcast

behaviour. Figure 2 shows the data-driven version of the circuit

example given in figure 1.

dup

a

b

body

activate

Figure 2. Data-driven input structure.

An advantage of this approach is that the input channels do

not need to be synchronised before activating the body as the

body no longer needs an activation to indicate the availability

of the data; the data will be pushed to the required places at

some point.

The obvious drawback with this approach is that, as the

original structure implemented multicast, the body was free

to select which read ports, if any, of the FV to use. Where

conditional structures are used, the data is only conditionally
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required. In the broadcast structure, the data is sent to all pos-

sible destinations whether they need it or not. The resolution

of this problem is discussed in section IV.

B. Variables

They are implemented by the Variable handshake compo-

nent. This component has a passive input known as the write

port and one or more passive outputs known as the read ports.

The control-driven approach allows data to be written to the

Variable component by pushing to the write port and read

from the variable by pulling from the read ports. The language

ensures that the variable is not written at the same time it is

read. To the designer, a Balsa variable therefore looks very

much like a variable found in most imperative programming

languages.

In the data-driven style, the storage component is called

the VariablePush and has active push ‘read’ ports. Unlike the

original Variable component, this component has a write-once,

read-once behaviour; each time a data value is written it is

automatically pushed on all read ports and the handshake on

all read ports must then complete before the next write data is

accepted. This makes a data-driven variable much more akin

to a channel that has storage, thereby allowing each end of

the channel to complete independently. In the control-driven

style, one is free to use each read port one or more times or

not at all. The drawback of the write-once read-once nature of

data-driven variables is that each port must be used once and

only once. This allows more flexibility in the control-driven

style but where the designer uses this flexibility, they do so at

the cost of performance.

In common with the data-driven input structure from the

previous section, the drawback of this approach is that the

data that is pushed on the read ports of the variable may not

actually be required by the destination.

C. Data processing

The original Balsa data-processing structure is a pull struc-

ture implemented using the Fetch component to initiate a

read of the required data from the required Variable or

FalseVariable components, pull it through pass-through data

components, and then push it to the destination. The following

Balsa code produces the example handshake circuit structure

shown in figure 3.

a, b -> then

o1 <- a + b ||

o2 <- b

end

The input channels a and b are read (->) by the code block

that follows. Here the sum of a and b is written (<-) to the

destination channel o1 and concurrently (||) b is written to

channel o2.

As shown in the preceding sections, in conventional Balsa,

Variables and FalseVariables have passive read ports whereas

in the data-driven style, data is always pushed to all places

where it may be required. In the data-driven style this data is

pushed straight through the push datapath components to the

destination as shown in figure 4.

FV
| |

+
FV

a

b

activate

o1

o2

Figure 3. Balsa data processing structure.

dup

+

a

o2

o1

b

Figure 4. Data-driven data processing.

The handshake circuit graph for the data-driven circuit

is certainly a lot smaller but what impact does it have on

the control part of the circuit? Table I summarises the key

parameters in a typical dual-rail implementation of the control

circuitry for the two approaches.

Table I
CONTROL COMPLEXITY FOR N-BIT DATAPATH

Parameter Balsa Data-driven

Gate Count
8n+6 AND/OR gates
2n+8 C-gates

5n AND/OR gates
n+2 C-gates

Forward Latency
4 AND/OR gates
1 C-gate

1 AND gate

Reverse Latency
2 AND/OR gates
3 C-gates

1 AND/OR gate
1 C-gate

IV. CONDITIONAL STRUCTURES

A. Conditional Execution

Conditional execution is supported by the case and if

structures in Balsa. This section will take the case construct

as an example as it is more commonly used than if, and the

implementation of if is fundamentally the same as that of

case with a few extensions.

The following Balsa code is an example of the use of the

case construct. The control input c is used to determine

whether to send the sum of a and b or just b to the output

o1. This code is compiled into the handshake circuit shown

in figure 5.

a, b, c -> then

case c of

1 then

o1 <- a + b

else

o1 <- b

end

end
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FV

+
FV

FV

@

|

c

activate

o1

a

b

Figure 5. Balsa conditional structure.

As usual, the handshake circuit operates by requesting the

three inputs, synchronising on their arrival and then activating

the body. The body pulls c from the FalseVariable into a

Case component (@) that decides which of its sync outputs to

activate based on the value of the control data that has been

input. The standard data-processing structure is then used to

pull the required data and send it to the output. Additionally

in this example, the CallMux component (|) merges the two

possible sources for output o1 onto a single output channel.

As the Case component will only activate one of its outputs at

any time the CallMux will only receive an input on one input

channel at a time, thereby avoiding any hazards.

The data-driven equivalent of this circuit is shown in

figure 6. The difference between the data-driven style and

the control-driven style is that as all inputs are pushed (see

sections III-A and III-B), all the data processing operations

are initiated, even though the result may not be required. In

order for the circuit to operate correctly these extra results

must not be allowed to propagate. The FetchReject component

(|→) is introduced to ‘reject’ the unwanted data. FetchReject

is so named because it is rather like a push version of the

Fetch component. Instead of pulling data and sending it to

the output, it waits for pushed data to arrive on the input

and then either passes it through to the output or completes

on the input channel without sending anything on the output,

thereby ‘rejecting’ the data. Two sync ports are provided on

the component, the activation port which is used to instruct

that the data should be passed and the reject port which is

used to instruct that the data should be rejected.

Once the FetchReject components are in place, all that

remains is to connect the activation and reject ports to the

correct outputs of the Case component. In this simple example,

one is activated while the other is rejected. This arrangement

allows the CallMux component to be used as in the original

Balsa circuit because concurrent input handshakes are avoided

by correctly using the FetchReject components.

As the data-driven style does not require synchronisation

of the inputs, there is potential for performance improvements

over the control-driven circuit. The logic in the Case compo-

nent is able to proceed as soon as the control data arrives, and

dup

+
r

r

| || |

@

|

a

c

b

o1

Figure 6. Data-driven conditional structure.

in parallel with the data processing rather than always having

to complete before initiating the pull data processing. How-

ever, the data-driven style is essentially speculating on needing

the results of all operations. When using a conditional structure

the unwanted results must be rejected and the overhead of this

operation may harm performance. However, it is believed that

generally this overhead should rarely be significant for the

following reasons.

As the rejection will often occur in parallel with other

useful operations, its effect on the overall performance should

be limited. Only where the reject takes longer than useful

processing will it reduce the overall performance as both must

be completed before the next ‘cycle’ of the operation. The

reject operation itself is quite efficient but if the arrival of the

data is slow then the overall impact may be greater.

In cases where there is no operation in parallel with the

reject, it may often be the case that the data will arrive in

advance of the reject signal and the rejection will therefore

be concluded quite swiftly. Note that in the Balsa circuit,

it is still necessary for all the inputs to arrive before the

operation can complete even if no data processing is actually

performed. Furthermore, in the Balsa circuit, the logic in

the Case component does not begin evaluating until all the

inputs have arrived whereas in the data-driven approach the

evaluation can occur in parallel with the arrival of the inputs

and so the FetchReject may have received the reject by the

time the data arrives so it will at least be immediately rejected,

albeit following a possible additional delay through some data

processing logic. In the conventional Balsa case, all the inputs

must arrive before the process of deciding what to do with

them can begin.

Even so, it may be the case that unbalanced datapaths could

cause a problem. Consider the example shown in figure 6.

Here one of the operations is an addition while the other is

simply passing through the data from input b unchanged. The

addition is most likely to incur a significantly longer delay than

the pass-through operation. If the second operation is selected

frequently, and assuming the environment can supply inputs

and consume outputs quickly enough, there is the potential for

the rejection of the add operation to reduce the throughput of

the overall circuit.

However, experience in designing with Balsa has shown

that the delay of the control nearly always exceeds that of

the datapath so it is reasonable to be optimistic that many

datapath delays incurred as a result of speculation will be
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entirely masked by the delay of the control that works out

whether or not to reject. Additionally, the inputs needed for

the datapath operation may arrive earlier than those for the

control allowing the datapath to complete before the control

signals arrive at the FetchRejects.

B. Conditional input

Conditional inputs may occur in Balsa code when an input

is made as part of the body of a conditional structure. For

example, in the code below, channel b is a conditional input

in the else clause of the case construct.

a, c -> then

case c of

1 then

o1 <- a

else

b -> then

o1 <- b

end

end

end

During the operation of this code, data is only pulled on

input channel b if the else clause is activated. Otherwise no

communication occurs on channel b. This code is compiled

into the handshake circuit shown in figure 7.

FV

FV

@

|

activate

c

a

b

o1

Figure 7. Balsa conditional input structure.

The important thing to notice when this circuit is converted

to the data-driven style is that when data arrives on input b,

it is always used; there is no need to reject any data if the

else clause of the case is not executed, as the input never

arrives. Of course, in a data-driven style there may be a request

pending on channel b but this should be acknowledged by

a subsequent cycle of the circuit when the else clause is

executed. It is important that, until the else clause is taken,

this request is not propagated to a downstream component

which may acknowledge out of sequence possibly causing

erroneous behaviour. To avoid this possibility the FetchPush

component is used. This component can be considered as a

push version of Fetch, or a version of FetchReject without a

reject.

To further explain the above, consider the example in

figure 8 which is the data-driven equivalent of the example

in figure 7. The FetchPush component is used on channel

b to ensure any request on b is not passed to the CallMux

component before the Case has decided that that operation

should occur. This ensures the inputs to the CallMux cannot

occur concurrently.

Combining conditional and unconditional inputs in an ex-

pression is more challenging. Consider the following code

example, only a small modification to the last example given

above: the data on one of the channels (a) is used twice.

a, c -> then

case c of

1 then

o1 <- a

else

b -> then

o1 <- a + b

end

end

end

In this example, if the else clause is not taken then any

data that is pending on b is not to be rejected but data on a into

the adder must be rejected. In general, this problem will occur

any time conditional inputs are combined in an expression with

unconditional inputs. In order to avoid this problem, a scheme

could be devised to reject the unconditional inputs before they

are combined with the conditional inputs [33]. However, such

a scheme reverses part of the advantage of adopting a push

style as the datapath operations are once again stalled waiting

for control to decide whether the result of the operation is

required, instead of control and datapath operating in parallel.

Furthermore this scheme presents additional complexity in

compilation as the placing of rejections is now much less

straightforward. For these reasons, such a scheme has not been

used. Instead, combinations of conditional and unconditional

inputs within expressions are considered invalid by the com-

piler, avoiding the need to produce an implementation at the

expense of some reduction in flexibility. However, as discussed

in section V-G, users are still able to implement this scheme

in the source description if they choose to.

C. Nested conditionals

Conditional structures in Balsa can be nested within one

another as demonstrated by the following code.

c, d -> then

case c of

1 then

case d of

1 then

<body X>

end

else

e -> then

case e of

1 then

<body Y>

end

end

end

end

In the control-driven style the output activations from one

conditional structure are simply used to activate the nested

conditional. In the data-driven style, the evaluation of the logic

in all Case components proceeds concurrently, but the output
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|

r

| |

@

o1

c

a

b

Figure 8. Data-driven conditional input structure.

activations of nested conditionals must be delayed pending an

activation from the outer structure as shown in figure 9. This

example demonstrates the use of the CasePush and CasePushR

components.

@

@

| |

@
r

d

e

c

activate Yactivate X

Figure 9. Data-driven nested conditional structure.

CasePush is used where it is necessary to synchronise with

an activation before output activations are made from the Case

component. This is true for the Case component whose input

is channel e as data will only arrive on e when it is required.

It may be necessary to reject the input to a CasePush if

data will arrive that is not required, as in this example with

the Case component whose input is channel d. CasePushR is

simply a CasePush with a reject input that upon activation

will discard the input data without activating any outputs. The

reject port is then activated on all conditions where the activate

port is not.

V. NEW INPUT LANGUAGE

This section will briefly introduce the high-level language

that is translated in a syntax-directed fashion into the new

circuit structures. Note that the language was primarily con-

ceived as a means to an end; that is, to generate the data-

driven handshake circuits. In the same way that all valid

Balsa descriptions may be compiled to functional circuits,

so all data-driven descriptions may similarly be compiled to

data-driven structures. This means that the language reflects

the data-flow style of the circuits and is less flexible and

less familiar than the sequential programming language style

possible in Balsa.

The language is designed to resemble conventional Balsa

wherever possible. Unlike Balsa where a circuit consists of

commands linked by sequential or parallel control, the data-

driven approach consists of lists of commands that operate

independently and in parallel. Unlike the control-driven ap-

proach, control sections of the circuit do not wait for an

activation but proceed as far as they are able, pausing only

when awaiting data.

A. Hello World!

The equivalent of a Hello World program in Balsa is the

one-place buffer. This serves equally well as an introduction

to the data-driven language and is shown in figure 10.

-- One-place buffer

procedure buf (input i : 1 bits;

output o : 1 bits ) is

variable x : 1 bits

begin

input i

output x

during

x <- i

end

input x

output o

during

o <- x

end

end

xi o

Figure 10. Data-driven one-place buffer description & handshake circuit.

It can be seen from this small example that much of the

language is very similar to conventional Balsa. The declaration

of the procedure and the input and output ports is identical.

Unlike conventional Balsa, the procedure input ports will

always be passive due to the push style of implementation.

Internally to the procedure the input ports are treated as read-

only channels and the output ports as write-only channels.

The main new feature in evidence here is the division

of the procedure into blocks consisting of input and output

declarations and a body containing the commands that use

the inputs and generate the outputs. Unlike Balsa, the control

structures of the circuit are largely implicit. Blocks implicitly

operate in parallel, as do the list of commands within the

blocks. The only synchronisation between the two blocks

in this example takes place at the variable; the read must

complete before the next write can overwrite the data in the

variable. This allows the variable reads and writes to overlap

to the largest possible extent.

The handshake circuit for this buffer is simply a Variable-

Push component; this should be compared with the control-

heavy Balsa generated circuit of figure 11.

B. Variables

The control-driven style of Balsa allows variables to be

accessed in a very general fashion, so as to appear very

similar to variables in a standard programming language.
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-- One-place buffer

procedure buf (input i : 1 bits;

output o : 1 bits) is

variable x : 1 bits

begin

loop

i -> x -- Input communication

;

o <- x -- Output communication

end

end

i

#

;

x
o

Figure 11. Balsa one-place buffer description & handshake circuit.

Variables can be read and written in any arbitrary sequence.

The Variable component has passive read and write ports and

the control tree initiates communication on these as required.

In the data-driven approach, the VariablePush immediately

pushes any data written to it out of its active read ports.

This means that a variable must always be read after it

has been written. Variables therefore resemble less those of

standard programming languages and are much more similar to

channels. In fact, it may be more helpful to think of a variable

in the data-driven style as a channel that contains storage, or

even as a type of channel which each communicant can use at

different times, rather than having to synchronise like a normal

channel.

Reflecting this, variables are specified as inputs and outputs

(to blocks – procedure ports only connect using channels)

in precisely the same fashion as channels. In the following

discussion use of the term channel generally implies a channel

or variable except where otherwise stated.

C. Input control

In a control driven approach, it is necessary for the control

and data to synchronise to release the data once all required

reads had been completed on the channel. As reads are now to

be pushed, this synchronisation is unnecessary as the release of

all the read ports will indicate that all reads on the channel are

completed. In the data-driven approach, therefore, inputs are

merely specified as arriving at some point during the operation

of the commands; the control waits for the arrival of inputs

at any points where they are read (if they have not arrived

already).

D. Write command

The write command (e.g. x <- i) is used to output the

result of an expression to an output channel (or variable). The

channels written to must have been declared as an output from

the block.

Compilation of the write command involves compiling the

expression into appropriate push datapath components and

connecting the result to the destination.

E. Arrays

Channels and variables can be arrayed in a similar fashion

to Balsa. However there are some differences in the semantics

of variable arrays. The code below demonstrates the full

flexibility offered by Balsa for using arrayed variables.

input i : array 0..3 of 2 bits

input c : 3 bits

input d : 2 bits

output o : 2 bits

output p : array 0..3 of 2 bits

variable v : array 0..3 of 2 bits

i -> v ;

loop

c -> then

case c of

0b1xx then

o <- v[(#c[0..1] as 2 bits)]

| 0b0xx then

d -> v[#c[0..1] as 2 bits)]

end

end

;

p <- v

end

Firstly, a single value is written to the entire array, then

an individual element is read or written, and then the entire

array is read as a single value. The strategy adopted by

Balsa is to implement the arrayed variable using multiple

Variable components, one for each element in the array. The

control can then initiate reads and writes of the passive ported

Variables individually or as a group, splitting the write data

and combining the read data as required.

A data-driven equivalent of this circuit structure presents

substantial problems. Once each Variable component has been

converted to VariablePush components, it is necessary to write

to each VariablePush before it is read. After writing to a single

element in the array, only that element would be available to

read.

One option is to leave the management of the structure to

the user, who must only attempt to read elements of the array

that are written. Alternatively the user could be restricted to

always writing to every element if they wish to use run-time

indexing or an elaborate scheme to write-back the original

data to those variable elements that are not written could be

devised. This would ensure that every time any element in the

array is written, all the other elements are also written (with

unchanged data). To the read side, the arrayed variable always

appears as if the entire array has been written.

None of these suggestions have been fully adopted. An ar-

rayed variable declared in the data-driven language in the same

fashion as a Balsa variable generates a single VariablePush

that holds an entire value of the array type. The whole of the

array must therefore be written to at once.
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Variables can also be declared in a similar fashion to arrayed

channels producing multiple variables in the implementation.

Each of these variables must be written individually; the whole

array may not be written by a single command. This second

type of variable can be used by the user to generate a fairly

close approximation of the functionality of the multi-variable

Balsa structure by implementing, in the source description, the

second of the schemes offered above. Although the function-

ality may be similar, the area used is substantially greater.

F. Structural iteration

Structural iteration is a very useful language feature espe-

cially when combined with arrayed channels and variables.

Essentially it allows the same code to be compiled multiple

times with different channel and variable connections. For

example, the following code is a simplified excerpt from the

data-driven description of the register bank of the nanoSpa

processor.

constant REGNUM = log REGCOUNT bits

array REGCOUNT of variable reg_usrw

array REGCOUNT of variable reg_usrr

input reg_usrr

output reg_usrw

during

for i in 0..REGCOUNT - 1

reg_usrw[i] <- reg_usrr[i]

end

end

input reg_usrw, wc, wd

output reg_usrr, reg_svcr

during

foreach i in reg_usrr

case wc of

(i as REGNUM) then

reg_usrr[i] <- wd

else

reg_usrr[i] <- reg_usrw[i]

end

end

end

The code generates REGCOUNT instances of the circuit in

figure 12. (The position of the channels that take data to the

read ports are indicated on the diagram but the code for the

read ports is not given above.)

Effectively this code generates a register ‘cell’ for each

register. In each ‘cycle’ of operation the write control (wc)

and data (wd) is duplicated to each cell and that cell compares

the register address in the control against its own index. If

they match then the write back data is written to that register,

otherwise the original value from the register is written.

G. Restrictions

1) Combining inputs: A conditional input is an input that

is part of the body of a conditional structure. As explained

in section IV-B, such inputs cannot be combined with un-

conditional inputs in any expression: the following code will

produce a compiler error since the operation a + b cannot

be used where the input of a is conditional and b is not.

wd reg_r*|

r

reg_w

r

| | | |

@
dup

dup

to other
instances

to other
instances

to read ports

wc

Figure 12. Simplified register cell.

input b, c

output o1

during

case c of

1 then

o1 <- b

else

input a during

o1 <- a + b

end

end

end

This restriction can be worked around by declaring another

channel and making both inputs to the expression conditional

as follows:

channel t

input b, c

output o1, t

during

case c of

1 then

o1 <- b

else

t <- b

input a, t during

o1 <- a + t

end

end

end

Note that by using this technique, less advantage is taken

of the speculation as the case must be resolved before the

channel t is written and the expression begins evaluation. Note

also however, that the speculative evaluation of the addition is

avoided in the case where the else clause is not chosen. This

may be exploited for the purposes of improving performance

or reducing energy consumption.

2) All inputs and outputs must be used: All inputs and

outputs that are declared must appear in the body of the

block. (They must also be declared if they appear.) It is only

necessary for the possibility to exist for each output to be

produced. It is not necessary for every, or indeed any, output

to actually be produced by the block when it is operating.

Once an input is declared it will be assumed that a value will

arrive from that channel or variable, but an output declaration

means only that the block is the one that writes to the

channel/variable, not that a value will definitely be written

in any particular ‘cycle’ of the block.
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3) Output to input dependencies must not be disjoint: An

output depends on an input if the input must arrive before the

output can be produced. For example in the following code o1

depends on c and a, t depends on c and b and o2 depends

on a and t.

channel t

input a, b, c, t

output o1, o2, t

during

case c of

1 then

o1 <- a

else

t <- b

end

o2 <- a + t

end

This gives three sets of input dependencies for each output:

{c,a}, {c,b}, {a,t}. These are not disjoint as c appears in

the first two and a appears in the first and third. This code is

therefore valid, however he following is not valid:

channel t

input a, b, c, t

output o1, o2, t

during

case c of

1 then

o1 <- b

else

t <- b

end

o2 <- a + t

end

The sets of input dependencies for this code are: {c,b},

{c,b}, and {a,t}. The set containing a and t is disjoint from

the other two sets. A separate block should be used to produce

o2:

channel t

input b, c

output o1, t

during

case c of

1 then

o1 <- b

else

t <- b

end

end

input a, t

output o2

during

o2 <- a + t

end

This rule helps to ensure the design is understandable as

each block has a single ‘cycle’ of operation due to the fact that

all inputs are synchronised somewhere, though not necessarily

with all others. For example, if the following code were valid

then its meaning would be open to question but presumably,

following the method of operation so far defined, o1 will be

written every time a arrives, o2 would be written every time

b arrives and there would be no synchronisation between the

two operations.

input a, b

output o1, o2

during

o1 <- a

o2 <- b

end

In Balsa, if one were to write: o1 <- a || o2 <-

b, then there is an explicit synchronisation that takes place

in the control. The data-driven style is designed to avoid

making such synchronisations. In Balsa, there will be one

communication on o1 and one on o2 before another takes

place on either channel. In the data-driven style there could

be infinite communications on o1 before any occur on o2 or

vice-versa. This could make designs much more difficult to

understand.

VI. A DESIGN EXAMPLE — NANOSPA

The benefits and drawbacks of the data-driven style have

been explored using a large design example – nanoSpa which

is a 32-bit microprocessor implementing what is essentially

a slightly cut-down version of the ARM instruction set and

which is a development of SPA [22], the first large scale design

described in Balsa.

The nanoSpa has been gradually developed with the sole

objective of making a Balsa synthesised asynchronous ARM of

the maximum possible performance. Development has reached

the stage where the processor implements all the main features

of the instruction set and benchmark programs can be run

in simulation to produce a good idea of the performance

(which is almost ten times that of the original SPA). This

makes it an excellent example in demonstrating whether a

data-driven circuit can offer performance improvements over

the best available conventional Balsa circuit. The demonstrator

was chosen to:

• demonstrate that the data-driven synthesis flow can be

used to construct a significant design.

• compare the performance of a high performance Balsa

design with the closest possible equivalent in the data-

driven style.

• demonstrate the integration into the existing Balsa design-

flow and the use of mixed Balsa and data-driven designs.

• attempt some level of qualitative comparison between the

features and flexibility offered to the designer in both

description styles.

A. Data-driven nanoSpa

The data-driven nanoSpa has been described in the new

data-driven input language. The description is roughly the

same length as the Balsa original (∼3000 lines). As far as

possible, the micro-architecture of the processor has been

precisely copied from the Balsa description. As a consequence,

most of the synthesised datapath logic is the same as the Balsa

nanoSpa, and the control contains most of the significant dif-

ferences. The intention is to attempt to explore the advantage

gained by using the data-driven style in describing a design

that is as close as possible to a Balsa description, rather than

by tailoring the design specifically to suit the data-driven style.
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Figure 13. Data-driven nanoSpa decode structure.

The two major exceptions where it was necessary to make

significant changes to the architecture are in the decode unit,

due to its use of (temporal) iteration, and the register bank,

due to its reliance on Balsa-style variables. These issues are

discussed below.

B. Decode

Unusually for a RISC-style processor, the ARM instruction

set contains support for multi-cycle load and store instructions.

These load and store multiple (ldm/stm) instructions allow

any given subset of registers to be loaded from or stored to

contiguous words in memory using a single instruction. The

nanoSpa implements these instructions in the decode stage by

simply generating and issuing multiple single memory transfer

operations to the execute unit. The iterative decode for ldm/stm

instructions makes use of the Balsa while loop structure to

repeatedly generate memory transfer operations. In the control-

driven style the handshake for the inputs to the decode can

enclose all of this iterative operation allowing the inputs to be

read repeatedly by each iteration.

In a data-driven style, iteration is implemented in a dif-

ferent way: instead of enclosing several variable and channel

reads within a single input handshake, the input handshake

is repeated as many times as required, each time reading

variables and channels only once. It is quite straightforward to

rearrange the structure of the decode to implement the multi-

cycle instructions as shown in figure 13. In this structure

the whole decode can be viewed as iterative with regular

instructions simply being a special case requiring only a single

iteration. When an instruction arrives at decode it is passed

through the multiplexer to the decode logic. If the instruction

is an ldm/stm, the necessary data for the next iteration is

passed back to the multiplexer and the control signal is set

so as to re-inject the data as the next instruction. When the

ldm/stm is finished, or after a single cycle if the instruction

is a regular instruction, the multiplexer is signalled to inject

the next instruction being sent from fetch. Although this may

not be the most efficient implementation, it has the important

advantage that the two blocks shown in the shaded area in

figure 13 (for regular or ldm/stm instructions) can be copied

directly to the data-driven description.

r0

r1

r2

r3

control

data

Control
Write

Control
Write

Control
Write

Control
Write

Figure 14. Data-driven nanoSpa register structure.

C. Register bank

The Balsa nanoSpa register bank uses the general read and

write structure for variable arrays discussed previously. The

passive-ported Variable component allows reads and writes to

occur to variables in any arbitrary order. As discussed earlier,

it is not so easy to provide this general structure when using

push style variables. In order to read from any variable, it

is necessary for that variable to push its data. Therefore, in

order to implement the register bank in the data-driven style

it is necessary to write to every variable (i.e. register) during

every cycle. The data-driven register bank write structure is

illustrated in figure 14. The write control and data are here

duplicated to individual write control units belonging to each

register. These individual units decide whether to write the data

to their respective register. If they do not write the data, they

recycle the existing value and write this to the register instead.

The subsequent read may therefore pick the appropriate data

from any register as all registers will push data.

The data-driven register bank structure results in an indi-

vidual cell for each register that controls the writes to that

particular register (figure 14). A read unit is generated for each

read port. This structure results in improved performance but

also significantly increases the area over the Balsa counterpart.

It will also significantly increase the energy consumption as

every register is written on every cycle.

D. Simulation Results

1) Individual Modules: Rather than simulating the entire

processor, it is more instructive to examine the results from

simulating individual modules within the processor. This

avoids issues associated with the pipelining and processor

architecture and demonstrates the performance improvements

gained by using the data-driven logic style. The environments

used in the test benches for these simulations all have zero

delay. Generally, this favours the control-driven approach as,

for example, the cost of synchronising inputs that all arrive

simultaneously is minimal. The results then show (to a close

approximation) the minimum improvement achieved by the
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Table II
PERFORMANCE OF DUAL-RAIL AND SINGLE-RAIL NANOSPA MODULES

Dual-rail Gates/Cycle Single-rail Gates/Cycle
Module Test Balsa Data-driven Improvement Balsa Data-driven Improvement

Fetch 59 29 2.0 47 33 1.4
Decode regular 52 39 1.3 179 76 1.0

ldm/stm (5 registers) 604 254 2.4 578 311 1.9
Register bank 1 write 134 69 1.9 82 61 1.3

2 writes 182 74 2.5 99 61 1.6
ALU and 74 41 1.8 57 33 1.7

add 0 carry 85 74 1.1 75 42 1.8
add 5 carry 86 74 1.2 83 52 1.6
add 32 carry 107 65 1.6 137 106 1.3
mov 77 57 1.4 56 32 1.8

ExecuteControl non-memory 44 24 1.8 41 32 1.3
memory store 57 30 1.9 46 32 1.4
memory load 64 32 2.0 50 32 1.6

Execute nop 83 58 1.4 70 56 1.3
and 93 58 1.6 91 59 1.5
and with shift 133 65 2.0 129 63 2.0
ands (update flags) 95 58 1.6 91 59 1.5
ldr/str 116 65 1.8 150 106 1.4
branch 92 74 1.2 88 56 1.6

Table III
DUAL-RAIL AND SINGLE-RAIL NANOSPA AREA

Dual-rail Transistor Count
Module Balsa Data-driven

Fetch 7667 17957
Decode 64394 271369
Register bank 68456 376914
Execute 143750 265707

ExecuteControl 5073 5754
ALU 38687 53492
Shifter 28987 85431
Other execute 64311 107642

Other 36482 24806

Total 320749 956753

Single-rail Transistor Count
Module Balsa Data-driven

Fetch 5741 5280
Decode 37114 58825
Register bank 31468 71999
Execute 56754 72492

ExecuteControl 2887 3470
ALU 9179 11270
Shifter 13677 26249
Other execute 28261 27720

Other 20380 11234

Total 151457 219830

data-driven style. The fact that the data-driven style does not

synchronise all inputs before beginning the operation and does

not wait until the operation is complete before releasing them

can potentially further improve performance.

The fetch, decode and execute units together with some

individual modules from the execute unit have been simulated.

These latter modules were simulated, where appropriate, with

different input data to demonstrate the data-dependent varia-

tion in performance. The relative performance of the modules

in nanoSpa for both dual-rail and single-rail implementations

are shown in table II. The Gates/cycle figure is the number

of gates the request-in signal goes through before emerging

as an acknowledge signal to its data provider. It is a measure

of maximum throughput of each module in the design. The

relative areas of the units within nanoSpa (as measured by

transistor count) are shown in table III.
2) Register bank hybrid design: The register bank has

been highlighted as a particular problem in terms of area and

energy consumption. A possible solution that may be easily

implemented is to use the conventional Balsa register bank

in place of the data-driven register bank. As the interface to

both register bank designs is the same and the two design

styles are integrated into the same flow, it is trivial to produce

this hybrid design. This provides an excellent example of how

designs with mixed Balsa and data-driven modules can be

used. The lower area and energy requirements of the control-

driven style can be exploited for non-critical modules, while

the performance of the data-driven style is exploited for others.
3) Processor Performance: The processor was simulated at

the transistor level using nanoSim to measure both speed and

energy consumption with the processor running the Dhrystone

benchmark. Table IV compares the energy consumption for

a single Dhrystone loop and the performance of the control-

driven design, the data-driven design and a hybrid design with

a conventional Balsa register bank.

The dual-rail control-driven nanoSpa achieves 54 Dhrystone

MIPS. The data-driven version achieves 85 Dhrystone MIPS,

an improvement of 1.6 times the original. As can be seen from

table III, the area is significantly increased, from 320749 to

956753 transistors. As anticipated, a significant proportion of

this increase is found in the register bank (from 68456 to

376914 transistors). If the increase in register bank area is

ignored, then the data-driven nanoSpa is just over twice the

size of the original Balsa version. As expected (for the reasons

given in section III), the energy consumption is considerably

greater for the fully data-driven version. Table V shows the

contribution of the various modules to the energy consumption.

It confirms that the largest energy consumer in the data-

driven approach is the register bank, whereas for the Balsa

implementation, the execute unit is the most significant. The

dual-rail hybrid design achieves 68 Dhrystone MIPS (a speed
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Table IV
PERFORMANCE AND ENERGY CONSUMPTION PER DHRYSTONE LOOP

Dual Rail
Style DMIPS Energy (µJ)

Balsa 54.2 (1.00x) 0.36 (1.00x)

Data-Driven 85.2 (1.57x) 1.59 (4.44x)

Hybrid 67.9 (1.25x) 0.82 (2.29x)

Single Rail
Style DMIPS Energy (µJ)

Balsa 65.3 (1.00x) 0.15 (1.00x)

Data-Driven 92.7 (1.42x) 0.28 (1.85x)

Hybrid 80.9 (1.24x) 0.19 (1.23x)

Table V
ENERGY CONTRIBUTION BY NANOSPA MODULE

Dual-rail Energy (%)
Module Balsa Data-Driven Hybrid

Fetch 6 3 5
Decode 23 28 56
Register bank 4 50 3
Execute 44 16 32
Other 22 2 4

Single-rail Energy (%)
Module Balsa Data-Driven Hybrid

Fetch 8 4 6
Decode 30 28 43
Register bank 5 38 5
Execute 39 25 39
Other 18 5 7

improvement of 1.25) in dual-rail and uses 651057 transistors.

Performance has been traded for reductions in area and energy

consumption. In this case, the decode unit is now the most

significant energy consumer. A lesson that can be drawn from

these figures is that a careful analysis is required to identify

those parts of the design contributing to bad performance in

speed, energy or area.

4) Single-rail performance: Tables II-V also show the

results for the single-rail back-end. The performance im-

provement for the data-driven single-rail back-end (1.4x) is

somewhat less than for dual-rail, probably because the control

is more complex in dual-rail, but offers better opportunity for

optimisation in the data-driven case. It can be seen that the area

penalty is much smaller for single-rail than that for dual-rail.

Again, much of the increase is in the register bank (from 30480

to 79480 transistors). If the increase in register bank area

is ignored then the data-driven design is only approximately

18% larger. The energy figures for the dual-rail back-end are

considerably worse than for single-rail, one reason being that

in dual-rail, data is pushed by twice switching one wire for

each bit, whereas in single-rail, only one wire for each bit is

switched (once) and only if the value of that bit changes.

VII. CONCLUSIONS

This paper has described contributions in the field of

asynchronous digital circuit synthesis. The existing handshake

circuit synthesis method has been examined and performance

has been postulated as a major weakness. The overhead of the

control-driven style of compilation has been identified as a sig-

nificant contributing factor to the shortcomings in performance

of the existing synthesis method. However, the handshake

circuit paradigm is attractive because it is both flexible and

robust, independent of any particular implementation style,

straightforward to understand, and the transparent compilation

allows source-level optimisation.

A data-driven style of circuit would seem to offer poten-

tial for increased performance. Therefore an alternative data-

driven style of handshake circuit structure has been proposed

along with a language from which this circuit style may

be compiled. The compiler to translate this language into

handshake circuits has been implemented and integrated into

the existing Balsa framework.

The data-driven style has been successfully demonstrated by

the implementation of a complex 32-bit microprocessor design

using the Balsa synthesis system. The potential improvements

over the control-driven style have been demonstrated by

comparison of this design with the equivalent control-driven

implementation. The results are transferable to other synthesis

systems based on handshake circuits such as Haste.

The increased area and energy requirements of the data-

driven style have been briefly noted but these are unlikely

to be disproportionate to the performance gains and could be

decreased by further work on modified or alternative back-end

implementation styles. Future work should also address new

structures to better support the register banks.

Due to the variables and sequential and iterative control

structures, it is possible in Balsa to write a naive sequential

program that appears very similar to a conventional program-

ming language. Such a program will compile and produce a

functioning (but slow) circuit. In the data-driven style, it is

necessary for the programmer to think in a different, more

‘asynchronous’ manner as such sequential descriptions are

not possible. It is also similarly necessary to do so when

using conventional Balsa if good performance is required.

The rewards of adopting a data-driven style with respect to

performance are clear but the method introduced herein, being

intentionally designed to be data-driven, is superior to adopting

a data-driven approach with control-driven compilation. By

using the handshake circuit paradigm and integrating the new

style into the Balsa framework, it is straightforward to combine

both styles in the same design-flow and so greater flexibility

is offered to the designer.

The data-driven style has addressed the issue of the structure

of handshake circuits and control overhead. In general, the

performance of synthesised asynchronous circuits is still not

competitive with their synchronous counterparts. More work

is required at all levels of the design-flow before competitive

performance is achieved.
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