
A forecast-based biologically-plausible STDP learning rule

Sergio Davies, Alexander Rast, Francesco Galluppi and Steve Furber

Abstract—Spike Timing Dependent Plasticity (STDP) is a
well known paradigm for learning in neural networks. In this
paper we propose a new approach to this problem based
on the standard STDP algorithm, with modifications and
approximations, that relate the membrane potential with the
LTP (Long Term Potentiation) part of the basic STDP rule.
On the other side we use the standard STDP rule for the LTD
(Long Term Depression) part of the algorithm. We show that
on the basis of the membrane potential [5] it is possible to
make a statistical prediction of the time needed by the neuron
to reach the threshold, and therefore the LTP part of the STDP
algorithm can be triggered when the neuron receives a spike. We
present results that show the efficacy of this algorithm using
one or more input patterns repeated over the whole time of
the simulation. Through the approximations we suggest in this
paper we introduce a learning rule that is easy to implement
in simulators and reduces the execution time if compared with
the standard STDP rule.

I. INTRODUCTION

LEARNING in neural networks was postulated for the

first time by D. O. Hebb in 1949 [9]. On the basis

of this general idea, various forms of learning have been

tested, with the goal of determining a biologically realistic

learning model. In 1996 [17] biological tests observed that

synaptic weight modification occurs when pre- and post-

synaptic spikes coincide at low frequencies. In 1998 [4] tests

were run on cultures of hippocampal cells: the outcome of

this research showed a relation between the relative timings

of pre-synaptic spikes and post-synaptic spikes with potenti-

ation or depression of the corresponding synaptic weight.

This correlation is, however, limited by an efficacy time

window: if the time difference between a pre- and a post-

synaptic spike is greater than this effective time window

(also known as the STDP time window), modifications in

synaptic strength are zero. The function that summarizes

this behaviour is shown in fig.1. The numerical values of

this function (called the STDP curve) vary depending on the

system and on the neuron type [1] [3] [21].

While this rule states how synapses are influenced by

couples of pre- and post-synaptic spikes, it is not yet clear

how multiple sets of pre- and post-synaptic spikes influence

synaptic weights. The standard STDP rule deals with this

condition by applying the algorithm for every pair of pre-

and post-synaptic spikes in the relevant time window (see

fig.2(a)) [21]. This algorithm, as described by the research

done in 1998 [4], has been used in several simulation tests

(e.g.: [8]) which have proven to replicate the biology. Burkitt

et al. [6] found a mathematical and statistical description of

the standard STDP rule.

All the authors are with the School of Computer Science, The Uni-
versity of Manchester, Manchester, U.K. (email: {daviess, rasta, galluppf,
sfurber}@cs.man.ac.uk).

Fig. 1. STDP curve. The X axis represents the time between pre and post
synaptic spikes (∆t = tpre − tpost). The Y axis represents the synaptic
weight modification.

An highlighted property of the STDP rule [8] is that the

neuron which identifies an incoming repeated pattern moves

the identification (fires) earlier and earlier in the pattern until

it reaches the earliest group of spikes that introduces the

pattern.

In [2], Banerjee states that while there are differences

between an abstract model and a biological model of a neural

network, the results demonstrate that the behaviour of an

abstract system is generally consistent with what is observed

in biological experiments. As an example of this, Indiveri et

al. [10] use an abstract model which differs from the standard

STDP rule.

There have been implementations of variants of the STDP

rule and some of them take into account trains of spikes

differently from the standard STDP model. Some imple-

mentations take into account series of three and four spikes

[23] [20]. However these models are more complex than the

standard STDP rule, because of the need to track different

patterns across the sequence of pre- and post-synaptic spikes.

The algorithm which implements the simplest learning rule

is the “spike-pair” (also known as “nearest neighbour” or

“nearest spike”) rule: only the nearest pairs of pre- and

post-synaptic spikes interact to modify the synaptic weight

(fig.2(b)). This particular rule is known to reproduce at least

one biologically-relevant feature [14]: post-synaptic spikes

propagate back into the dendritic spines, resetting them. For

this reason the latest post-synaptic spike erases the effect

of earlier pre-synaptic spikes. This rule has been used for

various experiments [18] [19] and has proved to be reliable

from the phenomenological point of view.



(a) Standard STDP rule: ev-
ery pair of incoming and
outgoing spikes (in the rel-
evant time window) con-
tribute to the synaptic plas-
ticity.

(b) “Spike-pair” rule: only the combi-
nations of the nearest spike pairs (in the
relevant time window) contribute to the
synaptic plasticity.

Fig. 2. STDP rules

Other variants of the STDP algorithm link the synaptic

weight modifications to the (pre- or post-synaptic) neuron

membrane potential. In this class of algorithms, generally, the

synaptic weight modification is influenced by the membrane

potential (or a low-pass filtered version of it) [7]. In analogue

hardware implementations of neural network simulators,

similar techniques are used in order to evaluate synaptic

plasticity [5].

In our implementation, the standard STDP algorithm de-

scribed has been modified using the “Deferred Event” model

[16] [15] to allow triggering the STDP algorithm only when

a pre-synaptic spike is received by the post-synaptic neuron.

A statistical description of this algorithm is beyond the scope

of this paper.

II. PROPOSED ALGORITHM

In this paper we present a learning algorithm for neural

networks which is able to update the synaptic weight as soon

as a pre-synaptic spike is received. To do this we trigger LTD

using the standard STDP algorithm and we trigger LTP in

relation to the membrane potential value. For this purpose

we determine, with a statistical method, the relation between

the membrane potential and the estimated time of the next

neuron spike. The basic idea is that the higher the membrane

potential, the sooner the neuron is supposed to fire. This

estimation is called throughout this paper “Time-To-Spike”

(TTS).

With this approximation we compute the LTP part of

the STDP algorithm pairing the incoming pre-synaptic spike

with an estimation of the first post-synaptic spike using a

statistical rule. Therefore this part of the algorithm is similar

to the “spike-pair” rule described before. For the LTD part of

the algorithm, we use the standard STDP rule which pairs the

post-synaptic spikes with all the pre-synaptic spikes received

after the post-synaptic spike.

The model we present in this paper is able to compute

both synaptic potentiation and depression (LTP and LTD) as

soon as one pre-synaptic spike is received by a post-synaptic

neuron, using only the event triggered by the receipt of a

pre-synaptic spike.

Fig. 3. Raster plot of a randomly connected network with constant input
to random neurons.

III. MODEL DESCRIPTION

The approach proposed in this paper is based on a detec-

tion of the membrane potential of the neuron: the higher

the membrane potential value, the sooner the neuron is

supposed to fire. For the purpose of this paper we focus

on the Izhikevich neuron model which is described by the

two ordinary differential equations [11]:

{

v̇ = 0.04v2 + 5v + 140 − u − I

u̇ = a(b · v − u)
(1)

if v ≥ 30 mV then v = c, u = u + d (2)

This function is estimated statistically using a network

composed of 4, 000 Izhikevich neurons randomly intercon-

nected. Two types of Izhikevich neurons are used in this

network:

1) Tonic spiking neurons: (a = 0.02; b = 0.2; c = −65;
d = 8);

2) Fast spiking neurons: (a = 0.1; b = 0.2; c = −65;
d = 2);

There are 3, 200 tonic spiking neurons each connected

with excitatory synapses to 25 other neurons randomly

chosen from all the other neurons in the population. The

synaptic strength for excitatory connections is 10nA/µF .

There are 800 fast spiking neurons each connected with

inhibitory synapses to 25 other neurons randomly chosen

from all the tonic spiking neurons in the population. The

synaptic strength for inhibitory connections is −5nA/µF .

The network is excited by the injection of a constant

current of 20nA/µF into 60 randomly chosen tonic spiking

neurons and 20 randomly chosen inhibitory neurons. No

synaptic plasticity is enabled for this test.

The simulator used to collect the results presented in this

paper is a revised version of the Izhikevich neural network

Matlab simulator [13]. The network is then simulated for

1, 000 steps of 1msec each (for an overall simulation time of

1s). Fig.3 shows the raster plot generated by the simulation.

At the end of the simulation all the values of the membrane

potential stored for each millisecond of the simulation are



Fig. 4. Example of computation of the Time-To-Spike (TTS) of a neuron.

−100 −80 −60 −40 −20 0 20 40
0

50

100

150

200

250

300

Fig. 5. Function that relates the membrane potential in mV (on the X
axis) and the estimated time to spike in msec (on the Y axis).

post-processed: for every spike received by a neuron, a

couple (membrane potential, time-to-spike) is computed (see

fig.4). Then those couples are sorted and grouped using the

membrane potential value as the key. Finally we estimated a

mean time-to-spike across all the elements of each of these

groups. The result of this statistical approach is presented in

fig.5.

In this graph the X axis represents the membrane potential

value. The Y axis represents the mean time-to-spike esti-

mated before. It is possible to note that the graph is divided

in two sections: for values between (about) −40mV and

30mV the estimated time to spike is linear in the interval

between 3msec and 0msec. For values smaller than −40mV
the graph is very noisy.

The difference between the two parts of the graph can

be justified by looking at the phase plane of the Izhikevich

neuron model (fig.6). In this graph the X axis represents

the membrane potential (variable V of the Izhikevich neuron

model), while the Y axis represents the variable U . If the

Fig. 6. Izhikevich neuron state phase plane.

neuron state is on the left of the threshold (the red dashed

line and the BC part of the parabola) then in the absence

of input it will move towards the equilibrium point A. If

the neuron state is on the right of the threshold, it moves

autonomously in the absence of input towards the spiking

condition (Vmembrane ≥ 30mV ). This threshold corresponds

to the separation between the two sections of the graph in

fig.5.

To remove some noise from the graph that relates the

membrane potential with the estimated time to spike, we

used a sliding window filter with size going from 64 samples

to 1024 samples (left column of fig.7). Running this test

multiple times, it is possible to note that the right part of

the graph does not change significantly, while the left part

varies more and more as the membrane potential moves left

from the threshold point. Therefore we limit our analysis to

a window of 32 milliseconds of forecast (right column of

fig.7).

The function that results from this analysis is com-

posed of two segments: the first passes through the points

(30mV ; 0msec) and (−40mV ; 3msec). The second passes

through the point (−40mV ; 3msec). We use the second edge

of the segment as a parameter for the forecast (parameter

“L”). The relation function between the membrane potential

and the estimated time to spike can be then summarized in

fig.8.

IV. NETWORK DESCRIPTION AND SIMULATION

PARAMETERS

The simulations we ran have a neuron input layer com-

posed of 200 neurons connected to an output layer which can

be formed of one, two or four output neurons. All the neurons

used in these tests are tonic spiking Izhikevich neurons.

Multiple output neurons inhibit each other for 5 milliseconds

with a strength that linearly increases from −10nA/µF to

−6nA/µF .

We used “voltage-jump” synapses with plasticity enabled.

Here we will introduce two sets of experiments: the first

uses the standard STDP algorithm, while the second uses the

forecast-based learning algorithm. The STDP curve (fig.1) is

defined by the function:



−100 −80 −60 −40 −20 0 20 40
0

20

40

60

80

100

120

140

160

180

200

 

 

64

(a) filter size: 64 samples - full
range

−80 −60 −40 −20 0 20
0

5

10

15

20

25

30

 

 

64

(b) filter size: 64 samples

−100 −80 −60 −40 −20 0 20 40
0

20

40

60

80

100

120

140

160

180

200

 

 

128

(c) filter size: 128 samples -
full range

−80 −60 −40 −20 0 20
0

5

10

15

20

25

30

 

 

128

(d) filter size: 128 samples

−100 −80 −60 −40 −20 0 20 40
0

20

40

60

80

100

120

140

160

180

 

 

256

(e) filter size: 256 samples -
full range

−80 −60 −40 −20 0 20
0

5

10

15

20

25

30

 

 

256

(f) filter size: 256 samples

−100 −80 −60 −40 −20 0 20 40
0

20

40

60

80

100

120

140

160

180

 

 

512

(g) filter size: 512 samples -
full range

−80 −60 −40 −20 0 20
0

5

10

15

20

25

30

 

 

512

(h) filter size: 512 samples

−100 −80 −60 −40 −20 0 20 40
0

20

40

60

80

100

120

140

160

180

 

 

1024

(i) filter size: 1024 samples -
full range

−80 −60 −40 −20 0 20
0

5

10

15

20

25

30

 

 

1024

(j) filter size: 1024 samples

Fig. 7. Filtered version of the function in fig.5 that relates the membrane
potential (in mV ), on the X axis, and the estimated time to spike (in msec),
on the Y axis. The filter applied is a sliding window with varying size. On
the left column the full range filtered graph. On the right column a detailed
part including values up to 32msec of the estimated time to spike.

Fig. 8. Relation between membrane potential and time to spike of the
neuron.

Fig. 9. Example of raster plot of the input pattern. In red the input pattern
highlighted.

F (∆t) =

{

A+e
∆t

τ+ ∆t < 0

−A
−

e
−∆t

τ
− ∆t ≥ 0

(3)

The parameters we use are [16] [15] [22]: τ+ = τ
−

=
20msec, A+ = 0.1 and A

−
= 0.12.

The input layer is divided into two equally sized popu-

lation: the first population stimulates the output layer with

random spikes generated by a Poisson process with a mean

firing rate of 50 Hz. The second input population stimulates

the output layer using a 50 millisecond pattern interleaved

in the random noise with an inter-pattern time which is

itself a Poisson random process with a mean modulation

frequency of 11 Hz. The mean firing rate of the pattern

is the same as the noise (50 Hz), therefore the pattern

is not clearly identifiable merely by looking at the input.

In our implementation, patterns cannot be presented across

the boundaries of a second of simulation. This reduces the

number of mean occurrences of the pattern to 10 per second.

An example of input is presented in fig.9. In the case where

we input more than one pattern, these are interleaved between

each other (e.g. 1-2-1-2-1-...).

V. SIMULATION RESULTS

To test the software we first use the standard STDP

algorithm, then we compare this with the forecast plasticity

model. The initial conditions of the networks used for

these tests (unless otherwise specified) are: starting synaptic

weights are random in the interval [0; 2] and maximum

synaptic weight is set to 2. The networks used are described

in fig.10. The scatter plots we present in this section show

when the output neuron fires with respect to the presentation

of the input pattern. The X axis represents the simulation

time (in msec). The Y axis represents the time from the

beginning of the pattern injection to the output spike (in

msec). Every dot represents an action potential emitted by

the output neuron. The red line indicates when the pattern

ends.



(a) Network structure: 200 input neurons
- 1 output neuron

(b) Network structure: 200 input neurons
- 2 output neurons. The output neurons
inhibits each other.

(c) Network structure: 200 input neurons
- 4 output neurons. The output neurons
inhibits each other.

Fig. 10. Structure of the neural networks used in the tests: 200 input neurons and 1, 2 or 4 output neurons.

(a) Standard STDP - Scatter
plot for a network whose initial
synaptic weights are set to 4 and
the maximum synaptic weights
allowed is 4.

(b) Standard STDP - Scatter
plot for a network whose initial
synaptic weights are set to ran-
dom value uniformely distributed
between 0 and 2.

Fig. 11. Standard STDP: one input pattern, one output neurons.

A. Standard STDP results

1) Single output neuron - Single input pattern: The net-

work used for this experiment is described in fig.10(a). We

present here two scatter plots (fig.11) in which the network

differs only by the initial and the maximum synaptic weights.

The output neuron in fig.11(a) identifies two different

sections of the pattern, but around 30 seconds from the

beginning of the simulation, the synaptic weights get stronger

according to the last part of the pattern. Finally at 40 seconds

of the simulation time, the output neuron identifies only the

last part of the pattern and then, according to [8], the output

neuron starts to advance in its identification until it reaches

10msec from the start of the pattern, then stabilizes around

this value.

We reduced the maximum synaptic weights and we set

random values (in the interval [0; 2]) as starting synaptic

weights. This resulted in an unstable system (as it is possible

to see in fig.11(b)). In this network, when the identification

time reaches 20msec from the beginning of the pattern the

neuron starts also to identify the final part of the pattern.

Then the identification of the last part becomes stronger and

stronger until the neuron stops identifying the first part of

the pattern and then starts to tune to the earliest spikes. This

process continues repeatedly. This behaviour is related to the

low value for the maximum synaptic weight we are using,

introducing the possibility for other patterns to distract the

output neuron from the pattern that it is already identifying.

2) Two output neurons - Single input pattern: The net-

work used for this experiment is described in fig.10(b).

We present here two scatter plots (fig.12), one for each

(a) Scatter plot for the first out-
put neuron

(b) Scatter plot for the second
output neuron

Fig. 12. Standard STDP: one input pattern, two output neurons.

output neuron. It is possible to identify that the two output

neurons lock their identification at two different times of the

input pattern. This is a consequence of the lateral inhibition

between the two output neurons.

3) Two output neurons - Two input patterns: The network

used for this experiment is described in fig.10(b). We present

four scatter plots, one for each neuron against each of the

input patterns (fig.13). Figures 13(b) and 13(d) are the scatter

plots with respect to the second pattern, and it is recognized

at the very same moment by both the output neurons.

As it is possible to note, in figures 13(a) and 13(c), there

is a “ghost” effect. This is connected with the presence of

two different interleaved input patterns, whose inter-time is

random. When a neuron identifies one of the two input

patterns it fires with a delay from the beginning of the pattern

identified and with a different delay (usually greater) from

the beginning of the previous pattern occurrence. Given the

randomness of time occurence of the pattern, the result is

the “ghost” effect in figures 13(a) and 13(c).

Because lateral inhibition acts with one millisecond delay

from an output spike, two output neurons firing simultane-

ously will mutually inhibit one millisecond after the initial

spike. Then as a result the first input pattern is not identified

by any of the output neurons. The first input pattern is not

identified by any of the output neurons: all the output neurons

lock and consistently identify the second pattern.

4) Four output neurons - Two input patterns: The network

used for this experiment is described in fig.10(c). We present

eight scatter plots, one for each neuron in relation with

each of the input pattern (fig.14). It is possible to see that

the two first output neurons lock at the very same moment

of the second pattern (figures 14(e) and 14(f)). The third

neuron locks to the first pattern (fig.14(c)). The fourth neuron



(a) Scatter plot for output neu-
ron 1 with respect to the first
input pattern

(b) Scatter plot for output neu-
ron 1 with respect to the second
input pattern

(c) Scatter plot for output neu-
ron 2 with respect to the first
input pattern

(d) Scatter plot for output neu-
ron 2 with respect to the second
input pattern

Fig. 13. Standard STDP: two input patterns, two output neurons

(a) Scatter plot for output neu-
ron 1 with respect to the first
input pattern

(b) Scatter plot for output neu-
ron 2 with respect to the first
input pattern

(c) Scatter plot for output neu-
ron 3 with respect to the first
input pattern

(d) Scatter plot for output neu-
ron 4 with respect to the first
input pattern

(e) Scatter plot for output neu-
ron 1 with respect to the second
input pattern

(f) Scatter plot for output neu-
ron 2 with respect to the second
input pattern

(g) Scatter plot for output neu-
ron 3 with respect to the second
input pattern

(h) Scatter plot for output neu-
ron 4 with respect to the second
input pattern

Fig. 14. Standard STDP: two input patterns, four output neurons.

(a) Scatter plot for output neu-
ron 1 with a forecast function
with the parameter L = -60mV

(b) Scatter plot for output neu-
ron 1 with a forecast function
with the parameter L = -65mV

(c) Scatter plot for output neu-
ron 1 with a forecast function
with the parameter L = -70mV

(d) Scatter plot for output neu-
ron 1 with a forecast function
with the parameter L = -90mV

Fig. 15. STDP with TTS forecast: one input pattern, one output neuron. This is a comparison between the different values of the parameter “L” (see
fig.8). The value used for the parameter “L” in all the other simulations will be −65mV .

(a) Scatter plot for the first output
neuron

(b) Scatter plot for the second out-
put neuron

Fig. 16. STDP with TTS forecast: one input pattern, two output neurons.

initially tries to lock to the first pattern (fig.14(d)), but

probably, due to the inhibition imposed by output neuron

3 it fails to lock and when the neurons 1 and 2 proceed

towards the very beginning of the second pattern, neuron 4
locks to the end of the second pattern and starts advancing

in the identification time, until it stabilizes at about 25msec
(fig.14(h)).

B. Plasticity with Time-To-Spike forecast

We forecast the Time-To-Spike (TTS) of a neuron through

a function which is composed of two line segments (see

section III), as described in figure 8. In the first experiment



(a) Scatter plot for output neu-
ron 1 with respect to the first
input pattern

(b) Scatter plot for output neu-
ron 2 with respect to the first
input pattern

(c) Scatter plot for output neu-
ron 3 with respect to the first
input pattern

(d) Scatter plot for output neu-
ron 4 with respect to the first
input pattern

(e) Scatter plot for output neu-
ron 1 with respect to the second
input pattern

(f) Scatter plot for output neu-
ron 2 with respect to the second
input pattern

(g) Scatter plot for output neu-
ron 3 with respect to the second
input pattern

(h) Scatter plot for output neu-
ron 4 with respect to the second
input pattern

Fig. 17. STDP with TTS forecast: two input patterns, four output neurons.

we consider “L” a parameter and we analyse the learning

behaviour of the output neuron compared with the standard

STDP algorithm. After this we will use one value of this

parameter to perform the next experiments.

1) Single output neuron - Single input pattern: The net-

work used for this experiment is described in fig.10(a). We

present here four scatter plots (fig.15), which are generated

using various values of the parameter “L” described before

(see section III). If this parameter is too small, the scatter

plot shows that the neuron will identify the pattern later and

later until the identification moves out of the pattern time

and the neuron will eventually “die” (see fig.15(a)). If this

parameter is too high, the result will be too noisy and the

identification will be unstable (see fig.15(d)). If L = −70mV
(see fig.15(c)) the pattern identification will move very early

in the pattern time, but this makes it possible for neuron to

spike twice in the same pattern occurrence. Therefore, for all

the next simulations we run, we consider L = −65mV (see

fig.15(b)).

2) Two output neurons - Single input pattern: The net-

work used for this experiment is described in fig.10(b). Here

we present two scatter plots, one for each output neuron (see

fig.16). At the beginning of the simulation, it is possible to

note that the output neurons lock to different parts of the

input pattern. In particular, the first output neuron identifies

the pattern at about 10msec and then moves later in time

until it stabilizes around 25msec. The second neuron gets

inhibited by the first one and locks at about 40msec from

the beginning of the pattern. Since the first neuron moves

later in the identification of the pattern, the second neuron

also has to move later and later until the identification moves

out of the pattern time range. The neuron then locks to the

same part of the pattern as the first neuron, and it stabilizes

at the same time as the first neuron.

3) Four output neurons - Two input patterns: The network

used for this experiment is described in fig.10(c). In this test

the first three output neurons lock in different parts of the

first pattern (figures 17(a), 17(b) and 17(c). In particular the

first neuron consistently identifies the presence of the pattern

even if it fires after the end of the pattern. In these conditions

the neuron uses the random background noise to reach the

firing threshold, hence the firing delay changes from one

occurrence of the pattern to the other. The fourth neuron

locks at the beginning of the second pattern (see fig.17(h)).

VI. DISCUSSION

In this paper we introduced a new learning rule in neural

networks with a statistical approach. This algorithm has

a very important feature: to be able to compute both the

potentiation and the depression of the synapses when a spike

is received. This allows the operation to be performed in a

single moment of the simulation: the spike arrived event.

Some simulators (e.g. [16] [15]) may take advantage of this

feature to achieve better performance.

This algorithm is based on a statistical approach, and we

showed that small variations of the parameters involved may

lead to very different behaviours. In particular, modification

of the parameters of the forecast function leads to divergent

behaviours, from tuning later and later in the spike input

pattern, to unstable behaviours. In addition, we extracted the

parameters for the forecast function starting from a network

made of only two types of Izhikevich neurons. Changing

the parameters of the neurons [12] may affect the forecast

function. In the case of neurons with chaotic behaviour there

is a possibility that this forecast function may not consistently

predict the time-to-spike of the neuron. On the other hand,

it is questionable whether purely chaotic neurons are able to

analyse input and respond consistently with repeated patterns

detection.



Fig. 18. Description of synaptic plasticity trigger. Only the last incoming
spike triggers LTP because the membrane potential is above the plasticity
threshold. Even if this synapse is strengthened the previous three synapses
from which the three spikes are received are not influenced and the output
spike cannot tune to the earlier spikes.

We have shown that this learning algorithm locks to the

input pattern very quickly, and even more quickly than the

standard STDP algorithm in some conditions.

In contrast to the standard STDP algorithm, this algorithm

is not able to tune to the earliest spikes in the input pattern

[8]. This can be justified by looking at the membrane

potential values when the neuron receives spikes from an

already identified pattern (see fig.18). Before the LTP part

of the synaptic plasticity is triggered, the incoming spikes

need to bring the membrane potential values above the

threshold set with the parameter “L” (see fig.8) described

before. In addition, if we move this parameter to a value

which is too low, the network may adapt to random noise

that may be present in the input pattern which increases

the membrane potential value (in the mean). In the tests

we ran, no noise was present on the input pattern. Adding

some noise may affect these results and even the forecast

function. At the same time, opening the forecast time window

to values greater than what we chose in this paper may lead

to unpredictable behaviours. This field needs to be explored

to obtain the maximum performance from this algorithm.

Future work may include deeper analysis of the forecast

function so that it can include more type of neurons and

more network behaviour (e.g. oscillations, bursts) than what

we used in the tests described in this paper.

This paper described an algorithm we implement that

allows triggering the STDP only on one event, easing the

implementation in simulators and reducing the time needed

for computation, compared with the standard STDP algo-

rithm. Such an abstraction could be part of a neural network

simulator to develop a biologically-plausible learning rule.

VII. ACKNOWLEDGEMENTS

The SpiNNaker project is supported by the Engi-

neering and Physical Sciences Research Council, grant

EP/4015740/1, and also by ARM and Silistix. We appreciate

the support of these sponsors and industrial partners. The au-

thors would like to thank Timothée Masquelier for providing

useful information and Eugene Izhikevich for providing the

source code of the simulator.

REFERENCES

[1] L. F. Abbott and S. B. Nelson. Synaptic plasticity: taming the beast.
Nature neuroscience, 3 Suppl:1178–1183, November 2000.

[2] A. Banerjee. On the phase-space dynamics of systems of spiking
neurons. I: model and experiments. Neural computation, 13(1):161–
193, January 2001.

[3] G. Bi and M. Poo. Synaptic modification by correlated activity: Hebb’s
postulate revisited. Annual review of neuroscience, 24(1):139–166,
2001.

[4] G.-Q. Bi and M.-M. Poo. Synaptic Modifications in Cultured Hip-
pocampal Neurons: Dependence on Spike Timing, Synaptic Strength,
and Postsynaptic Cell Type. J. Neurosci., 18(24):10464–10472, De-
cember 1998.

[5] J. M. Brader, W. Senn, and S. Fusi. Learning Real-World Stimuli
in a Neural Network with Spike-Driven Synaptic Dynamics. Neural

Computation, 19(11):2881–2912, September 2007.
[6] A. N. Burkitt, M. Gilson, and J. L. van Hemmen. Spike-timing-

dependent plasticity for neurons with recurrent connections. Biological
cybernetics, 96(5):533–546, May 2007.

[7] C. Clopath, L. Busing, E. Vasilaki, and W. Gerstner. Connectivity
reflects coding: a model of voltage-based STDP with homeostasis.
Nature Neuroscience, 13(3):344–352, March 2010.

[8] R. Guyonneau, R. VanRullen, and S. J. Thorpe. Neurons Tune to the
Earliest Spikes Through STDP. Neural Computation, 17(4):859–879,
April 2005.

[9] D. O. Hebb. The Organization of Behavior: A Neuropsychological

Theory. 1949.
[10] G. Indiveri, E. Chicca, and R. Douglas. A VLSI Array of Low-Power

Spiking Neurons and Bistable Synapses With Spike-Timing Dependent
Plasticity. IEEE Transactions on Neural Networks, 17(1):211–221,
January 2006.

[11] E. M. Izhikevich. Simple model of spiking neurons. IEEE Trans.

Neural Networks, pages 1569–1572, 2003.
[12] E. M. Izhikevich. Which model to use for cortical spiking neurons?

IEEE transactions on neural networks / a publication of the IEEE

Neural Networks Council, 15(5):1063–1070, September 2004.
[13] E. M. Izhikevich. Polychronization: Computation with Spikes. Neural

Computation, 18(2):245–282, February 2006.
[14] E. M. Izhikevich and N. S. Desai. Relating STDP to BCM. Neural

Computation, 15(7):1511–1523, July 2003.
[15] X. Jin, A. Rast, F. Galluppi, S. Davies, and S. Furber. Implementing

spike-timing-dependent plasticity on SpiNNaker neuromorphic hard-
ware. pages 1–8, July 2010.

[16] X. Jin, A. Rast, F. Galluppi, M. Khan, and S. Furber. Implementing
Learning on the SpiNNaker Universal Neural Chip Multiprocessor. In
C. S. Leung, M. Lee, and J. H. Chan, editors, Neural Information
Processing, volume 5863, chapter 48, pages 425–432. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[17] H. Markram and M. Tsodyks. Redistribution of synaptic efficacy
between neocortical pyramidal neurons. Nature, 382(6594):807–810,
August 1996.

[18] T. Masquelier, R. Guyonneau, and S. J. Thorpe. Competitive STDP-
Based Spike Pattern Learning. Neural computation, 21(5):1259–1276,
December 2008.

[19] T. Masquelier, R. Guyonneau, and S. J. Thorpe. Spike Timing De-
pendent Plasticity Finds the Start of Repeating Patterns in Continuous
Spike Trains. PLoS ONE, 3(1):e1377+, January 2008.

[20] J.-P. P. Pfister and W. Gerstner. Triplets of spikes in a model of spike
timing-dependent plasticity. J.neurosci., 26(38):9673–9682, September
2006.

[21] S. Song and L. F. Abbott. Cortical development and remapping through
spike timing-dependent plasticity. Neuron, 32(2):339–350, October
2001.

[22] S. Song, K. D. Miller, and L. F. Abbott. Competitive Hebbian
learning through spike-timing-dependent synaptic plasticity. Nature

neuroscience, 3(9):919–926, September 2000.
[23] H.-X. X. Wang, R. C. Gerkin, D. W. Nauen, and G.-Q. Q. Bi.

Coactivation and timing-dependent integration of synaptic potentiation
and depression. Nature neuroscience, 8(2):187–193, February 2005.


