
A Complete Synthesis Method for Block-Level Relaxation in
Self-Timed Datapaths

W. B. Toms, D. A. Edwards
School of Computer Science, University of Manchester

{tomsw, doug}@cs.man.ac.uk
Abstract

Self-timed circuits present an attractive solution to the
problem of process variation. However, implementing self-
timed combinational logic can be complex and expensive.
This paper presents a complete synthesis flow that gener-
ates self-timed combinational networks from conventional
Boolean networks. The Boolean network is partitioned into
small function blocks which are then synthesised using self-
timed techniques. The procedure employs relaxation optimi-
sations to distribute the overheads associated with self-
timed networks between function-blocks. Relaxation is
incorporated into the function block synthesis procedures,
meaning the optimisations can be applied at a much finer
granularity than previously possible. The new techniques
are demonstrated on a range of benchmarks showing aver-
age reduction of 5% in area, 26% in latency and 48% in
energy over gate-level relaxation techniques and 17% in
area, 8% in latency and 20% in energy consumption over
other block-level relaxation techniques.

1. Introduction

Process variation is the major challenge currently facing
the VLSI industry. In deep sub-micron technologies, timing
closure for synchronous systems, which are already clocked
at up to 50% below their ideal potential [1], becomes com-
plex. Self-timed circuits [11], whose operation is independ-
ent of any external timing reference, are increasingly being
seen as a solution to the problems of timing closure in highly
variable technologies. The robust timing models employed
by these circuits make them extremely tolerant to variations
in the propagation delays of circuit components. However,
the lack of assumptions about the environment and circuit
components make self-timed circuits difficult to specify, cre-
ate and test. In particular, self-timed combinational logic
operations are complex because the validity of an operand
needs to be encoded within the data itself. The cost of encod-
ing the datapath in this manner is significant: each data word
must be transmitted explicitly and, because the logic level of

each wire no longer specifies a data value, data wires must
transition into a known (spacer) state in between every trans-
mission. Furthermore, additional logic is required to indicate
the internal signals of a circuit - to ensure they are in a steady
state by the time the outputs are generated.

This paper describes a complete synthesis flow for self-
timed circuits which converts conventional Boolean combi-
national logic netlists into self-timed combinational netlists.
The gates of the combinational netlist are combined into
function-blocks which are synthesised using self-timed syn-
thesis algorithms. The cost of implementations are reduced
by incorporating relaxation optimisations [2], where indica-
tion is distributed across function-blocks which share com-
mon inputs. Unlike other function-block based methods [3],
the approaches in this paper are fully automated. Further-
more, as relaxation techniques are incorporated within the
self-timed synthesis procedures, relaxation can be applied at
a much finer granularity than was previously possible. The
system demonstrates significant improvements in area, per-
formance and energy compared to other gate-level and
block-level techniques over a range of benchmarks.

2. Indication

Self-timed combinational logic has been the subject of
much research, leading to several different terms being
applied to the same principles. The work in this paper is
based on a model developed specifically for combinational
logic circuits by Varshavsky [13]. This model is useful as it
defines the properties of self-timed circuits in terms of
Boolean equations. The process described by Varshavsky as
indication is equivalent to acknowledgement [15] and com-
pleteness [6] used subsequently by others. An indicating cir-
cuit is equivalent to a timing-robust [2] or input-complete [5]
circuit.

2.1 Definitions

• A multi-valued variable vi can take on symbolic values
from . Each symbolic value
maps on to a unique integer . A bi-

Pi α0 α1 … α Pi 1–, , ,{ }=
Pi 0 1 … Pi 1–, , ,{ }=

nary variable is one in which .
• A function, f, of n variables is a mapping

. In a Boolean function
.

• Each element in the domain of function f is called a min-
term.

• In a Boolean function, f, the set of minterms for which
 is called the on-set, the set for which is

called the off-set and the set for which is called the
don’t-care set.

• A multi-valued literal is a binary valued logic function of
the form:

where . If vi is a binary variable then is writt-
ten as , is written as and is written as

.
• A product term is a Boolean product (AND) of literals. A

cube is the set of minterms which can be described by a
product term.

• Product y contains product x () if the cube of x is a
subset of the cube of y.

• An implicant of a (boolean) function is a product term
which contains no minterms of the function’s off-set.

• A prime implicant is an implicant contained in no other
implicant of the function.

• A cover of a function is a set of implicants which contains
all of the minterms of the on-set and no minterms of the
off-set.

2.2 Delay-Insensitive Encoding

As there are no external timing references in self-timed
circuits, the validity of data must be encoded within the data
itself using a Delay-Insensitive (or unordered) code [14]. In
a DI-code, no code word is contained within any other,
allowing the arrival of a valid data word to be determined
unambiguously. The most common form of DI-code is dual-
rail, where each binary bit is encoded with two wires and a
transition on one of the two wires signals the arrival of data.
Large datapaths are formed by concatenating code-groups
together. The dual-rail code can be generalised to m-of-n
codes where data words are signified by m transitions on n
wires. In m-of-n encodings the logic-level of each wire only
signifies the presence or absences of data. Therefore, in most
self-timed systems, all wires must transition to a known
(spacer) state in between data transmissions. In this paper we
only consider Return-to-Zero encodings, where all wires
must transition to zero in the spacer state.

2.3 Allowed-Transition Sets

The behaviour of an indicating circuit is defined by sets
of transitions on the inputs (or outputs) of the circuit called
Allowed-Transition Sets (ATS). Each ATS describes a com-

plete transition from a valid data value to a valid spacer value
(or vice versa) on a set of circuit variables. An ATS consists
of a set of transitions on individual variables which may
occur in any order. The concept of an ATS is similar to that
of a Multiple-Input Change (MIC) in burst mode circuits [8],
and (like MICs) each ATS, (a-b), has an associated transition
cube [a,b] which contains all the possible states of the vari-
ables (minterms) that may be reached between a and b. Also
associated with each ATS is a product called the transition
variation term which represents the final values of
any variables that transition during the ATS. The set N(a,b)
of ATS (a-b) contains all the minterms, ai, of [a,b] which are
adjacent to b (have a Hamming distance of 1). As the transi-
tions in an ATS may occur in any order, the number of ele-
ments in N(a,b) is equivalent to the number of variables that
transition in the ATS (a-b).

A combinational logic circuit consists of two sets of var-
iables: A set of n inputs, , and a set of m out-
puts, . An ATS on the circuit inputs, X,
causes a subsequent ATS on the circuit outputs, Y. The
behaviour of the function-block is defined by two multi-val-
ued functions:
• which maps the data values of X (DX) to data

values of Y (DY).
• which maps the spacer values of X (SX) to

spacer values of Y (SY).
The encodings used in this paper have only a single spacer
(the zero value () and so for
all function blocks.

In order to construct a physical circuit for a function
block, the multi-valued functions are implemented by a sys-
tem of inherent functions (SIF). In an SIF each output of the
function block is determined by a binary cover function:

Each fi is the encoded function of variable yi formed by map-
ping the multi-valued functions and
to the binary encoding of code system X.

Example 2.1 A is a function block with two dual-rail
encoded binary inputs, it has four input variables

. The encoding of the inputs means there
are four possible data values and a single spacer:

Code system X contains eight ATS:

ATS has the transition cube:

the transition variation term:

Pi 0 1,{ }=

f P1 … Pn×× Pf→:
Pf 0 1 *, ,{ }=

f 1= f 0=
f *=

vi
S 0 if vi S∈

1 otherwise ⎩
⎨
⎧

=

S Pi⊆ v 1{ }

vi v 0{ } vi v 0 1,{ }

vi
*

x y⊆

ε a b,()

X x1… xn,{ }=
Y y1 … ym, ,{ }=

Y F X()=

Y G X()=

v1 0 … vn, , 0= ={ } G sX() sY=

yi fi x1 … xn, ,() 1 i m≤ ≤ =

Y F X()= Y G X()=

X x1 x2 x3 x4, , ,{ }=

DX d1
X 1010 d2

X, 0110 d3
X, 1001 d4

X, 0101= = = ={ }=

SX sX 0000={ }=

sX d1
X–() sX d2

X–() sX d3
X–() sX d4

X–(), , ,

d1
X sX–() d2

X sX–() d3
X sX–() d4

X sX–(), , ,

sX d1
X–()

s d1
X,[] x2x4 0000 1000 0010 1010, , ,{ }= =

ε sX d1
X,() x1x3=

and the adjacent transitions

There are eight possible ATS:

The output of the function block is a single dual-rail sig-
nal. The encoding of the outputs means there are two data
values and a single spacer:

Code system Y contains four ATS:

For transition :

and

F(X) is defined as follows:

.

2.4 Indication

In order to eliminate timing assumptions in self-timed cir-
cuits the outputs of a circuit are used to indicate to the envi-
ronment that the internal gates of a circuit are in a steady
state and the circuit is ready to accept more input. Var-
shavsky defines the indication of the inputs (and internal sig-
nals) of a circuit in terms of the translation of individual
transitions to the outputs.

An input transition is translated to the output of a function
if its arrival causes the output to transition. Within each ATS
not all input transitions are directly translated to the output
of a function, as this would mean the function must change
value after every input transition. However, all input transi-
tions must be capable of causing an output transition if they
are the last to occur. This property allows the function to
indicate all input transitions regardless of the order of their
arrival.

Boolean differences of functions are used to determine
whether a function translates all of its input transitions. The
Boolean difference of function with respect to
variable xi is given by:

where and are the cofactors of in fj (the functions
obtained by replacing all occurrences of in fj with a 1 or 0
respectively). Boolean differences are used to determine the
conditions under which a function is dependent (or inde-
pendent) on a variable and are commonly used to generate

input vectors for stuck-at-fault testing.

Definition 2.1 An output, yj, translates an input transition
on input xi in the ATS (a-b), if for the adjacent transition,
(ai-b), where and , the values of the
variables in form a solution to the equation:

Example 2.2 For the function block from example 2.1, a
possible implementation for the cover function variable y1
is:

The transition has the transition constant term:

and the adjacent combinations:

Considering the adjacent transition , the transi-
tion on x3 is translated by y1 as the value of the variables in
the transition cube form a solution for the equation generated
from the Boolean difference of the variable in the variation
term:

 and

Therefore, function y1 indicates the transition x3 for the ATS
.

The concept of translation is used to define the indication
of input variables and circuits:

Definition 2.2 An input variable, xi, is indicated if for each
ATS, (a-b), in which xi transitions there exists an output yi
of the circuit which translates the transition on xi.

Definition 2.3 A circuit is indicating if all its input varia-
bles are indicated.

2.5 Canonical Architecture

To determine whether a particular circuit implementation
is indicating requires solving Boolean difference equations
for every input transition in all the ATS of the circuit. These
checks add a significant overhead to the synthesis process
and so it is preferable to implement circuits in a canonical
architecture in which the indication of the circuit is guaran-
teed. In the canonical architecture, each function is con-
structed from the sum of a set of Muller C-elements [7]. Each
C-element implements two ATS, a spacer to data transition
(s-dk) and the corresponding spacer to data (dk-s) transition.
In RTZ systems the inputs to the C-element correspond to
those variables in the transition variation term of the (s-dk)
ATS.

As the inputs of the circuit are encoded within a DI-code,
no transition variation term is contained within any other and
each C-element is mutually-exclusive in the normal behav-

N sX d1
X,() 1000 0010,{ }=

s d1–() s d2–() s d3–() s d4–(), , ,
d1 s–() d2 s–() d3 s–() d4 s–(), , ,

DY d1
Y 10 d2

Y, 01= ={ }=

SY sY 00={ }=

sY d1
Y–() sY d2

Y–() d1
Y sY–() d2

Y sY–(), , ,

sY d1
Y–()

ε sY d1
Y,() y1=

N sY d1
Y,() 00{ }=

d1
Y d1

X d2
X d3

X+ +=

d2
Y d4

X=

fj x1 … xn, ,()

fj∂
xi∂

------- fjxi
f
jxi

⊕=

fjxi
fjxi

xi
xi

ai N a b,()∈ ε a b,() xi=
ai b,[]

fj∂
xi∂

------- 1=

y1 x1x3 x2x3 x1x4+ +=

sX d1
X–()

ε sX d1
X,() x1x3=

N sX d1
X,() n1 1000 n2, 0010= ={ }=

n1 d1
X–()

ε n1 b,() x3= n1 b,[] x1x2x4=

fj∂
x3∂

-------- x1 x1x4⊕ 1 0⊕ 1= = =

sX d1
X–()

iour of the circuit. For a given ATS, only one C-element of a
function transitions and the output is dependent on all of the
inputs to the C-element. Therefore, provided that there is a
C-element implementing each ATS in some function of the
circuit, the circuit is indicating. This canonical architecture
forms the basis of many indicating circuit styles such as
DIMS [10] and NCL-D [6]. However, because each C-ele-
ment has an input for each transition within an ATS, the size
of the canonical architecture is large and, as each output must
wait for all of the input transitions before transitioning, the
architecture has worst-case performance.

3. Indicating Combinational Logic Synthesis

3.1 Desynchronisation

In order to create an indicating circuit, all of the ATS must
be fully enumerated to ensure that each input transition is
translated by an output transition. For large datapath compo-
nents this becomes infeasible and so a method of decompos-
ing datapath components must be employed. One of the most
popular methods of constructing indicating datapath compo-
nents is desynchronisation [1][5] where conventional syn-
thesis tools are used to synthesise a gate-level network which
is then converted by expanding each gate into an indicating
gate-operator circuit implementing the same function. In
order to encode data validity, each binary variable in the
design is expanded into a dual-rail pair of variables. In the
NCL-D design flow [6], figure 2.i, each gate-operator is
implemented using the canonical architecture. However,
because of the overheads associated with the canonical
architecture, several optimisations have been developed.

In the NCL-X design flow [5], figure 2.ii, each binary var-
iable is replaced by 3 variables, which represent a dual-rail
pair and an additional valid signal which translates the tran-
sitions of the dual rail pair. Employing a valid signal means
translation does not need to be performed within the gate-
operators and can be implemented using an external comple-
tion detector. This greatly simplifies the implementation of
the gate-operators and improves performance as the comple-
tion detection can be done in parallel with logic. However,
the area and energy consumption of these circuits is often
increased due to the addition of a valid signal for each vari-
able in the design and the extra completion detection.

3.2 Gate-level Relaxation

An alternative approach to optimisation of desynchro-

nised datapaths was suggested concurrently by Jeong [2] and
Zhou [15]. Both of these methods rely on the relaxation of
the indication of inputs to individual gate functions. In the
NCL-D approach each gate operator indicates the transitions
on all of its inputs, meaning that the transitions of nodes with
multiple fan-out are indicated by all of the gates in its fan-
out. Definition 2.2 states that only one output is required to
translate each input transition and so the indication of all but
one gate operator in the fan-out of a variable can be relaxed.
The aim of both approaches is to determine a distribution of
the indication of each variable to reduce the total cost (using
various metrics) of implementing the network. A set of
implementations of each gate operator is created for all the
possible relaxation combinations of the inputs. Figure 3
shows the relaxed implementations of a Dual-Rail AND
gate. The arrows determine whether the implementation
indicates the spacer-to-data transitions (↑) or the data-to-
spacer transitions (↓) (there are only 5 distinct implementa-
tions as many of the implementations are equivalent). UCP
[2] or ILP [15] solvers are then used to select an implemen-

Figure 1: Canonical Architecture

Figure 2: Desynchronisation Implementations of Ripple
Carry Adder: i) NCL-D, ii) NCL-X, iii) Gate-level
Relaxation

tation for each gate that will minimise the cost yet maintain
the indication of the network.

In the full-adder circuit in figure 2.iii, inputs A and B are
both connected to two gates, an XOR (driving signal X) and
an AND gate (driving signal Y). Therefore, it is not neces-
sary for both gates to indicate the transitions on both signals
and the implementations of the gates may be relaxed. In this
case, cost of the implementation is minimised by employing
a fully relaxed implementation for the AND gate and a fully-
indicating implementation for the XOR gate. The same opti-
misation occurs on the gates driving Z and S. As the signals
Y and Z have only a single fanout, the OR-gate driving Co
cannot be relaxed.

Despite the dramatic improvements of the optimisations
over the original NCL-D circuits, there are still problems
inherent in the desynchronisation design-flow. The cost
functions associated with gates in a conventional tool flow
are different from the costs associated with their equivalent
indicating gate operators. Implementing dual-rail signalling
at the granularity of individual gate operators increases sig-
nificantly the switching overheads of indicating circuits, this
is further increased by the addition of a validity signal in the
NCL-X flow. Finally, the one-to-one substitution process of
gates to gate-operators within the desynchronisation flow
makes employing more complex, lower power, m-of-n
encodings very difficult to apply.

3.3 Block-level Relaxation

In order to overcome some of the problems inherent in
desynchronisation, a block-level approach was proposed by
Jeong [3]. Here, datapaths are composed from function-
blocks consisting of multiple (< 10) binary inputs and out-
puts, which are connected by DI-encoded channels. The
block-level approach can reduce the cost of gate-level imple-
mentations by allowing the indication of inputs to be shared
between the outputs of the blocks. Furthermore, as each
block corresponds to multiple gates, the amount of DI sig-
nalling between blocks is reduced, and more complex encod-
ings may be used.

Jeong [3] extended gate-level relaxation algorithms to the
block-level. However, the approach described was largely
manual. In order to construct a block-level implementation,
designs needed to be decomposed manually and implemen-
tations for each block provided by the designer. As in gate-
level relaxation, the cost of the network implementation was
reduced by selecting relaxed implementations of certain
blocks without violating the indication of the network.
Therefore, the designer needed to create multiple implemen-
tations of each block for the selection procedure. To reduce
the design effort, the selection algorithm could only select
between fully indicating and fully-relaxed implementations.
Furthermore, although several potential strategies for reduc-
ing the cost of indicating implementations were outlined, no
method of constructing arbitrary indicating blocks was pre-
sented.

This paper presents a fully automated block-level synthe-
sis system, that creates a block-level indicating network
from a gate-level Boolean network. The gates of the original
network are clustered to form function-blocks, which are
then synthesised using indicating synthesis methods. Relax-
ation optimisations are incorporated in to the system by
modifying the synthesis methods to synthesise partially indi-
cating function-blocks. The structure of the synthesis
method allows the cost of indication of individual inputs to
be quantified and so partially relaxed implementations may
be selected without the need to create all possible implemen-
tations of each function block. The results show significant
improvements in performance, area and energy consumption
over other gate-level and block-level techniques.

4. Prime Indicant Synthesis

In [12] a synthesis method was presented to synthesise
low cost indicating implementations of arbitrarily-encoded
function-blocks. The method adapts conventional synthesis
techniques to determine a low cost two-level Sum-of-Prod-
ucts implementation of each function-block. The work in
this paper extends these synthesis methods to produce par-
tially-indicating implementations of function-blocks that are
used during the relaxation process. In order to describe how
the partially indicating implementations are produced the
original procedures are presented in detail.

Figure 3: Relaxed Implementations of Dual-Rail AND gate.

The nature of indicating logic has a significant impact on
the synthesis process:
• To minimise the cost of an implementation, the indication

of inputs is distributed between all the functions. There-
fore, the optimisation of each function is dependent on
the implementation of other functions in the function
block.

• As products are expanded in the synthesis procedure lit-
erals are removed from them, meaning the product no
longer translates transitions on these inputs. In order to
maintain indication, each function can no longer be con-
structed as a sum of prime implicants and other (non-
prime) implicants need to be considered.

These properties increase the complexity and search space of
the synthesis algorithm, as the optimisation of all functions
must be executed in parallel and all possible implicants of
each function may need to be considered. In order to over-
come these difficulties, the synthesis method uses a two
stage process. Firstly, the lowest cost indicant cover of each
function is determined. Then, the untranslated input transi-
tions of the function block are determined, and distributed
between the functions of the function block.

4.1 Indicant Cover

The first stage of the synthesis procedure is to determine
the minimum cost indicant cover for each function in the
function block (the cost functions in [12] were based on lit-
eral counts). In two level SOP indicating logic, transitions on
the output of a function must be used to translate transitions
on the products of the function, as well as transitions on the
function inputs. An indicant is an implicant of a function
whose transitions are indicated by that function. As the indi-
cant is a single product, it will also translate all of the transi-
tions on its inputs for any ATS in which it transitions. It was
shown in [12] that any minimum cost indicating implemen-
tation of a function must always be constructed from a cov-
ering of indicants. As described in section 2.5, a SOP
implementation can be made indicating by ensuring all of the
products are mutually exclusive. The indicant cover proce-
dure therefore determines the lowest cost mutually-exclu-
sive implementation for each function in the function block.

In conventional circuit synthesis, an implementation for
a function is generated from the smallest set of prime impli-
cants that cover all the minterms of the circuit. In indicating
logic, the transition variation terms of each ATS, rather than
function minterms, form required cubes that must be cov-
ered. A mutually-exclusive implementation for a function
can be generated by ensuring that the cover is non-overlap-
ping, i.e. that no more than one prime-implicant covers each
required cube. However, it may not be possible to construct
a non-overlapping cover solely from the prime-implicants of
a function, and so all function implicants must be consid-
ered. As the total number of implicants in a function can be
large, determining a minimum cost cover of all of the impli-
cants is infeasible. Therefore, to reduce the complexity of the

indicant cover procedure, an optimal prime-implicant cover-
ing for the function is generated and then made mutually-
exclusive. To make the cover mutually-exclusive, all of the
possible sub-implicants of any prime-implicants that overlap
are enumerated. A non-overlapping cover for these impli-
cants can then be generated using a modified UCP frame-
work.

Example 4.1 The required cubes of function fj are:

The minimum cost set of prime-implicants for fj is

As all of these prime-implicants overlap, the sub-implicants
of each prime-implicant must be enumerated, giving the total
set of implicants as:

Figure 4 shows a minimum non-overlapping cover of the
implicants which results in the function:

4.2 Indicant Reduction

A minimum cost indicant cover function block imple-
mentation will indicate all of the transitions on any internal
gates within the function block. It will also translate input
transitions on any inputs to the indicants of its functions.
However, as the initial required cubes of the function have
been expanded, the properties of the canonical architecture
no longer hold and the function block is no longer guaran-
teed to indicate all input transitions. The next stage of the
synthesis process is to reduce, by re-applying the expanded
literals, a subset of the indicants in the function block to
ensure all input transitions are indicated.

As the indicants of a function are mutually-exclusive,
each indicant covers a different set of required cubes. There-
fore, when an indicant is reduced it must be replaced by two
or more indicants which cover the same required cubes as the
original indicant. Furthermore, to ensure the resulting func-
tion is still indicating the new indicants must also be mutu-
ally-exclusive. As the required cubes of indicating functions
are unate in all variables [13], it is not possible to reduce an
indicant by a single variable and its complement, and differ-
ent variables must be inserted into each of the new indicants
to ensure they are mutually exclusive.

Example 4.2 Indicant covers the required cubes:

a0b0 b0c0 a0c0 a0b0c0 a0b1c0 a0b0c1 a1b0c0

a0b0c0 1 1 1 1
a0b1c0 1 1
a0b0c1 1 1
a1b0c0 1 1

Figure 4: Non-overlapping cover for fj

fj a0b0c0 a0b0c1 a0b1c0 a1b0c0+ + +=

PI a0b0 a0c0 b0c0, ,{ }=

IMP a0b0 a0b0c0 a0b0c1 b0c0, , ,{=

a1b0c0 a0c0 a0b1c0, , }

fj a0b0 a0b0c1 a1b0c0+ +=

I a0b0=
a0b0c0d0 a0b0c0d1 a0b0c1d0 a0b0c1d1, , ,{ }

Reducing I by literal c0 and c1 creates two indicants:
 and

which cover the cubes:
 and

respectively, and hence are mutually exclusive.
When a pair of reductions are applied to an indicant, the
number of resultant indicants is multiplied:

Example 4.3 and covers the terms:

Reducing I by b0 (and b1) results in the indicants:
 and

and reducing I by c0 (and c1) results in the indicants:
 and

Applying both reductions together results in four indicants:

In order to minimise the cost to the network, the reductions
need to be distributed between the indicants of the network.
In [12] a distributed UCP algorithm was presented which
multiplies the cost of indicants in the solution if reductions
from the same indicant have been previously selected. How-
ever, this increases the complexity of finding a solution as
conventional reduction techniques (such as dominance [9])
rely on fixed costs and can no longer be employed.

4.3 Off-set Synthesis

In indicating combinational logic circuits, both spacer-to-
data and data-to-spacer ATS must be indicated. This is
achieved by implementing each required cube using C-ele-
ments. Each C-element sequentially composes two required-
cubes: an on-set cube (which translates spacer-to-data ATS)
and an off-set cube (which translates data-to-spacer ATS).
The off-set cube of a C-element consists of the complement
of all of the literals in the on-set cube. The composition of
on-set and off-set cubes, means the off-set cubes of a func-
tion do not need to be mutually-exclusive and therefore can
be further optimised once a fully-indicating indicant (on-set)
cover has been created for a function-block. This has the
effect of reducing the number of C-elements and decreasing
the overall cycle time of the circuit. In [12] a number of strat-
egies were presented to reduce the off-set, that could target
different cell library requirements.

Figure 5 shows the prime-indicant synthesis algorithm.

5. Block-Level Relaxation Synthesis

The prime indicant synthesis method is a novel method of
synthesising low cost fully-indicating function blocks. How-
ever, because all possible ATS must be enumerated, the
method is unsuitable for synthesising large datapath struc-
tures. In the remainder of this paper we present a complete
synthesis method that allows such structures to be synthe-
sised using the prime-indicant approach. As demonstrated
by gate-level and block-level relaxation techniques, employ-

ing fully-indicating function blocks everywhere in a datap-
ath structure introduces unnecessary overheads. The
methods in this paper extend the synthesis procedures to
allow partially indicating implementations to be synthesised.
By quantifying the cost of indicating individual variables, an
automated block-level relaxation process can be created that
can relax individual variables within function block imple-
mentations.

5.1 Clustering

The synthesis method outlined in this paper takes a con-
ventional Boolean combinational logic netlist as input. In
order to exploit the block-level synthesis and relaxation tech-
niques the netlist must be restructured into a set of intercon-
nected function blocks. This is achieved by employing a
clustering algorithm similar to the type employed when gen-
erating PLAs from combinational networks in [4].

The aim of the algorithm is to incorporate as many gates
of the initial netlist into each cluster without exceeding a
given maximum input size. The output functions of the clus-
ter are then re-specified in terms of the primary inputs of the
cluster. During the synthesis procedure the indication of the
inputs of a function block will be distributed throughout the
outputs of the block. It is possible that functions may become
dependent upon variables upon which they were not depend-
ent in the initial network. Therefore, care must be taken
when constructing clusters to prevent circular dependencies
arising in the network, which may cause deadlock.

The clustering algorithm, shown in figure 6, proceeds
from the outputs. Each cluster is initiated from a single var-
iable. To prevent circular dependencies, the source gate of
the variable can only be incorporated into a cluster if the var-
iable is either a primary output or all the fan-out gates of the
variable are already clustered. Any non-clustered fan-out
gates of the variable must be incorporated before the source
gate. Once a gate is incorporated its inputs become inputs to
the cluster. If all of the gates in the fan-out of a cluster cannot
be incorporated into the cluster, then as many fan-out gates
as possible will be incorporated. The algorithm proceeds by
recursively incorporating the fan-out and source gates of any

I1 a0b0c0= I2 a0b0c1=

a0b0c0d0 a0b0c0d1,{ } a0b0c1d0 a0b0c1d1,{ }

I a0=
a0b0c0 a0b0c1 a0b1c0 a0b1c1, , ,{ }

I1 a0b0= I2 a0b1=

I1 a0c0= I2 a0c1=

a0b0c0 a0b0c1 a0b1c0 a0b1c1, , ,{ }

Figure 5: Prime Indicant Synthesis Algorithm

prime_indicant_synthesis(functionblock) {

// Indicant Cover
foreach function in functionblock {

ic = minimum_cost_indicant_cover(function);
foreach requiredcube of f {

calculate the missing literals in ic
}

}
missing_literals = total missing literals;
reduced_missing_literals =

minimum_cost cover of missing literals;
// Reduction
substitute reduced_missing_literals into functions;

offset_literals =
minimum_cost covering of off-set literals;

}

new inputs until no further gates can be added without vio-
lating the maximum input count.

Example 5.1 Figure 7 shows an example combinational cir-
cuit, clustered using a maximum input size of four. The
NAND gates driving the outputs each form a single cluster.
As each gate shares inputs with the other gates, the clustering
algorithm cannot include any of the NOR gates until all of
the NAND gates have been clustered. However, because
each NAND gate shares only one input with the other two
gates, the combined input count of any pair of NAND gates
is five, and these gates cannot be clustered together unless
the maximum input size is increase.

5.2 Block-Level Relaxation Synthesis

The two stage approach of prime-indicant synthesis was
developed to cope with the complexity of synthesising min-
imal indicating implementations. However, this approach
also facilitates the adaptation of the procedure to incorporate
relaxation optimisations. The algorithm for block-level
relaxation synthesis is shown in figure 8. In the first stage a
minimum cost indicant cover of each function block in the
network is produced. The relaxation algorithm is then
applied to determine which function blocks should indicate
which transitions. Finally the indicant reduction procedure is
applied to each block (with a reduced set of untranslated
transitions). The operation is then repeated to optimise the
off-set of functions.

5.2.1 Indicant Cover

A minimum cost implementation of the network, that
indicates all of the internal transitions within function
blocks, but not necessarily all transitions on the inputs of

function blocks, can be created by constructing a minimum
cost indicant cover of each function block in the network. In
the indicant cover, transitions on the inputs of each indicant
are translated by the output function. It is impossible to relax
the indication of the indicant covers any further without vio-
lating the indication of the internal signals in the function
block. Therefore, there is a set of input transitions which are
automatically translated by each output function which are
removed from the relaxation process.

Example 5.2 Figure 9.i shows the canonical architecture

Figure 6: Clustering Algorithm

add_variable_to_cluster(cluster,v) {
variables_added = 0;
if(v != primary_output) {

foreach g in fanout(v) {
if(g not already clustered) return FALSE;

}
}
foreach g in fanout(v) {
if((inputcount(cluster) + inputcount(g))≤ MAXINPUTS)

cluster = cluster ∪ g;
foreach i in inputs of g {

if(add_variable_to_cluster(cluster,i))
variables_added++;

}
}}
if(variables_added > 0) return TRUE;
else return FALSE;

}

cluster_netlist (Netlist) {
clusters = ();
variables = outputs of netlist;
foreach v in variables {

new_cluster = ();
if(add_variable_to_cluster(new_cluster,v)) {

clusters = clusters ∪ new_cluster;
variables = variables ∪ inputs of cluster;

}
}
return clusters;

}

Figure 7: Clustering of Example Circuit

Figure 8: Relaxation Synthesis Algorithm

block_level_relaxation (Block-Level_Network) {

// Indicant Cover
foreach functionblock in Block-Level_Network {

foreach function in functionblock {
ic = minimum_cost_indicant_cover(function);
foreach requiredcube of f {

calculate the missing literals in ic
}

}
calculate_function_block_missing_variables;
determine cost of each missing variable;

}
// Relaxation
missing_variables = total missing variables;
reduced_missing_variables =

minimum_cost cover of missing variables;

// Reduction
foreach functionblock in Block-Level_Network {

calculate missing literals from
reduced missing variables;

substitute reduced_missing_literals in functions
}

// Off-set Synthesis
foreach functionblock in Block-Level_Network {

missing off-set variables =
missing on-set variables;

}
// Relaxation

missing_variables = total missing variables;
reduced_missing_variables =

minimum_cost cover of missing variables;
// Reduction

foreach functionblock in Block-Level_Network {
calculate missing literals from

reduced missing variables;
substitute reduced_missing_literals into

off-set functions
}

implementation of the dual-rail expansion of the example
circuit shown in figure 8. A minimum cost indicant cover
implementation is shown in figure 9.ii. It should be noted
that the minimum-cost indicant cover implementations of
the 2-input NAND gates in cluster 4 are more expensive than
the fully-relaxed gate-level AND implementations shown in
figure 3, this is because the indicant cover algorithm ensures
all indicants are mutually-exclusive (even those that contain
a single literal).

5.2.2 Relaxation

Once a minimum cost implementation has been created
for each function block, the untranslated transitions of the
whole network can easily be calculated. This information
can then be used by a reduction selection procedure to dis-
tribute the translation between function blocks sharing com-
mon inputs. The indicant reduction procedure of prime-
indicant synthesis provides an effective method for evaluat-
ing the cost of the translation of individual transitions in a
function block and a technique to alter the implementation to
translate the transitions.

Therefore, the relaxation selection procedure can be used
to distribute the translation of individual transitions between
the function blocks of a network. While this is a very pow-
erful technique, it is infeasible to apply relaxation at this
granularity across large combinational logic networks due to
the total number of possible transitions. Therefore, the relax-

ation procedure described in this paper distributes the indi-
cation of variables between function blocks rather than the
translation of transitions.

As described in section 4.2 the cost of reducing an indi-
cant multiplies when more than one variable is applied, and
a distributed unate covering algorithm must be used. During
the relaxation process, the cost of indicating a variable
within a function block may change depending upon which
other variables are also indicated by the function block. To
reduce the complexity of the relaxation covering problem,
the cost of indicating each unindicated variable is approxi-
mated by calculating the additional cost of indicating only
that variable. A distributed UCP covering algorithm that
multiplies the cost of selecting more than one variable in
each function block is then used to select which variables
will be relaxed by which function blocks. While this only
approximates the actual cost of the final implementation, it
reduces the need to have individual columns in the UCP
table for each possible combination of unindicated variable
in each block.

Example 5.3 In the minimum-cost indicant cover figure 9.ii,
the implementation of cluster 4 indicates all of the transitions
on variables X10, X11, X20, X21, X30 and X31, and so these
variables are removed from the relaxation process (although
as they are not shared by another cluster their indication
could not be distributed anyway). None of the remaining
clusters indicate their input variables and so the relaxation
process distributes the indication of the remaining input (and
intermediate) variables between the clusters 1 to 3. The cov-
ering table for the relaxation process is shown in figure 10,
and a minimum cost covering is highlighted. The cost func-
tion of the covering algorithm distributes the indication of
the “W-variables” to minimise the cost of the final imple-
mentation.

5.2.3 Indicant Reduction

The reduction selection procedure determines the set of
variables each block must indicate. Each variable is then re-
mapped to a set of transitions within the function-block and
the indicant reduction procedure is used to translate the tran-
sitions.

Example 5.4 Figure 11.i shows the relaxed implementation
of the example circuit. The indicants of the clusters 1 to 3

Figure 9: Dual-rail Expansion of Example 5.1. i) Canonical
Architecture, ii) Minimum-Cost Indicant Cover

Cluster1 Cluster2 Cluster3

X40 X41 W10 W11 W20 W21 X50 X51 W20 W21 W30 W31 X60 X61 W10 W11 W30 W31
X40 1

X41 1

X50 1

X51 1

X60 1

X61 1

W10 1 1

W11 1 1

W20 1 1

W21 1 1

W30 1 1

W31 1 1

Figure 10: Covering table for Relaxation Process

have been reduced to indicate the transitions of the inputs as
governed by the relaxation procedure. The benefits of
allowing partially indicating implementations of clusters
can be determined by comparing the implementations of
these clusters in figures 9.i and 11.i. The relaxation method-
ology proposed by Jeong does not permit partial-indication
and, as each of the clusters 1-3 must indicate at least one
variable (the relevant “X-variable”), fully-indicating imple-
mentations would have be employed for all these clusters.

5.2.4 Off-set Synthesis

Relaxation can be used to further optimise the off-set
required cubes of the function block once the final on-set
implementations have been determined. In the results pre-
sented in this paper we restrict indication of the offsets of a
function block only to those variables whose on-sets were
indicated by the same function block (although it is possible
to indicate different variables in the on and offsets of each
indicant). Unlike the on-set reduction methods a conven-
tional UCP algorithm for relaxation selection can be used as
the cost of reducing the off-set required cubes is not multi-
plicative.

Example 5.5 Figure 11.ii shows an implementation of the
example circuit after off-set relaxation. As the relaxation
process distributed the indication of the on-set across the

clusters, the ability to reduce the off-set is reduced, and only
a few generalised C-elements may be employed.

6. Results

The synthesis techniques were demonstrated over a set of
ISCAS combinational logic benchmarks. The circuits were
targeted at a 180 nm ST Microelectronics technology, using
a conventional standard-cell library (C-elements were
implemented using complex gates with feedback). Each
implementation was place and routed by Cadence Encounter
and extracted with lumped single capacitances using
Cadence Diva. Simulations were executed in Synopsys
Nanosim and the results of each circuit were generated from
a sequence of random input vectors. Table 1 shows the area
of each implementation, the average latency and the average
energy consumption of each input vector.

Each benchmark was implemented using the gate-level
relaxation algorithms of Zhou [15] as well as several func-
tion block level implementations:
• Fully indicating synthesis without relaxation
• Jeong block-level relaxation: the relaxation technique

proposed by Jeong was recreated by using only fully-in-
dicating or minimum cost indicant cover implementa-
tions of each function-block. However, the manual
process of Jeong was automated using clustering and
prime indicant synthesis techniques.

• Full block-level relaxation: where the indication of indi-
vidual variables within the function block was selected
by the relaxation process.
The Block-level results shown in table 1 are for 4 input

function blocks only. Simulations were performed for a
range of function block sizes for each implementation.
Unfortunately, due to space limitations, the results for all
cluster sizes can’t be reproduced here. However, simulations
showed that networks constructed from 4 inputs produced
the best results in all three metrics.

All of the block-level procedures demonstrate an
improvement in performance and energy over the gate-level
relaxation procedure. However, for the prime-indicant syn-
thesis circuits and Jeong’s block-level relaxation technique,
this comes at the cost of additional area overhead. The new
full block-level relaxation technique demonstrates signifi-
cant reductions in latency (26.4%)and energy (48.0%) over
gate-level reduction, while maintaining approximately the
same area as the gate-level implementations (4.7%
decrease). The increase in granularity of the new block-level
relaxation techniques allowed for reductions of 17% in area,
8% in latency and 20% in energy consumption over the
block-level relaxation techniques proposed by Jeong.

7. Conclusions

This paper presents a full synthesis procedure to construct
indicating combinational datapath circuits from conven-
tional circuit netlists. The procedure constructs function

Figure 11: Relaxed Implementations of Example 5.1 i) On-
set Relaxation, ii) Off-set relaxation

blocks from the gates in the original netlist and synthesises
them using indicating synthesis techniques. Unlike other
function-block level techniques, the approach presented in
this paper is fully automated. Significant improvements in
area, performance and energy over other gate-level and
block-level synthesis techniques were demonstrated.

8. References
[1] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, “Coping with the

variability of combinational logic delays”, Proc. ICCD-04, 2004.
[2] C. Jeong, S. M. Nowick, “Optimization of robust asynchronous circuits by

local input completeness relaxation” Proc. ASPDAC-07, 2007.
[3] C. Jeong, S. M. Nowick, “Block-Level Relaxation for Timing-Robust Asyn-

chronous Circuits Based on Eager Evaluation”, Proc. ASYNC-08 2008.
[4] S. P. Khatri, R. K. Brayton, A. Sangiovanni-Vincentelli, “Cross-talk Immune

VLSI Design using a Network of PLAs Embedded in a Regular Layout Fabric”,
ProcICCAD-00, 2000.

[5] A. Kondratyev, K. Lwin, “Design of Asynchronous Circuits by Synchronous
CAD Tools”, Proc. DAC-02, 2002.

[6] M. Ligthart, K. Fant, R. Smith, A. Taubin, A. Kondratyev, “Asynchronous
Designs using Commercial HDL Synthesis Tools”, Proc. ASYNC-00 2000.

[7] D. E. Muller, “Asynchronous Logics and Application to Information Process-
ing”, Proc Switching Theory In Space Technology, 1963.

[8] S. M. Nowick, D. L. Dill, “Exact Two-Level Minimisation of Hazard-Free
Logic with Multiple-Input Changes”, IEEE Trans. CAD, v. 14(8), 1995.

[9] R. L. Rudell. “Logic Synthesis for VLSI Design”, PhD thesis, University of
California at Berkeley, 1989.

[10] J. Sparsø, J. Staunstrup. “Delay Insensitive Multi Ring Structures”, Integration,
the VLSI Journal. v15(13), 1993.

[11] C. Seitz. “System Timing”, Chapter 7 in C.A. Mead and L.A. Conway, editors,
Introduction to VLSI systems, Addison-Wesley, 1980.

[12] W. B. Toms, D. A. Edwards, “Prime Indicants: A Synthesis Method for Indicat-
ing Combinational Logic Blocks”, Proc. ASYNC-09, 2009.

[13] V.I. Varshavsky, ed. “Self-Timed Control of Concurrent Processes: The Design
of Aperiodic Logical Circuits in Computers and Discrete Systems”, Klewer
Academic Publishers,1990.

[14] T. Verhoeff, “Delay-insensitive codes – an overview”, Distributed Computing,
v. 3(1), 1988.

[15] Y. Zhou, D. Sokolov, and A. Yakovlev, “Cost-aware synthesis of asynchronous
circuits based on partial acknowledgement. Proc. ICCAD-06, 2006.

Benchmark Gate Level Relaxation Fully Indicating Synthesis Jeong Block Level Relaxation Full Block Level Relaxation
Area

(103 µm2)
Latency

(ns)
Energy

(nJ)
Area

(103 µm2)
Latency

(ns)
Energy

(nJ)
Area

(103 µm2)
Latency

(ns)
Energy

(nJ)
Area

(103 µm2)
Latency

(ns)
Energy

(nJ)

c1355 74.2 19.7 244.7 73.3 15.4 161.1 57.7 12.7 104.4 46.93 10.9 85.5
c17 1.21 2.34 3.78 0.89 2.12 1.17 0.89 2.12 1.18 0.89 2.12 1.18

c1908 85.7 18.4 295.1 102 18.6 228.1 96.2 16.7 213.3 79.5 14.4 173.9
c3540 178 26.6 645.3 312 31.3 708.5 258 23.9 578.1 229 18.9 492.6
c432 33.4 19.6 116.4 56.7 16.8 118.5 47.6 15.3 98.6 34.2 13.6 64.8
c499 57.1 14.6 190.8 79.2 12.7 175.6 55.5 10.7 95.7 40.5 9.95 72.1
c5315 294 21.6 1063 501 22.6 1171.9 395 20.5 859.4 311 19.9 638.7
c6288 310 62.3 1112.3 365 35.1 640.3 347 33.9 608.5 319 33.9 550.2
c7552 392 23.8 1541.8 538 21.9 1299.7 442 19.6 1036.0 362 18.0 768.9
c880 51.1 15.6 167.5 99.6 17.5 191.9 79 12.4 148.8 61.4 12.5 109.6

Average Improvement -39.6 7.44 15.6 -16.3 20.1 33.8 4.7 26.4 48.0

Table 1: Experimental Results of Block-Level Relaxation Synthesis

	A Complete Synthesis Method for Block-Level Relaxation in Self-Timed Datapaths
	Abstract
	1. Introduction
	2. Indication
	2.1 Definitions
	2.2 Delay-Insensitive Encoding
	2.3 Allowed-Transition Sets
	2.4 Indication
	2.5 Canonical Architecture

	3. Indicating Combinational Logic Synthesis
	3.1 Desynchronisation
	3.2 Gate-level Relaxation
	3.3 Block-level Relaxation

	4. Prime Indicant Synthesis
	4.1 Indicant Cover
	4.2 Indicant Reduction
	4.3 Off-set Synthesis

	5. Block-Level Relaxation Synthesis
	5.1 Clustering
	5.2 Block-Level Relaxation Synthesis
	5.2.1 Indicant Cover
	5.2.2 Relaxation
	5.2.3 Indicant Reduction
	5.2.4 Off-set Synthesis

	6. Results
	7. Conclusions
	8. References

