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Abstract

Self-timed circuits present an attractive solution to the 
problem of process variation. However, implementing self-
timed combinational logic can be complex and expensive. 
This paper presents a complete synthesis flow that gener-
ates self-timed combinational networks from conventional 
Boolean networks. The Boolean network is partitioned into 
small function blocks which are then synthesised using self-
timed techniques. The procedure employs relaxation optimi-
sations to distribute the overheads associated with self-
timed networks between function-blocks. Relaxation is 
incorporated into the function block synthesis procedures, 
meaning the optimisations can be applied at a much finer 
granularity than previously possible. The new techniques 
are demonstrated on a range of benchmarks showing aver-
age reduction of 5% in area, 26% in latency and 48% in 
energy over gate-level relaxation techniques and 17% in 
area, 8% in latency and 20% in energy consumption over 
other block-level relaxation techniques. 

1. Introduction

Process variation is the major challenge currently facing 
the VLSI industry. In deep sub-micron technologies, timing 
closure for synchronous systems, which are already clocked 
at up to 50% below their ideal potential [1], becomes com-
plex. Self-timed circuits [11], whose operation is independ-
ent of any external timing reference, are increasingly being 
seen as a solution to the problems of timing closure in highly 
variable technologies. The robust timing models employed 
by these circuits make them extremely tolerant to variations 
in the propagation delays of circuit components. However, 
the lack of assumptions about the environment and circuit 
components make self-timed circuits difficult to specify, cre-
ate and test. In particular, self-timed combinational logic 
operations are complex because the validity of an operand 
needs to be encoded within the data itself. The cost of encod-
ing the datapath in this manner is significant: each data word 
must be transmitted explicitly and, because the logic level of 

each wire no longer specifies a data value, data wires must 
transition into a known (spacer) state in between every trans-
mission. Furthermore, additional logic is required to indicate
the internal signals of a circuit - to ensure they are in a steady 
state by the time the outputs are generated.

This paper describes a complete synthesis flow for self-
timed circuits which converts conventional Boolean combi-
national logic netlists into self-timed combinational netlists. 
The gates of the combinational netlist are combined into 
function-blocks which are synthesised using self-timed syn-
thesis algorithms. The cost of implementations are reduced 
by incorporating relaxation optimisations [2], where indica-
tion is distributed across function-blocks which share com-
mon inputs. Unlike other function-block based methods [3], 
the approaches in this paper are fully automated. Further-
more, as relaxation techniques are incorporated within the 
self-timed synthesis procedures, relaxation can be applied at 
a much finer granularity than was previously possible. The 
system demonstrates significant improvements in area, per-
formance and energy compared to other gate-level and 
block-level techniques over a range of benchmarks.

2. Indication

Self-timed combinational logic has been the subject of 
much research, leading to several different terms being 
applied to the same principles. The work in this paper is 
based on a model developed specifically for combinational 
logic circuits by Varshavsky [13]. This model is useful as it 
defines the properties of self-timed circuits in terms of 
Boolean equations. The process described by Varshavsky as 
indication is equivalent to acknowledgement [15] and com-
pleteness [6] used subsequently by others. An indicating cir-
cuit is equivalent to a timing-robust [2] or input-complete [5]
circuit.

2.1 Definitions

• A multi-valued variable vi can take on symbolic values 
from . Each symbolic value 
maps on to a unique integer . A bi-
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nary variable is one in which .
• A function, f, of n variables is a mapping 

. In a Boolean function 
.

• Each element in the domain of function f is called a min-
term.

• In a Boolean function, f, the set of minterms for which 
 is called the on-set, the set for which  is 

called the off-set and the set for which  is called the 
don’t-care set.

• A multi-valued literal is a binary valued logic function of 
the form:

where . If vi is a binary variable then  is writt-
ten as ,  is written as  and  is written as 

.
• A product term is a Boolean product (AND) of literals. A 

cube is the set of minterms which can be described by a 
product term.

• Product y contains product x ( ) if the cube of x is a 
subset of the cube of y.

• An implicant of a (boolean) function is a product term 
which contains no minterms of the function’s off-set.

• A prime implicant is an implicant contained in no other 
implicant of the function.

• A cover of a function is a set of implicants which contains 
all of the minterms of the on-set and no minterms of the 
off-set.

2.2 Delay-Insensitive Encoding

As there are no external timing references in self-timed 
circuits, the validity of data must be encoded within the data 
itself using a Delay-Insensitive (or unordered) code [14]. In 
a DI-code, no code word is contained within any other, 
allowing the arrival of a valid data word to be determined 
unambiguously. The most common form of DI-code is dual-
rail, where each binary bit is encoded with two wires and a 
transition on one of the two wires signals the arrival of data. 
Large datapaths are formed by concatenating code-groups 
together. The dual-rail code can be generalised to m-of-n
codes where data words are signified by m transitions on n
wires. In m-of-n encodings the logic-level of each wire only 
signifies the presence or absences of data. Therefore, in most 
self-timed systems, all wires must transition to a known 
(spacer) state in between data transmissions. In this paper we 
only consider Return-to-Zero encodings, where all wires 
must transition to zero in the spacer state.

2.3 Allowed-Transition Sets

The behaviour of an indicating circuit is defined by sets 
of transitions on the inputs (or outputs) of the circuit called 
Allowed-Transition Sets (ATS). Each ATS describes a com-

plete transition from a valid data value to a valid spacer value 
(or vice versa) on a set of circuit variables. An ATS consists 
of a set of transitions on individual variables which may 
occur in any order. The concept of an ATS is similar to that 
of a Multiple-Input Change (MIC) in burst mode circuits [8], 
and (like MICs) each ATS, (a-b), has an associated transition 
cube [a,b] which contains all the possible states of the vari-
ables (minterms) that may be reached between a and b. Also 
associated with each ATS is a product called the transition 
variation term  which represents the final values of 
any variables that transition during the ATS. The set N(a,b) 
of ATS (a-b) contains all the minterms, ai, of [a,b] which are 
adjacent to b (have a Hamming distance of 1). As the transi-
tions in an ATS may occur in any order, the number of ele-
ments in N(a,b) is equivalent to the number of variables that 
transition in the ATS (a-b).

A combinational logic circuit consists of two sets of var-
iables: A set of n inputs, , and a set of m out-
puts, . An ATS on the circuit inputs, X, 
causes a subsequent ATS on the circuit outputs, Y. The 
behaviour of the function-block is defined by two multi-val-
ued functions:
•  which maps the data values of X (DX) to data 

values of Y (DY).
•  which maps the spacer values of X (SX) to 

spacer values of Y (SY).
The encodings used in this paper have only a single spacer 
(the zero value ( ) and so  for 
all function blocks.

In order to construct a physical circuit for a function 
block, the multi-valued functions are implemented by a sys-
tem of inherent functions (SIF). In an SIF each output of the 
function block is determined by a binary cover function:

Each fi is the encoded function of variable yi formed by map-
ping the multi-valued functions  and  
to the binary encoding of code system X.

Example 2.1 A is a function block with two dual-rail 
encoded binary inputs, it has four input variables 

. The encoding of the inputs means there 
are four possible data values and a single spacer:

Code system X contains eight ATS:

ATS  has the transition cube:

the transition variation term:
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and the adjacent transitions

There are eight possible ATS:

The output of the function block is a single dual-rail sig-
nal. The encoding of the outputs means there are two data 
values and a single spacer:

Code system Y contains four ATS:

For transition :

and

F(X) is defined as follows:

.

2.4 Indication

In order to eliminate timing assumptions in self-timed cir-
cuits the outputs of a circuit are used to indicate to the envi-
ronment that the internal gates of a circuit are in a steady 
state and the circuit is ready to accept more input. Var-
shavsky defines the indication of the inputs (and internal sig-
nals) of a circuit in terms of the translation of individual 
transitions to the outputs.

An input transition is translated to the output of a function 
if its arrival causes the output to transition. Within each ATS 
not all input transitions are directly translated to the output 
of a function, as this would mean the function must change 
value after every input transition. However, all input transi-
tions must be capable of causing an output transition if they 
are the last to occur. This property allows the function to 
indicate all input transitions regardless of the order of their 
arrival.

Boolean differences of functions are used to determine 
whether a function translates all of its input transitions. The 
Boolean difference of function with respect to 
variable xi is given by:

where  and  are the cofactors of  in fj (the functions 
obtained by replacing all occurrences of  in fj with a 1 or 0 
respectively). Boolean differences are used to determine the 
conditions under which a function is dependent (or inde-
pendent) on a variable and are commonly used to generate 

input vectors for stuck-at-fault testing.

Definition 2.1 An output, yj, translates an input transition 
on input xi in the ATS (a-b), if for the adjacent transition, 
(ai-b), where  and , the values of the 
variables in  form a solution to the equation:

Example 2.2 For the function block from example 2.1, a 
possible implementation for the cover function variable y1 
is:

The transition  has the transition constant term:

and the adjacent combinations:

Considering the adjacent transition , the transi-
tion on x3 is translated by y1 as the value of the variables in 
the transition cube form a solution for the equation generated 
from the Boolean difference of the variable in the variation 
term:

 and 

Therefore, function y1 indicates the transition x3 for the ATS 
.

The concept of translation is used to define the indication 
of input variables and circuits:

Definition 2.2 An input variable, xi, is indicated if for each 
ATS, (a-b), in which xi transitions there exists an output yi 
of the circuit which translates the transition on xi.

Definition 2.3 A circuit is indicating if all its input varia-
bles are indicated. 

2.5 Canonical Architecture

To determine whether a particular circuit implementation 
is indicating requires solving Boolean difference equations 
for every input transition in all the ATS of the circuit. These 
checks add a significant overhead to the synthesis process 
and so it is preferable to implement circuits in a canonical 
architecture in which the indication of the circuit is guaran-
teed. In the canonical architecture, each function is con-
structed from the sum of a set of Muller C-elements [7]. Each 
C-element implements two ATS, a spacer to data transition 
(s-dk) and the corresponding spacer to data (dk-s) transition. 
In RTZ systems the inputs to the C-element correspond to 
those variables in the transition variation term of the (s-dk) 
ATS.

As the inputs of the circuit are encoded within a DI-code, 
no transition variation term is contained within any other and 
each C-element is mutually-exclusive in the normal behav-
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iour of the circuit. For a given ATS, only one C-element of a 
function transitions and the output is dependent on all of the 
inputs to the C-element. Therefore, provided that there is a 
C-element implementing each ATS in some function of the 
circuit, the circuit is indicating. This canonical architecture 
forms the basis of many indicating circuit styles such as 
DIMS [10] and NCL-D [6]. However, because each C-ele-
ment has an input for each transition within an ATS, the size 
of the canonical architecture is large and, as each output must 
wait for all of the input transitions before transitioning, the 
architecture has worst-case performance.

3. Indicating Combinational Logic Synthesis

3.1 Desynchronisation

In order to create an indicating circuit, all of the ATS must 
be fully enumerated to ensure that each input transition is 
translated by an output transition. For large datapath compo-
nents this becomes infeasible and so a method of decompos-
ing datapath components must be employed. One of the most 
popular methods of constructing indicating datapath compo-
nents is desynchronisation [1][5] where conventional syn-
thesis tools are used to synthesise a gate-level network which 
is then converted by expanding each gate into an indicating 
gate-operator circuit implementing the same function. In 
order to encode data validity, each binary variable in the 
design is expanded into a dual-rail pair of variables. In the 
NCL-D design flow [6], figure 2.i, each gate-operator is 
implemented using the canonical architecture. However, 
because of the overheads associated with the canonical 
architecture, several optimisations have been developed.

In the NCL-X design flow [5], figure 2.ii, each binary var-
iable is replaced by 3 variables, which represent a dual-rail 
pair and an additional valid signal which translates the tran-
sitions of the dual rail pair. Employing a valid signal means 
translation does not need to be performed within the gate-
operators and can be implemented using an external comple-
tion detector. This greatly simplifies the implementation of 
the gate-operators and improves performance as the comple-
tion detection can be done in parallel with logic. However, 
the area and energy consumption of these circuits is often 
increased due to the addition of a valid signal for each vari-
able in the design and the extra completion detection.

3.2 Gate-level Relaxation

An alternative approach to optimisation of desynchro-

nised datapaths was suggested concurrently by Jeong [2] and 
Zhou [15]. Both of these methods rely on the relaxation of 
the indication of inputs to individual gate functions. In the 
NCL-D approach each gate operator indicates the transitions 
on all of its inputs, meaning that the transitions of nodes with 
multiple fan-out are indicated by all of the gates in its fan-
out. Definition 2.2 states that only one output is required to 
translate each input transition and so the indication of all but 
one gate operator in the fan-out of a variable can be relaxed. 
The aim of both approaches is to determine a distribution of 
the indication of each variable to reduce the total cost (using 
various metrics) of implementing the network. A set of 
implementations of each gate operator is created for all the 
possible relaxation combinations of the inputs. Figure 3
shows the relaxed implementations of a Dual-Rail AND 
gate. The arrows determine whether the implementation 
indicates the spacer-to-data transitions (↑) or the data-to-
spacer transitions (↓) (there are only 5 distinct implementa-
tions as many of the implementations are equivalent). UCP 
[2] or ILP [15] solvers are then used to select an implemen-

Figure 1: Canonical Architecture

Figure 2: Desynchronisation Implementations of Ripple 
Carry Adder: i) NCL-D, ii) NCL-X, iii) Gate-level 
Relaxation



tation for each gate that will minimise the cost yet maintain 
the indication of the network.

In the full-adder circuit in figure 2.iii, inputs A and B are 
both connected to two gates, an XOR (driving signal X) and 
an AND gate (driving signal Y). Therefore, it is not neces-
sary for both gates to indicate the transitions on both signals 
and the implementations of the gates may be relaxed. In this 
case, cost of the implementation is minimised by employing 
a fully relaxed implementation for the AND gate and a fully-
indicating implementation for the XOR gate. The same opti-
misation occurs on the gates driving Z and S. As the signals 
Y and Z have only a single fanout, the OR-gate driving Co 
cannot be relaxed.

Despite the dramatic improvements of the optimisations 
over the original NCL-D circuits, there are still problems 
inherent in the desynchronisation design-flow. The cost 
functions associated with gates in a conventional tool flow 
are different from the costs associated with their equivalent 
indicating gate operators. Implementing dual-rail signalling 
at the granularity of individual gate operators increases sig-
nificantly the switching overheads of indicating circuits, this 
is further increased by the addition of a validity signal in the 
NCL-X flow. Finally, the one-to-one substitution process of 
gates to gate-operators within the desynchronisation flow 
makes employing more complex, lower power, m-of-n 
encodings very difficult to apply.

3.3 Block-level Relaxation

In order to overcome some of the problems inherent in 
desynchronisation, a block-level approach was proposed by 
Jeong [3]. Here, datapaths are composed from function-
blocks consisting of multiple (< 10) binary inputs and out-
puts, which are connected by DI-encoded channels. The 
block-level approach can reduce the cost of gate-level imple-
mentations by allowing the indication of inputs to be shared 
between the outputs of the blocks. Furthermore, as each 
block corresponds to multiple gates, the amount of DI sig-
nalling between blocks is reduced, and more complex encod-
ings may be used. 

Jeong [3] extended gate-level relaxation algorithms to the 
block-level. However, the approach described was largely 
manual. In order to construct a block-level implementation, 
designs needed to be decomposed manually and implemen-
tations for each block provided by the designer. As in gate-
level relaxation, the cost of the network implementation was 
reduced by selecting relaxed implementations of certain 
blocks without violating the indication of the network. 
Therefore, the designer needed to create multiple implemen-
tations of each block for the selection procedure. To reduce 
the design effort, the selection algorithm could only select 
between fully indicating and fully-relaxed implementations. 
Furthermore, although several potential strategies for reduc-
ing the cost of indicating implementations were outlined, no 
method of constructing arbitrary indicating blocks was pre-
sented.

This paper presents a fully automated block-level synthe-
sis system, that creates a block-level indicating network 
from a gate-level Boolean network. The gates of the original 
network are clustered to form function-blocks, which are 
then synthesised using indicating synthesis methods. Relax-
ation optimisations are incorporated in to the system by 
modifying the synthesis methods to synthesise partially indi-
cating function-blocks. The structure of the synthesis 
method allows the cost of indication of individual inputs to 
be quantified and so partially relaxed implementations may 
be selected without the need to create all possible implemen-
tations of each function block. The results show significant 
improvements in performance, area and energy consumption 
over other gate-level and block-level techniques.

4. Prime Indicant Synthesis

In [12] a synthesis method was presented to synthesise 
low cost indicating implementations of arbitrarily-encoded 
function-blocks. The method adapts conventional synthesis 
techniques to determine a low cost two-level Sum-of-Prod-
ucts implementation of each function-block. The work in 
this paper extends these synthesis methods to produce par-
tially-indicating implementations of function-blocks that are 
used during the relaxation process. In order to describe how 
the partially indicating implementations are produced the 
original procedures are presented in detail.

Figure 3: Relaxed Implementations of Dual-Rail AND gate.



The nature of indicating logic has a significant impact on 
the synthesis process:
• To minimise the cost of an implementation, the indication 

of inputs is distributed between all the functions. There-
fore, the optimisation of each function is dependent on 
the implementation of other functions in the function 
block.

• As products are expanded in the synthesis procedure lit-
erals are removed from them, meaning the product no 
longer translates transitions on these inputs. In order to 
maintain indication, each function can no longer be con-
structed as a sum of prime implicants and other (non-
prime) implicants need to be considered.

These properties increase the complexity and search space of 
the synthesis algorithm, as the optimisation of all functions 
must be executed in parallel and all possible implicants of 
each function may need to be considered. In order to over-
come these difficulties, the synthesis method uses a two 
stage process. Firstly, the lowest cost indicant cover of each 
function is determined. Then, the untranslated input transi-
tions of the function block are determined, and distributed 
between the functions of the function block.

4.1 Indicant Cover

The first stage of the synthesis procedure is to determine 
the minimum cost indicant cover for each function in the 
function block (the cost functions in [12] were based on lit-
eral counts). In two level SOP indicating logic, transitions on 
the output of a function must be used to translate transitions 
on the products of the function, as well as transitions on the 
function inputs. An indicant is an implicant of a function 
whose transitions are indicated by that function. As the indi-
cant is a single product, it will also translate all of the transi-
tions on its inputs for any ATS in which it transitions. It was 
shown in [12] that any minimum cost indicating implemen-
tation of a function must always be constructed from a cov-
ering of indicants. As described in section 2.5, a SOP 
implementation can be made indicating by ensuring all of the 
products are mutually exclusive. The indicant cover proce-
dure therefore determines the lowest cost mutually-exclu-
sive implementation for each function in the function block. 

In conventional circuit synthesis, an implementation for 
a function is generated from the smallest set of prime impli-
cants that cover all the minterms of the circuit. In indicating 
logic, the transition variation terms of each ATS, rather than 
function minterms, form required cubes that must be cov-
ered. A mutually-exclusive implementation for a function 
can be generated by ensuring that the cover is non-overlap-
ping, i.e. that no more than one prime-implicant covers each 
required cube. However, it may not be possible to construct 
a non-overlapping cover solely from the prime-implicants of 
a function, and so all function implicants must be consid-
ered. As the total number of implicants in a function can be 
large, determining a minimum cost cover of all of the impli-
cants is infeasible. Therefore, to reduce the complexity of the 

indicant cover procedure, an optimal prime-implicant cover-
ing for the function is generated and then made mutually-
exclusive. To make the cover mutually-exclusive, all of the 
possible sub-implicants of any prime-implicants that overlap 
are enumerated. A non-overlapping cover for these impli-
cants can then be generated using a modified UCP frame-
work.

Example 4.1 The required cubes of function fj are:

The minimum cost set of prime-implicants for fj is

As all of these prime-implicants overlap, the sub-implicants 
of each prime-implicant must be enumerated, giving the total 
set of implicants as:

Figure 4 shows a minimum non-overlapping cover of the 
implicants which results in the function:

4.2 Indicant Reduction

A minimum cost indicant cover function block imple-
mentation will indicate all of the transitions on any internal 
gates within the function block. It will also translate input 
transitions on any inputs to the indicants of its functions. 
However, as the initial required cubes of the function have 
been expanded, the properties of the canonical architecture 
no longer hold and the function block is no longer guaran-
teed to indicate all input transitions. The next stage of the 
synthesis process is to reduce, by re-applying the expanded 
literals, a subset of the indicants in the function block to 
ensure all input transitions are indicated.

As the indicants of a function are mutually-exclusive, 
each indicant covers a different set of required cubes. There-
fore, when an indicant is reduced it must be replaced by two 
or more indicants which cover the same required cubes as the 
original indicant. Furthermore, to ensure the resulting func-
tion is still indicating the new indicants must also be mutu-
ally-exclusive. As the required cubes of indicating functions 
are unate in all variables [13], it is not possible to reduce an 
indicant by a single variable and its complement, and differ-
ent variables must be inserted into each of the new indicants 
to ensure they are mutually exclusive.

Example 4.2 Indicant  covers the required cubes:

a0b0 b0c0 a0c0 a0b0c0 a0b1c0 a0b0c1 a1b0c0

a0b0c0 1 1 1 1
a0b1c0 1 1
a0b0c1 1 1
a1b0c0 1 1

Figure 4: Non-overlapping cover for fj

fj a0b0c0 a0b0c1 a0b1c0 a1b0c0+ + +=

PI a0b0 a0c0 b0c0, ,{ }=

IMP a0b0 a0b0c0 a0b0c1 b0c0, , ,{=

a1b0c0 a0c0 a0b1c0, , }

fj a0b0 a0b0c1 a1b0c0+ +=

I a0b0=
a0b0c0d0 a0b0c0d1 a0b0c1d0 a0b0c1d1, , ,{ }



Reducing I by literal c0 and c1 creates two indicants:
 and 

which cover the cubes:
 and  

respectively, and hence are mutually exclusive.
When a pair of reductions are applied to an indicant, the 
number of resultant indicants is multiplied:

Example 4.3  and covers the terms:

Reducing I by b0 (and b1) results in the indicants:
 and 

and reducing I by c0 (and c1) results in the indicants:
 and 

Applying both reductions together results in four indicants:

In order to minimise the cost to the network, the reductions 
need to be distributed between the indicants of the network. 
In [12] a distributed UCP algorithm was presented which 
multiplies the cost of indicants in the solution if reductions 
from the same indicant have been previously selected. How-
ever, this increases the complexity of finding a solution as 
conventional reduction techniques (such as dominance [9]) 
rely on fixed costs and can no longer be employed.

4.3 Off-set Synthesis

In indicating combinational logic circuits, both spacer-to-
data and data-to-spacer ATS must be indicated. This is 
achieved by implementing each required cube using C-ele-
ments. Each C-element sequentially composes two required-
cubes: an on-set cube (which translates spacer-to-data ATS) 
and an off-set cube (which translates data-to-spacer ATS). 
The off-set cube of a C-element consists of the complement 
of all of the literals in the on-set cube. The composition of 
on-set and off-set cubes, means the off-set cubes of a func-
tion do not need to be mutually-exclusive and therefore can 
be further optimised once a fully-indicating indicant (on-set) 
cover has been created for a function-block. This has the 
effect of reducing the number of C-elements and decreasing 
the overall cycle time of the circuit. In [12] a number of strat-
egies were presented to reduce the off-set, that could target 
different cell library requirements.

Figure 5 shows the prime-indicant synthesis algorithm.

5. Block-Level Relaxation Synthesis

The prime indicant synthesis method is a novel method of 
synthesising low cost fully-indicating function blocks. How-
ever, because all possible ATS must be enumerated, the 
method is unsuitable for synthesising large datapath struc-
tures. In the remainder of this paper we present a complete 
synthesis method that allows such structures to be synthe-
sised using the prime-indicant approach. As demonstrated 
by gate-level and block-level relaxation techniques, employ-

ing fully-indicating function blocks everywhere in a datap-
ath structure introduces unnecessary overheads. The 
methods in this paper extend the synthesis procedures to 
allow partially indicating implementations to be synthesised. 
By quantifying the cost of indicating individual variables, an 
automated block-level relaxation process can be created that 
can relax individual variables within function block imple-
mentations.

5.1 Clustering

The synthesis method outlined in this paper takes a con-
ventional Boolean combinational logic netlist as input. In 
order to exploit the block-level synthesis and relaxation tech-
niques the netlist must be restructured into a set of intercon-
nected function blocks. This is achieved by employing a 
clustering algorithm similar to the type employed when gen-
erating PLAs from combinational networks in [4].

The aim of the algorithm is to incorporate as many gates 
of the initial netlist into each cluster without exceeding a 
given maximum input size. The output functions of the clus-
ter are then re-specified in terms of the primary inputs of the 
cluster. During the synthesis procedure the indication of the 
inputs of a function block will be distributed throughout the 
outputs of the block. It is possible that functions may become 
dependent upon variables upon which they were not depend-
ent in the initial network. Therefore, care must be taken 
when constructing clusters to prevent circular dependencies 
arising in the network, which may cause deadlock.

The clustering algorithm, shown in figure 6, proceeds 
from the outputs. Each cluster is initiated from a single var-
iable. To prevent circular dependencies, the source gate of 
the variable can only be incorporated into a cluster if the var-
iable is either a primary output or all the fan-out gates of the 
variable are already clustered. Any non-clustered fan-out 
gates of the variable must be incorporated before the source 
gate. Once a gate is incorporated its inputs become inputs to 
the cluster. If all of the gates in the fan-out of a cluster cannot 
be incorporated into the cluster, then as many fan-out gates 
as possible will be incorporated. The algorithm proceeds by 
recursively incorporating the fan-out and source gates of any 

I1 a0b0c0= I2 a0b0c1=

a0b0c0d0 a0b0c0d1,{ } a0b0c1d0 a0b0c1d1,{ }

I a0=
a0b0c0 a0b0c1 a0b1c0 a0b1c1, , ,{ }

I1 a0b0= I2 a0b1=

I1 a0c0= I2 a0c1=

a0b0c0 a0b0c1 a0b1c0 a0b1c1, , ,{ }

Figure 5: Prime Indicant Synthesis Algorithm

prime_indicant_synthesis(functionblock) {

// Indicant Cover
foreach function in functionblock {

ic = minimum_cost_indicant_cover(function);
foreach requiredcube of f {

calculate the missing literals in ic
}

}
missing_literals = total missing literals;
reduced_missing_literals = 

minimum_cost cover of missing literals;
// Reduction
substitute reduced_missing_literals into functions;

offset_literals =
minimum_cost covering of off-set literals;

}



new inputs until no further gates can be added without vio-
lating the maximum input count.

Example 5.1 Figure 7 shows an example combinational cir-
cuit, clustered using a maximum input size of four. The 
NAND gates driving the outputs each form a single cluster. 
As each gate shares inputs with the other gates, the clustering 
algorithm cannot include any of the NOR gates until all of 
the NAND gates have been clustered. However, because 
each NAND gate shares only one input with the other two 
gates, the combined input count of any pair of NAND gates 
is five, and these gates cannot be clustered together unless 
the maximum input size is increase.

5.2 Block-Level Relaxation Synthesis

The two stage approach of prime-indicant synthesis was 
developed to cope with the complexity of synthesising min-
imal indicating implementations. However, this approach 
also facilitates the adaptation of the procedure to incorporate 
relaxation optimisations. The algorithm for block-level 
relaxation synthesis is shown in figure 8. In the first stage a 
minimum cost indicant cover of each function block in the 
network is produced. The relaxation algorithm is then 
applied to determine which function blocks should indicate 
which transitions. Finally the indicant reduction procedure is 
applied to each block (with a reduced set of untranslated 
transitions). The operation is then repeated to optimise the 
off-set of functions.

5.2.1 Indicant Cover

A minimum cost implementation of the network, that 
indicates all of the internal transitions within function 
blocks, but not necessarily all transitions on the inputs of 

function blocks, can be created by constructing a minimum 
cost indicant cover of each function block in the network. In 
the indicant cover, transitions on the inputs of each indicant 
are translated by the output function. It is impossible to relax 
the indication of the indicant covers any further without vio-
lating the indication of the internal signals in the function 
block. Therefore, there is a set of input transitions which are 
automatically translated by each output function which are 
removed from the relaxation process.

Example 5.2 Figure 9.i shows the canonical architecture 

Figure 6: Clustering Algorithm

add_variable_to_cluster(cluster,v) {
variables_added = 0;
if(v != primary_output) {

foreach g in fanout(v) {
if(g not already clustered) return FALSE;

}
}
foreach g in fanout(v) {
if((inputcount(cluster) + inputcount(g))≤ MAXINPUTS)

cluster = cluster ∪ g;
foreach i in inputs of g {

if(add_variable_to_cluster(cluster,i))
variables_added++;

}
}}
if(variables_added > 0) return TRUE;
else return FALSE;

}

cluster_netlist (Netlist) {
clusters = ();
variables = outputs of netlist;
foreach v in variables {

new_cluster = ();
if(add_variable_to_cluster(new_cluster,v)) {

clusters = clusters ∪ new_cluster;
variables = variables ∪ inputs of cluster;

}
}
return clusters;

}

Figure 7: Clustering of Example Circuit

Figure 8: Relaxation Synthesis Algorithm

block_level_relaxation (Block-Level_Network) {

// Indicant Cover
foreach functionblock in Block-Level_Network {

foreach function in functionblock {
ic = minimum_cost_indicant_cover(function);
foreach requiredcube of f {

calculate the missing literals in ic
}

}
calculate_function_block_missing_variables;
determine cost of each missing variable;

}
// Relaxation
missing_variables = total missing variables;
reduced_missing_variables = 

minimum_cost cover of missing variables;

// Reduction
foreach functionblock in Block-Level_Network {

calculate missing literals from
reduced missing variables;

substitute reduced_missing_literals in functions
}

// Off-set Synthesis
foreach functionblock in Block-Level_Network {

missing off-set variables = 
missing on-set variables;

}
// Relaxation

missing_variables = total missing variables;
reduced_missing_variables = 

minimum_cost cover of missing variables;
// Reduction

foreach functionblock in Block-Level_Network {
calculate missing literals from

reduced missing variables;
substitute reduced_missing_literals into 

off-set functions
}



implementation of the dual-rail expansion of the example 
circuit shown in figure 8. A minimum cost indicant cover 
implementation is shown in figure 9.ii. It should be noted 
that the minimum-cost indicant cover implementations of 
the 2-input NAND gates in cluster 4 are more expensive than 
the fully-relaxed gate-level AND implementations shown in 
figure 3, this is because the indicant cover algorithm ensures 
all indicants are mutually-exclusive (even those that contain 
a single literal).

5.2.2 Relaxation

Once a minimum cost implementation has been created 
for each function block, the untranslated transitions of the 
whole network can easily be calculated. This information 
can then be used by a reduction selection procedure to dis-
tribute the translation between function blocks sharing com-
mon inputs. The indicant reduction procedure of prime-
indicant synthesis provides an effective method for evaluat-
ing the cost of the translation of individual transitions in a 
function block and a technique to alter the implementation to 
translate the transitions. 

Therefore, the relaxation selection procedure can be used 
to distribute the translation of individual transitions between 
the function blocks of a network. While this is a very pow-
erful technique, it is infeasible to apply relaxation at this 
granularity across large combinational logic networks due to 
the total number of possible transitions. Therefore, the relax-

ation procedure described in this paper distributes the indi-
cation of variables between function blocks rather than the 
translation of transitions.

As described in section 4.2 the cost of reducing an indi-
cant multiplies when more than one variable is applied, and 
a distributed unate covering algorithm must be used. During 
the relaxation process, the cost of indicating a variable 
within a function block may change depending upon which 
other variables are also indicated by the function block. To 
reduce the complexity of the relaxation covering problem, 
the cost of indicating each unindicated variable is approxi-
mated by calculating the additional cost of indicating only 
that variable. A distributed UCP covering algorithm that 
multiplies the cost of selecting more than one variable in 
each function block is then used to select which variables 
will be relaxed by which function blocks. While this only 
approximates the actual cost of the final implementation, it 
reduces the need to have individual columns in the UCP 
table for each possible combination of unindicated variable 
in each block.

Example 5.3 In the minimum-cost indicant cover figure 9.ii, 
the implementation of cluster 4 indicates all of the transitions 
on variables X10, X11, X20, X21, X30 and X31, and so these 
variables are removed from the relaxation process (although 
as they are not shared by another cluster their indication 
could not be distributed anyway). None of the remaining 
clusters indicate their input variables and so the relaxation 
process distributes the indication of the remaining input (and 
intermediate) variables between the clusters 1 to 3. The cov-
ering table for the relaxation process is shown in figure 10, 
and a minimum cost covering is highlighted. The cost func-
tion of the covering algorithm distributes the indication of 
the “W-variables” to minimise the cost of the final imple-
mentation.

5.2.3 Indicant Reduction

The reduction selection procedure determines the set of 
variables each block must indicate. Each variable is then re-
mapped to a set of transitions within the function-block and 
the indicant reduction procedure is used to translate the tran-
sitions.

Example 5.4 Figure 11.i shows the relaxed implementation 
of the example circuit. The indicants of the clusters 1 to 3 

Figure 9: Dual-rail Expansion of Example 5.1. i) Canonical 
Architecture, ii) Minimum-Cost Indicant Cover

Cluster1 Cluster2 Cluster3

X40 X41 W10 W11 W20 W21 X50 X51 W20 W21 W30 W31 X60 X61 W10 W11 W30 W31
X40 1

X41 1

X50 1

X51 1

X60 1

X61 1

W10 1 1

W11 1 1

W20 1 1

W21 1 1

W30 1 1

W31 1 1

Figure 10: Covering table for Relaxation Process



have been reduced to indicate the transitions of the inputs as 
governed by the relaxation procedure. The benefits of 
allowing partially indicating implementations of clusters 
can be determined by comparing the implementations of 
these clusters in figures 9.i and 11.i. The relaxation method-
ology proposed by Jeong does not permit partial-indication 
and, as each of the clusters 1-3 must indicate at least one 
variable (the relevant “X-variable”), fully-indicating imple-
mentations would have be employed for all these clusters.

5.2.4 Off-set Synthesis

Relaxation can be used to further optimise the off-set 
required cubes of the function block once the final on-set 
implementations have been determined. In the results pre-
sented in this paper we restrict indication of the offsets of a 
function block only to those variables whose on-sets were 
indicated by the same function block (although it is possible 
to indicate different variables in the on and offsets of each 
indicant). Unlike the on-set reduction methods a conven-
tional UCP algorithm for relaxation selection can be used as 
the cost of reducing the off-set required cubes is not multi-
plicative.

Example 5.5 Figure 11.ii shows an implementation of the 
example circuit after off-set relaxation. As the relaxation 
process distributed the indication of the on-set across the 

clusters, the ability to reduce the off-set is reduced, and only 
a few generalised C-elements may be employed.

6. Results

The synthesis techniques were demonstrated over a set of 
ISCAS combinational logic benchmarks. The circuits were 
targeted at a 180 nm ST Microelectronics technology, using 
a conventional standard-cell library (C-elements were 
implemented using complex gates with feedback). Each 
implementation was place and routed by Cadence Encounter 
and extracted with lumped single capacitances using 
Cadence Diva. Simulations were executed in Synopsys 
Nanosim and the results of each circuit were generated from 
a sequence of random input vectors. Table 1 shows the area 
of each implementation, the average latency and the average 
energy consumption of each input vector.

Each benchmark was implemented using the gate-level 
relaxation algorithms of Zhou [15] as well as several func-
tion block level implementations:
• Fully indicating synthesis without relaxation
• Jeong block-level relaxation: the relaxation technique 

proposed by Jeong was recreated by using only fully-in-
dicating or minimum cost indicant cover implementa-
tions of each function-block. However, the manual 
process of Jeong was automated using clustering and 
prime indicant synthesis techniques.

• Full block-level relaxation: where the indication of indi-
vidual variables within the function block was selected 
by the relaxation process.
The Block-level results shown in table 1 are for 4 input 

function blocks only. Simulations were performed for a 
range of function block sizes for each implementation. 
Unfortunately, due to space limitations, the results for all 
cluster sizes can’t be reproduced here. However, simulations 
showed that networks constructed from 4 inputs produced 
the best results in all three metrics.

All of the block-level procedures demonstrate an 
improvement in performance and energy over the gate-level 
relaxation procedure. However, for the prime-indicant syn-
thesis circuits and Jeong’s block-level relaxation technique, 
this comes at the cost of additional area overhead. The new 
full block-level relaxation technique demonstrates signifi-
cant reductions in latency (26.4%)and energy (48.0%) over 
gate-level reduction, while maintaining approximately the 
same area as the gate-level implementations (4.7% 
decrease). The increase in granularity of the new block-level 
relaxation techniques allowed for reductions of 17% in area, 
8% in latency and 20% in energy consumption over the 
block-level relaxation techniques proposed by Jeong.

7. Conclusions

This paper presents a full synthesis procedure to construct 
indicating combinational datapath circuits from conven-
tional circuit netlists. The procedure constructs function 

Figure 11: Relaxed Implementations of Example 5.1 i) On-
set Relaxation, ii) Off-set relaxation



blocks from the gates in the original netlist and synthesises 
them using indicating synthesis techniques. Unlike other 
function-block level techniques, the approach presented in 
this paper is fully automated. Significant improvements in 
area, performance and energy over other gate-level and 
block-level synthesis techniques were demonstrated.
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Benchmark Gate Level Relaxation Fully Indicating Synthesis Jeong Block Level Relaxation Full Block Level Relaxation
Area

(103 µm2)
Latency 

(ns)
Energy

(nJ)
Area

(103 µm2)
Latency 

(ns)
Energy

(nJ)
Area

(103 µm2)
Latency 

(ns)
Energy

(nJ)
Area

(103 µm2)
Latency 

(ns)
Energy

(nJ)

c1355 74.2 19.7 244.7 73.3 15.4 161.1 57.7 12.7 104.4 46.93 10.9 85.5
c17 1.21 2.34 3.78 0.89 2.12 1.17 0.89 2.12 1.18 0.89 2.12 1.18

c1908 85.7 18.4 295.1 102 18.6 228.1 96.2 16.7 213.3 79.5 14.4 173.9
c3540 178 26.6 645.3 312 31.3 708.5 258 23.9 578.1 229 18.9 492.6
c432 33.4 19.6 116.4 56.7 16.8 118.5 47.6 15.3 98.6 34.2 13.6 64.8
c499 57.1 14.6 190.8 79.2 12.7 175.6 55.5 10.7 95.7 40.5 9.95 72.1
c5315 294 21.6 1063 501 22.6 1171.9 395 20.5 859.4 311 19.9 638.7
c6288 310 62.3 1112.3 365 35.1 640.3 347 33.9 608.5 319 33.9 550.2
c7552 392 23.8 1541.8 538 21.9 1299.7 442 19.6 1036.0 362 18.0 768.9
c880 51.1 15.6 167.5 99.6 17.5 191.9 79 12.4 148.8 61.4 12.5 109.6

Average Improvement -39.6 7.44 15.6 -16.3 20.1 33.8 4.7 26.4 48.0

Table 1: Experimental Results of Block-Level Relaxation Synthesis
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