
in Figure 2 are detected during test and scan mode.

7: Testing delay faults

There is another class of faults in micropipelines which
can be detected using the proposed scan test technique.
These are delay faults in combinational circuits between
the stage registers of the micropipeline. The output data of
each combinational logic block is latched after a certain
delay when the data has arrived at its inputs. A delay fault
in this combinational block will extend path delays. In the
presence of such a fault the bundled data interface of the
correspondent micropipeline stage will be violated, i.e. the
outputs of the combinational logic will be latched before
the output signals in the bundle are stable.

The algorithm used to detect delay faults in the process-
ing logic of the micropipeline is similar to that exploited in
delay testing of synchronous circuits which has been
adapted by Khoche and Brunvand [12]. Basically, the pair
of test patterns (  and ) must be applied to the inputs of
the combinational circuit to detect its path delay faults.
According to this test approach three stage registers (,

 and ) are used to detect delay faults in the combi-
national logic . The tests  and  are stored in the reg-
isters  and  respectively. The results of the test are
saved in the register . When the test patterns are
loaded into the stage registers the combinational circuit is
settled (test ). The delay fault is tested by applying a
request signal to the inputRin of the micropipeline set in
normal operation mode. This causes the application of the
test  to the inputs of the logic  ( = ( )). A data
path of the circuit under test is activated. If there is a delay
fault in this path it will cause a delayed response by the
combinational circuit whereas the responses are latched
after a fixed time determined by the corresponding delay.

8: Conclusions

The scan test technique presented in this paper supports
testing for stuck-at and delay faults in micropipelines. The
internal inputs and outputs of the processing logic blocks
are fully controllable and observable through the scan path.
The test patterns are scanned into the registers and the test
results are shifted out from the register latches, united into
one shift register. The scan path of the testable micropipe-
line is controlled by the STCL block. Two implementations
of the STCL blocks which follow two different communi-
cation protocols have been presented. The universal struc-
tures of the STCL blocks allow them to be adapted for
arranging either a global asynchronous shifting of the test
data between different parts of the chip or a local scan path
within a particular block.

The proposed testable micropipeline structure greatly

p1 p2

Ri 1–
Ri Ri 1+

Fi p3 p1
Ri 1– Ri

Ri 1+

p1

p2 Fi p2 Fi 1– p3

simplifies the testing of micropipelines reducing the test
complexity to that of the processing logic. The overall
overhead can be estimated only for a particular case since
it depends on the complexity of the processing logic.
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goes high and a rising event is generated on the request out-
put RSout. If nASout=RSin=0 the C-element is set to zero.
Thus, the signalSc is reset to zero, rising and falling events
are produced on the control linesnASin andRSout respec-
tively. The delays of the control signals in the STCL block
are presented in Table III. The results show that the use of
the 4-phase STCL block improves the performance of the
shift operation.

6: Test strategy

The strategy we propose for testing stuck-at faults in
micropipelines is very similar to that used in scan testing
synchronous circuits. IfSc=0 the micropipeline shown in
Figure 4 can perform in normal operation mode (Tst=0) or
in test mode (Tst=1). In scan mode (Tst=0, De=0), the test
patterns are loaded into the stage registers which are con-
figured as a united scan register. The scan path is created by
connecting the inputsSin in series to the outputsSout of all
the stage registers. Clock signalsSc for controlling the shift
operation are generated internally by the STCL. When the
test patterns are loaded into the latches the micropipeline is
set to test mode (Tst=1). A request signal is produced on the
line Rin of the micropipeline. The responses from each
processing block are stored in the registers. WhenTst=0 the
contents of the latches are shifted to the outputSout of the
last stage register. The test results are compared with
known good ones. Whilst shifting out the test results to the
outputSout a new test pattern is loaded from the inputSin.
The test procedure is repeated. Thus, the complexity of

TABLE III:
4-phase scan test control delays

Path Delay

RSin↑ to RSout↑ 5.6nS

RSin↑ to nASin↓ 3.1nS

nASout↓ to nASin↑ 3.1nS

nASout↑ to RSout↑ 5.6nS

Cycle time 17.4nS

Figure 6: Scan test control logic for a
4-phase micropipeline

CRSin
nASout

Sc

nASin

RSout
B

testing the micropipeline is reduced to the testing of its
processing logic which comprises mostly combinational
circuits.

6.1: Testing for faults in the STCL

The STCL unit of the testable micropipeline is an addi-
tional control block which is not used in normal operation
mode. Nevertheless, it must be fault free as it controls the
scan path of the micropipeline. A stuck-at fault on any of
the lines in the STCL block prevents the generation of the
control signals on its outputs. This is because the STCL is
a fully delay-insensitive asynchronous circuit where every
control signal handshakes with others. Such circuits are
fully testable for stuck-at faults [14].

6.2: Testing for faults in the control logic

As was mentioned earlier, stuck-at faults on the control
lines of the micropipeline can be detected easily since they
cause the micropipeline to halt. This happens because a
micropipeline is an event-driven asynchronous circuit [9].
Such stuck-at faults can be identified either in normal oper-
ation mode or during the test.

6.3: Testing for faults in the processing logic

It is assumed that all the processing blocks between the
stages of the micropipeline are combinational circuits. The
internal inputs of each combinational circuit are controlla-
ble and its outputs are observable through the scan path of
the micropipeline. Tests for detecting stuck-at faults in all
the processing blocks can be derived using well known test
generation algorithms such as the D-algorithm, PODEM,
FAN and others [5].

6.4: Testing for faults in the latches

Two types of stuck-at faults are considered for the reg-
ister latches: stuck-at-capture and stuck-at-pass faults.

Stuck-at-capture (stuck-at-pass) faults of the scan latch
(see Figure 2) can be caused by stuck-at faults on the con-
trol lines of the tristate buffers and inverters which disable
(enable) them permanently. Most of these faults can be
detected by shifting an alternating 0-1 test through the
latches united in one scan register. A stuck-at-1 fault on the
inputnTst of the latch  can be identified during test mode
when the faulty scan latch and its predecessor are set to dif-
ferent states. In this case the state of the faulty latch will
be changed. Stuck-at-0 and stuck-at-1 faults on the lineDe
of  are detected by driving the inputDin with a different
logic value to its current state during test mode and scan
mode respectively.

Stuck-at faults on the data lines of the scan latch shown

L1

L1

L2



Test mode. During the test (Tst=1, Sc=0) the test vectors
are stored in the first latches . The outputs of these
latches are connected through the multiplexers to the out-
puts of the stage register. After receiving a request signal on
the lineRq the data is stored into the latches of the reg-
ister (see Figure 3). The test vectors and the test results are
saved in different latches because the data flows through
the micropipeline from left to right while the test vectors
must be preserved during the test.

5: Scan test control

The testable micropipeline design is shown in Figure 4.
It comprises a micropipeline and the scan test control logic
(STCL) unit. The stage registers of such a micropipeline
are built using scan latches. The STCL block is used to
make an asynchronous test interface for the micropipeline.

L1

L2

Figure 3: Scan register
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Figure 4: A micropipeline with scan features
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It also generates shift clock signalsSc for a united shift reg-
ister. The STCL block can serve either a 2-phase or 4-phase
signalling protocol depending on its structure. The STCL
can either be a central control block or can be incorporated
inside some of the micropipeline registers. Similar STCL
units can be used in different parts of the chip to arrange an
asynchronous scan test control interface between different
asynchronous blocks.

5.1: STCL for 2-phase transition signalling

An example of the STCL block for 2-phase transition
signalling is shown in Figure 5. The STCL block generates
the control signals in a manner similar to that of the control
circuitry of the scan register illustrated in Figure 3. The
addition of the C-element ensures the delay insensitivity of
the STCL block.

Some calculations of the typical delays in the STCL
block have been carried out using SPICE analyses and are
shown in Table II.

5.2: STCL for 4-phase signalling

The implementation of the STCL block for a 4-phase
communication protocol is simpler than that of the STCL
block for 2-phase signalling (see Figure 6). Initially, the C-
element is set to zero (nASin=nASout=1). When a rising
shift request signalRSin arrives, the C-element changes its
state to one. As a result, a falling event is produced on the
negated acknowledge linenASin, the shift clock signalSc

TABLE II:
2-phase scan test control delays

Path Delay

RSin to ASin 6.3nS

RSin to RSout 11.8nS

ASout to C-element primed 1.2nS

Cycle time 19.3nS

Figure 5: Scan test control logic for a
2-phase micropipeline
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described allows the detection of all the stuck-at faults and
bundling constraint violations in micropipelines. However,
this scan test technique has been developed only for micro-
pipelines which use a two-phase transition signalling pro-
tocol. The scan test interface uses clocks produced by a
clock generator which is not always available in asynchro-
nous VLSI designs.

A method to design and test asynchronous sequential
circuits based on the micropipeline design style has been
reported [13]. The test approach is implemented using spe-
cially designed scan latches manipulated by the scan test
control logic. In this paper, we extend this test method to
the testing of general micropipeline structures.

4: Scan test design

4.1: Scan latch implementation

Figure 2 shows a CMOS implementation of the scan
latch structure which contains two latches ( and ) and
a multiplexer.

In normal operation mode (the test control signalTst is
low) the tristate inverter of  is closed since the shift clock
signalSc is held at zero (nSc=1). When the data enable sig-
nal (De) is high the input data (Din) passes to the output
Dout and is latched by  whenDe is low.

In scan mode (Tst=0,nTst=1) the enable signalDe is low
so that the tristate buffer of  is closed. When the clock
signal Sc is high (nSc=0) the scan data from the scan-in
input (Sin) is latched by the latch  and passes to the
tristate inverter of . While Sc=1,  is opened and the
shift data is sent to the scan-out output (Sout) of the scan
latch. WhenSc=0 (nSc=1) the scan data bit is latched by
and the latch  is opened. This procedure is similar to that
used for storing the data in a master-slave flip-flop.

Figure 2: A CMOS implementation of the
scan latch

Din

Dout

Sin

L1

L2

nTst

MX

F

T

Sout

Sc

De

nTst
nSc

Tst

L1 L2

L2

L2

L2

L1
L2 L2

L2
L1

In test mode (Tst=1,nTst=0,Sc=0,nSc=1) the scan latch
performs as in normal operation mode. The only difference
is that the response bit from the combinational circuit is
stored in  whereas the test bit is held unchanged in
and stimulates the appropriate input of the processing logic
of the next stage. Note that, during scan mode when the last
test bit is shifted in the scan latch, the Boolean signalTst
(nTst) must be set to one (zero) before the signalSc (nSc)
goes down (high) in order to preserve the state of.

The basic and scan versions of the latch structure have
been implemented in CMOS technology on a 1 process
and simulated using SPICE analyses. The basic latch cell
used is similar to a single-phase static CMOS latch which
requires 11 transistors [10]. 37 transistors were used for the
implementation of the scan latch. As a consequence, the
redundancy of the scan latch is 236%. This scan latch
requires 12% fewer transistors than the one proposed by
Khoche and Brunvand [12]. Table I shows the simulated
delays through a single data path of the two latch structures.

4.2: Scan register design

A two-bit scan register design for a testable micropipe-
line is shown in Figure 3. Compared with the basic register
it contains five additional wires: test control (Tst), scan-in
(Sin), scan-out (Sout) and shift clock line (Sc).

Normal operation mode (Tst=0, Sc=0). In the initial
state the register latches are closed and the outputs of
the toggle element and C-element are set to zero (reset con-
trol lines are omitted in Figure 3). When a request signal is
received on the inputRq the latches  are opened since the
data enable signalDe goes high on the output of the buffer
B. The data is transmitted from the inputsDin to the outputs
Dout of the register. The toggle element steers the rising
event from its output (marked with a dot) to the XOR gate.
The output of the XOR gate becomes low. As a result, the
latches  are closed (De=0) and an acknowledge signal
Ack is produced by the toggle element on its ‘blank’ output.

Scan mode. While Tst=0 andDe=0 the register can be
used to scan the data into the latches from its inputSin.
Simultaneously, the scan data comes to the outputSout sup-
plying another scan register. The scan procedure is control-
led by clock signals applied to the inputSc.

TABLE I:
Data path delays for the basic and scan latches

Latch Path Delay

Basic Din to Dout 3.7nS

Scan Din to Dout 5.8nS

L2 L1
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µm

L2
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L2



data comes to the micropipeline from outside and is trans-
ferred through the stage registers. If there are no processing
blocks (usually combinational circuits) between stages the
micropipeline performs as an ordinary first-in first-out
(FIFO) buffer. The data processing procedure is controlled
by C-elements which are state-holding ‘rendezvous’ ele-
ments performing the AND function for events.

Initially, all the C-elements are set to zero. When the
data is ready on the inputsDin of the micropipeline the
sender issues a request on the lineRin. The first C-element
transfers a request signal to the first register (Reg1) which
latches the data and generates an acknowledge (Ain) to the
sender. A signal Ack from Reg1 is delayed for the time
required to complete the data processing performed by the
combinational logic (CL1). When the data is stable on the
outputs ofCL1 the second C-element sends a request to the
next stage register (Reg2). As a consequence, the data is
latched inReg2 and the first C-element is primed by an
acknowledge signal generated byReg2. New data can be
written intoReg1 and the process of transferring the data
through the subsequent stages of the micropipeline is
repeated. When the data reaches the last stage of the micro-
pipeline a request (Rout) is produced for the receiver which
completes the handshaking protocol by sending an
acknowledge on the lineAout.

Every micropipeline stage works in parallel and sends
the data to the neighbour stage only when the data is ready
to be processed. The data is latched in registers. There are
different ways to implement the control of latching and
storing the data in the latches of the micropipeline registers.
Basically, the latches are controlled by a pair of control sig-
nals such as ‘pass’ and ‘capture’ [9]. In the initial state all
the register latches can be either transparent or in the cap-
ture mode depending on the latch transition controlling
protocol. The use of ‘normally closed’ latches is preferable
from the power consumption point of view since no transi-
tions in the data paths can occur unless new data has been
latched by the stage register [10].

Figure 1: A micropipeline with processing
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3: Testing micropipelines

3.1: Faults in micropipelines

There are a few works devoted to fault modelling and
fault testing problems in micropipelines [11-13]. Stuck-at
faults in thecontrol part, combinationallogic blocks and
latches of the micropipeline have been considered [11].

Faults in the control part

These are faults on the inputs and outputs of the C-ele-
ments and the request and acknowledge lines of the micro-
pipeline. As was shown the micropipeline moves through
at most one step and then halts in the presence of a stuck-at
fault in its control part. Thus, such stuck-at faults can be
identified easily during normal operation mode.

Faults in the processing logic

It was assumed that all the latches of the micropipeline
are transparent initially. This allows the processing logic to
be treated as a single combinational circuit. To detect any
of the single stuck-at faults in such a circuit test vectors can
be obtained using any known test generation techniques
[5].

Faults in the latches

It was considered that a stuck-at fault inside the latch
can put it permanently in capture (stuck-at-capture fault) or
pass (stuck-at-pass fault) mode. Any stuck-at fault on the
inputs or outputs of the stage register or stuck-at-capture
fault of the transition latch is equivalent to the correspond-
ent stuck-at fault in the combinational logic block. To
detect a stuck-at-pass fault in the transition latch two test
patterns are required.

3.2: Scan testing

An elegant scan test approach has been proposed by
Khoche and Brunvand [12]. The micropipeline can work in
two modes: normal operation and scan test mode. The
micropipeline performs to its specification in normal oper-
ation mode. In test mode, all the latches are configured into
one shift register where each latch works as an ordinary
master-slave flip-flop. The stage registers of the micropipe-
line are clocked through the control lines where the input
Aout is used as a clock input. The C-elements pass their
negated inputs onto the outputs forming a clocking line for
the scan path. As a result, the test patterns are loaded from
the scan-in input into all the latches of the micropipeline.
Afterwards the micropipeline is returned to normal opera-
tion mode in which only one request signal is generated. To
observe the contents of the register latches the micropipe-
line is set to scan test mode. The contents of all the latches
are shifted out to the scan-out output. The test technique
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Abstract

The micropipeline approach to designing asynchronous
VLSI circuits has successfully been used in the AMULET1
microprocessor. A method to design and test micropipe-
lines is presented in this paper. The test strategy is based
on the scan test technique. It allows the separate testing of
all the data processing blocks by scanning the test patterns
in and shifting the responses out of the stage registers. The
proposed test approach provides for the detection of all
single stuck-at and delay faults in the micropipeline. Tests
for the combinational processing logic and state holding
elements can be derived using standard test generation
techniques.

1: Introduction

Asynchronous VLSI designs may have advantages over
their synchronous counterparts. The clock skew problem
no longer exists in asynchronous circuits since they do not
use global clocks. In addition, asynchronous circuits have
a potential for lower power consumption [1-3].

An asynchronous version of the ARM6 microprocessor
(AMULET1) has been designed by the AMULET research
group at the Department of Computer Science in the Uni-
versity of Manchester and fabricated by GEC Plessey Sem-
iconductors Limited. AMULET1 was designed using the
micropipeline design approach which offers a good engi-
neering framework for the design of complex asynchro-
nous VLSI circuits [4].

The design process for asynchronous circuits must take
into account all hazards and races to ensure a proper signal-
ling interface. From this point of view the testing of circuits
without synchronization clocks is complex [3]. As a result,
testing asynchronous VLSI designs presents new problems
which must be addressed before their commercial potential
can be realized. The most widely used fault models chosen

to describe fault behaviours of asynchronous circuits are
stuck-at and delay (transition) faults [3,5]. The scan test
technique has been adapted well to the testing of asynchro-
nous circuits [6-8]. Unfortunately, these results have been
obtained for specific asynchronous designs and cannot be
used for the testing of micropipelines.

2: Micropipelines

Micropipelines were introduced by Ivan Sutherland in
his Turing Award lecture [9]. Micropipelines are asynchro-
nous, event-driven pipelines based on the ‘bundled data’
interface. In micropipelines, the data is treated as a bundle,
i.e. when the data produced by the sender is ready (the data
outputs are stable) the sender issues a ‘request’ event to the
receiver; the receiver acknowledges the receipt of the data
by sending an ‘acknowledge’ event. This handshaking
mechanism is repeated when further data is produced by
the sender.

2.1: Transition signalling

The data transfer protocol in micropipelines is control-
led by ‘transition’ signals. There are two types of signalling
protocols used in asynchronous circuits: 2-phase and 4-
phase signalling protocols. According to the 2-phase tran-
sition signalling protocol both rising and falling transition
events have the same meaning. When the data is ready to
be sent to the receiver the sender produces a rising (or fall-
ing) request signal which is acknowledged by a rising (or
falling) signal on the acknowledge control line. 4-phase
signalling differs from the 2-phase protocol in that both the
control signals (request and acknowledge) must be
returned to zero, i.e. new data can be transmitted only when
both control signals are zero.

2.2: Micropipeline structures

Figure 1 illustrates a micropipeline with four stages. The


