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Abstract

This paper outlines the concept of probabilistic program slicing. Whereas

conventional slicing removes statements that cannot affect the slicing cri-

terion, probabilistic slicing also removes statements that are unlikely to

affect the criterion. The paper presents a simple example before describ-

ing some algorithmic concerns. Then three motivating applications are

described. Finally it highlights existing work that may be built upon, and

future work that needs immediate attention if this idea is to succeed.

1 Introduction

There is an increasing trend of applying probabilistic extensions to classical
program analysis techniques. Successful examples include abstract interpreta-
tion [PW00, PHW05], points-to analysis [CHH+03], bit-width analysis [ÖNG04]
and model checking [KNP04, KNP05]. In general, two motivations are given for
probabilistic extensions.

1. to analyse programs that exhibit stochastic behaviour.

2. to derive probabilistic properties for classical programs.

This paper is an initial attempt to formulate a probabilistic version of program
slicing [Wei81]. It shows how to incorporate probability information into a
standard slicing algorithm. Then it discusses why probability information may
be useful in certain applications of slicing. Throughout this paper, we restrict
consideration to classical (non-stochastic) programs, for which we would like to
construct probabilistic slices, i.e. program slices that have a given probability of
being correct.
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1: integer x, y, z, n

2: n← input()
3: y ← 0
4: z ← −1
5: if (prime(n))
6: then if (odd(n))
7: then x← 3
8: else x← 2 + z

9: else x← 1
10: return x

Figure 1: Simple example program

source line test # executions # then’s # else’s
5 prime(n) 1000 168 832
6 odd(n) 168 167 1

Figure 2: Probabilities of conditional branch outcomes

1.1 Simple example

Figure 1 shows a simple example program1 which will motivate probabilistic
slicing. A standard syntax-preserving static backward slice on the function
return value, variable x, would only remove the assignment to unused variable
y. Now suppose that the value of the program input n is uniformly distributed
over numbers in the range [2, 1001]. (Note that this assumption is implicit for
the remainder of this section.) Then it is clear to see that the then and else

branches of the if statements are skewed. In the outer conditional test (line 5),
most values of n will not be prime. In the inner conditional test (line 6), most
prime values of n will be odd. This information can be incorporated into the
analysis by associating probability information with each if statement. Figure
2 shows the branch outcome frequencies, assuming n takes a different value in
the range [2, 1001] over all 1000 executions.

The aim of conventional program slicing is to remove irrelevant statements
from the program, with respect to the slicing criterion. This relies on the well-
known notion of static dependence (see Section 2.1). In general, static program
slices are conservative with respect to safety, they consider dependences that
can occur over all possible paths through the program.

1This example is reworked from notes by Chris Hankin et al at

http://www.doc.ic.ac.uk/~herbert/epsrc/node5.html .
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source lines in minimal end-slice probability of correctness
{} 0.000

{1, 9, 10} 0.832
{1, 2, 5, 7, 9, 10} 0.999

{1, 2, 4, 5, 6, 7, 8, 9, 10} 1.000

Figure 3: Various probabilistic slices of example program

When we incorporate probability information, it will be possible to remove
infrequent statements as well as irrelevant statements. This provides a more
dynamic notion of dependence. Probabilistic slices are not conservative since
they only take into account dependences from a certain proportion of program
paths, rather than all program paths.

Suppose we restrict consideration to conditional branch outcomes that have
a probability of more than 0.8. (If we encounter conditional tests that are less
skewed than this, then we must consider both outcomes as potentially belonging
to the slice.)

The conditional test at line 5 has an else probability of 0.832, so we ignore
the infrequent then branch including the nested conditional test.

Then the end-slice consists of the final assignment to x on line 9, supple-
mented by the scaffolding of lines 1 and 10. Of course, now the slice is not
guaranteed to be correct! It is correct with probability 0.832. Figure 3 shows
the different statement-minimal end-slices [Dan99] of the example program, to-
gether with their probability of correctness. Note that when the correctness
probability is set to 1, then the probabilistic slice is equivalent to a conven-
tional, non-probabilistic slice.

1.2 Contributions

This paper makes three significant contributions.

1. Section 2 outlines an initial algorithm for probabilistic program slicing.
This is a simple intraprocedural formulation for a basic while language.
Extensions will be necessary for real-world programming languages.

2. Section 3 provides some motivating examples for probabilistic slicing.
There may be many more applications, but these early suggestions were
made by participants at the Dagstuhl seminar 05451 on ‘Beyond Program
Slicing’.

3. Sections 4 and 5 discuss related work and future work respectively. These
show the small amount of existing work in the field that can be used as a
foundation, and point out challenges that need to be met if probabilistic
slicing is to gain widespread acceptance.
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2 Algorithmic Details

Program analyses are required to obtain both dependence and probability in-
formation. Initially we aim to base our probabilistic slicing algorithm on simple
syntax-preserving static backward slicing.

2.1 Dependence Computation

Dependences are obtained from a slicing algorithm. We propose to use a stan-
dard slicing algorithm based on the control flow graph (CFG) [Wei81] or program
dependence graph (PDG) [OO84]. This style of algorithm will compute both
data and control dependences between statements. Recall that statement X is
data dependent on statement Y if changing the values of variables defined at Y
may affect the values of variables used at X. Recall that statement X is control
dependent on statement Y if the outcome of Y affects whether or not X is exe-
cuted. In general, syntax-preserving static backward slicing involves computing
transitive closure of these dependence edges from the slicing criterion.

2.2 Probability Computation

Section 1 assumed that the input values for the example program were uni-
formly distributed over a fixed range of integers. This was a simplification for
the purposes of presentation. In general, more sophisticated mechanisms are
required to acquire probability information.

There are three main approaches to calculate these conditional branch prob-
abilities.

1. The simplest method is static estimation of branch probabilities. Hennessy
and Patterson [HP03] outline this approach for static branch prediction.
For instance, we could assume that an if statement is equally likely to go
either way, and that a while condition has a 90% chance of repeating the
loop and a 10% chance of terminating the loop. More sophisticated static
analyses are possible. For instance Clark et al [CHM05] provide rules for
how different program statements transform probability distributions of
program inputs, although their work is in the field of information flow
security.

2. A more complicated method is quasi-dynamic analysis, also known as
feedback-directed analysis. The program is run on a test set of input
data, and the observed conditional branch outcomes are used to calculate
their probabilities. These probabilities are assumed to hold good for all
subsequent input data.

3. The best method is dynamic analysis in an adaptive runtime infrastructure
such as Jikes RVM [AAB+00, AAB+05]. In this way, branch probabilities
are constantly updated for input data that varies over time. This method
enables online probabilistic program slicing.
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2.3 Combining Dependence and Probability

This section discusses the method for combining both dependence and probabil-
ity information in order to construct a reduced version of the original program
(a probabilistic slice). Recall that dependence information is used to remove
irrelevant statements, and probability information is used to remove infrequent
statements.

2.3.1 Restrictions

In this paper we will only formulate probabilistic slicing for a simple intrapro-
cedural while language, consisting of if statements and while loops. We will
allow standard integer arithmetic operations, assignments to scalar variables,
standard comparison operations, also some built-in predicates like odd() and
prime() as we saw in the example program in Figure 1.

We assume that all loops eventually terminate. Probability information is
only attached to branches of if statements, not to branches associated with
while loops.

A probabilistic slicing criterion (V, p, t) will consist of a set of variables V , a
program point p and a probability threshold t. There are three different ways
to use this information to conduct probabilistic slicing.

2.3.2 Apply Probability Information Before Dependence Informa-

tion

In this scheme, we first reduce the program by removing infrequently executed
statements. Statements are deemed to be infrequent if they are situated at pro-
gram points that have a probability of being executed of less than the threshold
value t. These program point probabilities are easily calculated from the con-
ditional branch probabilities using the elementary probability theory outlined
below.

Given a while program w to analyse, transform w into control flow graph
(CFG) form [ASU86, App98], where nodes represent basic blocks of consecutive
program statements and edges represent the possible flow of control between
statements. This can be a simple syntax-directed translation from source code
to CFG. Figure 4 shows the CFG for the example while program from Figure
1. Annotate the outgoing edges of if statements with the conditional branch
probabilities, as computed using one of the approaches from Section 2.2. Only
the edges corresponding to then and else constructs have probability annota-
tions. All other edges are unconditional (even edges in loop tests, since we do
not handle loops properly yet).

So, each then/else edge pair has a probability distribution. It should always
be the case that Pthen +Pelse = 1. This assumption holds in all three approaches
for computing branch probabilities given in Section 2.2. Implicitly, this means
that each probability is conditioned on the fact that the corresponding if state-
ment is executed. Thus all the conditional branch probabilities (apart from
those in the top-level if statements) are conditional. This makes program point
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if (odd(n))

x <- 3 x <- 2+z

x <- 1

return x

integer x,y,z,n
n <- input()
y <- 0
z <- -1
if (prime(n))

p_else = 832/1000p_then = 168/1000

p_then = 167/168 p_else = 1/168

Figure 4: Control flow graph representation of example program, with proba-
bility annotations for then and else edges
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probability calculation straightforward since it simply requires multiplication of
the appropriate conditional probabilities.

To determine the probability that point p will be executed, find the probability-
annotated edges (then and else edges) that dominate2 p. (Recall that edge e

dominates point p if every path from the program entry point to p includes
e. Note that dominance is more usually a relation between CFG nodes, but it
is also valid to apply it for edges [JP93].) Now the product of the annotated
probabilities of the dominating edges will give the probability that p will be exe-
cuted. This calculation should be applied to all statements (or more practically,
once per basic block). The formula for the calculation is:

P (p is executed) = Πe∈EP (e is executed | corresponding if stmt is executed)

where

E = {e | e ∈ set of edge-annotated edges ∧ e ∈ set of edges that dominate p}

Now all program points have been assigned execution probabilities, it is
possible to remove infrequently executed statements. All statements whose ex-
ecution probability is lower than the threshold value (1− t) should be removed,
since in this case, t is the probability that the slice is correct.

For example, consider the program point labelled 8 in the program in Figure
1. Point 8 is dominated by the then branch at point 6 and the else branch at
point 8. The product of their conditional probabilities is 0.168 ∗ 0.994 = 0.167.
So when the threshold value (1− t) > 0.167, this point should be deleted from
the program.

Finally the reduced program is sliced according to the classical slicing cri-
terion (V, p) using a standard static backward slicing algorithm. Of course, the
empty slice is necessarily returned if the slicing criterion point p was removed
in the first phase of this analysis!

2.3.3 Apply Dependence Information Before Probability Informa-

tion

In this scheme, we first slice the program according to the slicing criterion (V, p)
using a standard static backward slicing algorithm.

Next we calculate the probability that each statement belongs to the slice,
using the conditional branch probabilities of the if statements contained in the
slice. It is possible to use the same mechanisms as above to compute execu-
tion probabilities for all statements from conditional probabilities of then/else
branches, using products of conditional probabilities. However, it is necessary
to make adjustments for cases where one arm of a conditional is in the slice
but the other arm has been sliced away! In such cases, we simply treat the re-
tained arm as being unconditionally executed, so the probability annotation is

2 It is possible to cast an entirely equivalent definition in terms of control dependence,

using postdominance information. However the chosen explanation here seems more concise.
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removed from this edge ensuring that it will not be included in any conditional
probability calculations.

We reduce the program by removing statements that have a lower execution
probability than the threshold (1− t).

Note that this scheme will not produce the same results as the first scheme, in
general, since the execution probability values are different. This scheme may
construct larger slices, since there may be fewer probability-annotated edges
after the initial slice.

2.3.4 Concurrent Application of Dependence Information and Prob-

ability Information

The first two schemes are inefficient, in that they analyse too much of the
program to begin with. An optimal scheme would consider both dependence
and probability information at once. The algorithm would be more complicated,
but the performance would be more efficient.

3 Applications

There are several potential applications for probabilistic program slicing.

3.1 Speculative Thread-Level Parallelism

With the advent of commodity multi-core processors, there is an abundance of
cheap parallelism to be exploited. Existing sequential programs often cannot
take advantage of these parallel resources, so it is necessary to employ techniques
such as speculative thread-level parallelism (STLP). For instance, in the context
of Java programs executing on a virtual machine platform, it should be possible
to predict the outcomes of methods without executing them. A new (non-
speculative) thread can be forked to execute the method in the background,
and the existing thread can speculatively execute the code that follows the
method return point, assuming that it has correctly predicted the method’s
behaviour. The simplest scheme that performs this method-level speculation
relies on value prediction techniques [LS96] to predict the method’s return value
[CO98, HBJ03, PV04].

However, return value prediction fails to capture other side-effects that a
method may cause. These often cause dependence violations that require the
speculation to be aborted, and non-speculative execution to be restarted. A
more sophisticated method effect prediction technique could involve probabilis-
tic program slicing to construct a ‘reduced’ version of the method to be executed
speculatively. Figure 5 represents these concepts diagrammatically.

The Mitosis system [QMS+05] already implements a speculation scheme
similar to the one outlined in this section, with so-called ‘speculative p-slices’
being constructed and executed at the start of speculative threads.
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Figure 5: Sequential and speculative versions of method call sequence, time
increases vertically downwards. In the sequential case, the callee is executed
completely before the caller can continue. In the multi-core cases, the method’s
effect is somehow speculatively predicted and the caller continues on one core
while the callee is executed on another core to validate the speculation. A more
accurate method effect prediction such as a probabilistic slice may take longer
to execute, but it means that mis-speculation is less likely to occur.
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Figure 6: Screenshot of simple program comprehension applet, different colours
highlight status of different statements in the program at the specified proba-
bility threshold level

3.2 Program Comprehension

It is often important for developers to discover how control flows through their
program in common cases. Probabilistic program slicing could be integrated into
a program comprehension framework to achieve this. For example, the developer
may be able to specify a slicing criterion, then have a slider bar to specify the
probability that the slice is correct. More of the program could be highlighted as
the slider bar moves to increase the probability, indicating that the slice grows as
the probability of correctness increases. Figure 6 shows a simple prototype GUI,
operating on the program from Figure 1. This technology would rely on simple
data tables such as that in Figure 3, together with calculations as outlined in
Section 2.3.2.

3.3 Test Case Generation

The information computed for probabilistic program slicing can also be useful
for path selection for software test data generation. In some cases it will be
best to test the most frequently executed paths, whereas in other cases it may
be desirable to test the least frequently executed paths. This could be easily
handled by reversing the probabilities of each conditional branch outcome.

4 Related Work

Maruyama and Shima describe a program analysis in which the amount of de-
pendence is quantified. They represent this information using weighted program
dependence graphs [MS99]. However, they are measuring the changes in depen-
dence information over the development history of the source code, rather than
over the execution history of the running program. They use their information
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to extract reduced methods that can be used for refactoring transformations.
It seems possible that their framework could be adapted to express dependence
probabilities, and this formalism could be used for probabilistic program slicing.

Conditioned slicing is a well-established discipline [CCL98, FDHH04]. The
slicing criterion constrains program inputs in such a way as to set some condi-
tional branch probabilities to 0. As such, conditioned slicing may be seen as a
form of probabilistic slicing, however it only deletes branches whose outcomes
are impossible given the input constraints, whereas we also delete branches
whose outcomes are unlikely yet still possible.

As already mentioned, the Mitosis system [QMS+05] already implements
some form of probabilistic slicing for extremely effective STLP optimization.
They do not give full details of their algorithm however. Also they do not show
how probabilistic slicing ideas may be applied to other areas.

5 Future Work

Much work remains to be done if probabilistic program slicing is to become a
mainstream technique for the slicing community.

1. The algorithm has to be formalized properly.

2. The algorithm has to be adapted (scaled up) to handle constructs from
more realistic programming languages.

3. Section 2.3 indicates that there is an clearly an issue about phase-ordering.
In conditioned slicing, the program is generally ‘conditioned’ before it is
sliced. This ‘conditioning’ phase is similar to partial evaluation [JGS93].
We are not sure whether the the probabilistic slicing algorithm should
similarly be separated into two distinct phases.

4. A proof-of-concept implementation is required, for each of the applications
outlined in Section 3. Since the author has considerable experience with
the Jikes RVM [AAB+00, AAB+05] system for Java programs, this seems
to be a good starting place.
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