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Abstract

Self-timed circuits present an attractive solution to the
problem of process variation. However, implementing self-
timed combinational logic is complex and expensive. In
particular, mapping large function blocks into cell-libraries
is difficult as decomposing gates introduces new signals
which may violate indication. This paper presents a novel
method for implementing any m-of-n encoded function
block using “bounded gates”, where any gate may be
decomposed without violating indication. This is achieved
by successively decomposing the input encoding into
smaller m-of-n codes. The method described in the paper
uses algebraic extraction techniques to efficiently deter-
mine and quantify potential re-encodings. The results of the
synthesis procedure are demonstrated on a range of combi-
national function blocks.

1. Introduction
Process variation is the major challenge currently facing

the VLSI industry. In deep sub-micron technologies, timing
closure for synchronous systems, which are already clocked
at up to 50% below their ideal potential [3], becomes com-
plex. Self-timed circuits [15], whose operation is independ-
ent of any external timing reference, are increasingly being
seen as a solution to the problems of timing closure in highly
variable technologies. The robust timing models employed
by these circuits make them extremely tolerant to variations
within the propagation delays of circuit components. Self-
timed circuits use a procedure called indication, where the
outputs of the circuit signal to the environment that the inter-
nal signals of the circuit are in a steady state and the circuit
is ready to accept more input.

The lack of assumptions about the environment and cir-
cuit components make self-timed circuits difficult to specify,
create and test. In particular, self-timed combinational logic
operations are complex because the validity of an operand
needs to be encoded within the data itself using an unordered
(or DI) code. Furthermore, implementing large combina-
tional logic functions is complex as decomposing gates

introduces new signals which need to be indicated by the
outputs. Existing self-timed decomposition methods [1][9],
designed for control circuits, struggle with the high concur-
rency and large amounts of sharing between functions in
combinational logic.

This paper presents a novel, automated, method to imple-
ment any m-of-n encoded combinational-logic function
block using bounded-gates, where gates may be arbitrarily
decomposed without violating indication (and so the number
of inputs of all gates can be bounded to any value). This is
achieved by successively decomposing the input encoding
into smaller m-of-n codes. The paper first defines the
requirements for bounded gate implementation of indicating
functional blocks. A method of decomposing m-of-n codes
using unordered divisor-sets is then presented. The method
is shown to allow the implementation of any m-of-n encoded
function-block using only bounded gates. The paper then
describes a technique to reduce the cost of divisor-sets using
algebraic extraction to identify potential encodings from the
sharing between code-words. The technique can also be used
to select encodings based on the structure of the functions in
function-blocks as well as the encoding of the inputs. The
results of the technique are presented on a range of m-of-n
encoded function blocks.

1.1 Existing Synthesis Approaches

A popular method of constructing self-timed datapath cir-
cuits is an approach called desynchronisation [10][3], where
conventional synthesis tools are used to synthesise a gate-
level network which is then converted into a self-timed net-
work by expanding each gate into an equivalent self-timed
implementation. This approach allows large self-timed data-
paths to be constructed relatively easily, however the over-
head of indication is high as each signal needs to be encoded
in a dual-rail code. Several recent techniques have been
developed that significantly reduce the cost (in area, power
and delay) of the initial network by using techniques such as
weak-indication [5][21] and relative timing [4].

More recently, a block-level approach to synthesis has
been proposed [7], where datapaths are constructed from



function-blocks connected by encoded channels. This can
reduce the cost of implementing self-timed datapaths by distrib-
uting the cost of indication between the outputs of a function
block. A synthesis technique to create optimal implementations
of arbitrary-encoded function blocks (using unbounded gates)
was presented in [17]. However, effective exploitation of the
block-level approach is constrained due to limitations on the size
of function-blocks as large function blocks cannot be mapped to
physical libraries. The techniques presented in this paper are
designed to be used within a block-level synthesis framework to
deconstruct large function-blocks, before optimisations are
applied. 

1.2 Decomposition Techniques

Several techniques for technology-mapping and decomposi-
tion of Speed-Independent and QDI control circuits have been
proposed. Burns [1] analyses the conditions for decomposition
of individual sequential elements without sharing. Kondratyev
[9] presented a technique based on analysing the effect of signal
insertions on state-graphs. In Kondratyev’s techniques the indi-
cation of signals can be shared between multiple signals, and so
shared divisors of functions within a circuit can be used.
Progress conditions define the additional cost a candidate
decomposition will have on other functions in the circuit. A can-
didate divisor will be rejected if it increases the cost of other
function implementations by more than a single literal. 

Control circuit decomposition techniques struggle when
applied to combinational logic circuits: The large number of
concurrent signals, results in an exponential number of states in
the state-graph. The expensive checks required to ensure each
divisor does not violate speed-independence are largely redun-
dant because of the simple sequential behaviour of the circuits.
The large amount of sharing between functions means that
decomposing a function will affect any further decompositions
of other functions. Progress conditions determine how expen-
sive the current decomposition will be but give no indication of
how other decompositions may be affected. 

The techniques presented in this paper decompose circuits by
re-encoding their inputs. Multiple decompositions are imple-
mented concurrently, removing the need to check each candidate
divisor. The techniques generalise existing, manual, techniques
for implementing indicating combinational logic. DIMS [16]
techniques, where the minterms of a function block are shared
by the output functions, effectively re-encodes the inputs of the
function-blocks into a one-hot code. Fant [5] suggested decom-
posing 1-of-n function blocks by creating sum and product par-
titions. Like DIMS, the product partitions create a one-hot code
from the concatenation of several input code groups within a
function block. Sum partitions combine code-words that appear
together in functions to reduce the number of literals in the func-
tion block. The techniques presented in this paper automate the
generation of sum and product positions for 1-of-n codes and
provide a method to determine of the cost of each on the function
block. Furthermore, they extend the concept to m-of-n codes and
can actually create partitions within code-groups.

1.3 Hazard-Free Combinational Logic Synthesis

A related topic is that of hazard-free logic synthesis [13].
Unlike indicating logic, hazard-free logic operates under funda-
mental mode assumptions: where the environment uses timing
constraints to determine when the circuit has stabilised. In order
to be hazard-free, a logic implementation must ensure that no
glitches occur on the output of a function during a multiple input
change (MIC): where the inputs transition from one function
minterm to another. Multi-level synthesis techniques for hazard-
free logic have been explored by Nowick [14], who describes the
conditions necessary for a multi-level hazard-free implementa-
tion of a function and a decomposition method to implement the
function in a canonical form. Furthermore, the algebraic tech-
niques used in this paper were identified by Kung [11] as being
hazard-non-increasing optimisations. The hazard-freedom of
multi-level circuits is preserved providing each sub-circuit pre-
serves the hazard-freedom of the original specification. In multi-
level indicating logic, it is not enough to preserve the indication
of the original circuit. The decomposition introduces new sig-
nals which must be also be indicated along with the input tran-
sitions.

2. Indicating Combinational Logic
2.1 Definitions

• A literal is a variable or its negation,  or .
• A cube is a set of literals C where . A cube

represents the function which is a conjunction of its literals.
• The width of a cube is the number of literals it contains, de-

noted 
• An expression is a set of cubes. An irredundant expression is

an expression where no cube is a proper subset of another.
Cube  is written as , and expression

 is written as . However, set operations
on cubes and expressions are different to Boolean operations on
the functions they represent. For example , but
the logic function  is not contained in . In this paper all
operations on cubes refer to set operations rather than Boolean
functions.
• The support of an expression, sup(f), is the set of variables

where:

Two expressions, f and g, have disjoint support if
.

• The product of two expressions f and g is the irredundant ex-
pression:

If f and g have disjoint support then fg is called the algebraic
product.

• Expression g divides expression f ( ). If f can be rewritten
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in the form:

where . If qg is an algebraic product then g is an alge-
braic divisor of f. g divides f evenly if .

2.2 Self-Synchronising Code Systems

In indicating logic circuits, the circuit variables form code
systems which describe their behaviour during circuit operation.
A code is a tuple (V,Z,A) where:
•  is a set of binary variables. 
•  is a set of values of V
•  is a set of Allowed-Transition-

Sets (ATS) which describe transitions between values. 
Each ATS consists of a set of transitions on individual varia-

bles which may occur in any order. The concept of an ATS is
similar to that of a Multiple-Input Change (MIC) in burst mode
circuits. Each ATS, (a-b), is defined by two cubes:
• A transition constant term – which contains all the variables

that do not transition in the ATS (This is equivalent to the
transition cube of a MIC):

• A transition variation term – which contains the final values
of the variables that transition within the ATS:

In two-phase code systems, all ATS occur between a data
value from the set, D, of all valid data values and a spacer from
the set of all spacer values, S, and so . In this paper
only return-to-zero (RTZ) code systems with a single spacer
value  are considered. In single-spacer
code-systems, the transition variation term of each spacer-to-
data transition is unique. Therefore, the data values of a code
system can be represented by a set of cubes, called code-words,
that correspond to the transition variation terms of all spacer-to-
data transitions. 

A code system is called a Self-Synchronising Code system
(SSC) if the termination of an ATS can be determined by the
value of the variables in V. In order to be an SSC, the set of code-
words must form an unordered (or Delay-Insensitive) code [20]:
• A code is unordered if for each pair of code-words, di and dj:

• The weight of code-word d, w(d), is:

where:

In an RTZ SSC, the weight of each code-word is equivalent

to the width of the cube: 
• If two code-words, di and dj, share a common cube, c, then

the quotients of c in each code-word, qi and qj, are called the
differentials of di and dj.Where:

,  and 
If , c is the maximal common cube of di and dj.
In this paper we consider only one specific class of codes, m-

of-n codes:
• An m-of-n code is an unordered code where each code-word

has weight m.
• The size of an m-of-n code is n choose m, denoted by :

2.3 Indicating Combinational Logic

Indicating combinational logic function blocks consist of two
self-synchronising code systems, an input code system X and an
output code system Y. An ATS (a-b) on code system X causes a
subsequent ATS (k-l) on code system Y. The operation of the
block is determined by two multi-valued functions:
•  which maps data values  to data values

•  which maps spacer values  to spacer values
.

As only single spacer code systems are described in this paper
 for all function blocks.

Example 2.1 A is a combinational logic block. The input code 
system X consists of four variables, , and 
contains four data values and a single spacer:

Code system X contains eight ATS:

The code words of DX are:

The output code system, Y, consists of two variables,
, and contains two data values and a single spacer:

Code system Y contains four ATS:

The code words of DYare:
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F(X) is defined as follows:

Varshavsky[19] defined the requirements for an indicating
implementation to be constructed for a function block:

Definition 2.1 In order for a function block to be indicatable, 
the following conditions must be upheld:
• Code Systems X and Y must be SSC.
• The functions F and G must be completely specified:

In order for a function block to be indicating, the transitions
of individual input variables must be translated by the output
functions of the function block. A transition is translated by an
output in an ATS if the output cannot transition until the transi-
tion has occurred. Within each ATS not all input transitions are
directly translated to the output of a function, as this would mean
some function must change transition after every input transi-
tion. However, all input transitions must be capable of causing
an output transition if they are the last to occur. This property
allows the function to indicate all input transitions regardless of
the order of their arrival. 

Definition 2.2 In order for a function-block to be indicating, at 
least one output must translate each input transition in every 
ATS of the input code-system.

2.4 Canonical Architecture

The canonical architecture shown in figure 1 forms the basis
of several indicating logic styles such as DIMS [16] and NCL-
D [10] and the optimised architecture of [18]. In the canonical
architecture, the code-words of the input code system are imple-
mented using a Muller C-element. As the code-words of X are
unordered, they are mutually-exclusive within the code-system.
Each C-element can only transition once all of the inputs in the
ATS have transitioned and all of the input transitions are trans-
lated. The sequential behaviour of the C-element translates all of
the transitions on both spacer-to-data and data-to-spacer transi-
tions. Therefore, providing C-elements are used, data-to-spacer
ATS can effectively be ignored.

The indication of both the canonical and optimised architec-
tures relies on being able to implement each code-word in a sin-
gle gate. If the width of a code-word is larger than the C-
elements in the target library, then the code-words need to be
decomposed. The remainder of this paper describes a decompo-
sition method that will allow any m-of-n encoded function block
to be implemented using bounded C-elements without violating
indication. The methods defined in this paper decompose a func-
tion-block into several function blocks. Each function block may
be implemented using either the canonical architecture or some
other function block optimisation technique. As the actual

implementation of the individual function blocks is not known
at the time of decomposition, no attempt to target real technol-
ogy libraries was made and physical technology-mapping needs
to take place during the implementation phase.

3. Decomposing M-of-N codes
3.1 Bounded C-element Implementation

In order to implement the canonical architecture using
bounded C-elements, each C-element may be decomposed in
any manner. However, to maintain indication, the transitions of
all decomposed C-elements must be translated by the outputs of
the function block. As the cubes of the decomposed C-elements
are smaller than the original C-element cube, they may be con-
tained within other code-words. Therefore, the C-element will
transition during the ATS corresponding to the other code-words
and all of the transitions of the C-element are not translated. A
solution to this problem is to re-encode the input-code system to
ensure that any decomposed C-elements do not contain any other
code-words. This removes the need for expensive checking of
candidate decompositions as each C-element can be decom-
posed into smaller C-elements of any number of inputs, without
violating indication.

Theorem 3.1 A code system may be implemented in the canon-
ical architecture using bounded gates if and only if for each 
pair of code-words,  and , in the input code system:

Proof If each decomposed C-element implements a divisor of
 then the C-element tree will translate all input transitions in

the ATS  and .
If , then no sub-cube of  with a width of 2 or

more can be contained in . Therefore, provided each C-ele-
ment contains two or more distinct inputs, each C-element will
transition only during ATS  and . 

3.2 Divisor Sets

In order to implement technology-independent function
blocks, the input code system must be re-encoded to fulfil the
properties of theorem 3.1. A new code system, W, is created and
the function block is re-mapped to operate on code system W
rather than X. To create an indicating implementation for the
function block, definition 2.1 must be upheld: code system W
must be an SSC and each ATS of code system X must map
directly to an ATS of W.
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Figure 1: Canonical Architecture
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To implement code system W a new function block is created
defined by the multi-valued function , as shown in
figure 2. To reduce the number of shared literals in X we must
construct the variables of code system W from common cubes of
code-words of X. The variables of W form a set of divisors, U,
of the code-words of code system X. In order to form an SSC we
must select the divisors in such a way that U forms an “unor-
dered cover” of the code-words of X. It may not be possible to
construct a code system that fulfils the properties of theorem 3.1
from sub-cubes that may be implemented using bounded gates
themselves and therefore W may need to be further decom-
posed.A set of divisors fulfilling these properties is called an
unordered divisor set.

Definition 3.1 An unordered divisor set of code system X is a 
set of divisors, U, of the code-words of X such that:
i Each pair of divisors is unordered:

ii For each , the set  contains the divisors of :

For each pair of ATS in code system X the associated divisor
sub-sets must be unordered:

The following two theorems show how divisors sets can be con-
structed and used to implement any m-of-n code using bounded
gates:

Theorem 3.2 An unordered divisor set may be constructed from 
the set of k-width sub-cubes of an m-of-n code.

Proof In an m-of-n code if two code-words, di and dj, share a
maximal common cube, c, then each code-word contains a dif-
ferential of width . There are  sub-cubes of each
code-word with width k and so for each code-word there will be

 sub-cubes of each word that intersect with the differ-
ential and so cannot be contained in the other code-word. There-
fore the set of divisors Ui and Uj are unordered. As each divisor
is of width k, the divisors form a k-of-n code and the divisor-set
is unordered. 

Theorem 3.3 A technology independent implementation for 
any m-of-n code can be created by recursively applying a m-1 
width divisor set.

Proof As each code-word in an m-of-n code is unordered, the
width of largest common cube that can be shared between two
code-words is m-1. For each code-word in an m-of-n code there
are:

 
sub-cubes of width m-1. If ci and cj share a m-1 width common
cube, then there will be

sub-cubes of each cube that intersect with the differential of each
cube. Therefore, the two code-words share only one m-1 width
sub-cube and the technology-independent properties described
in theorem 3 are upheld. 

As all the sub-cubes are m-1 width, they form an m-1-of-n
code which may be decomposed using m-2 divisors in the same
way. Therefore it is possible to construct a technology-independ-
ent implementation for any m-of-n encoded function block. 

Once the divisor set is determined the original functions may
be “re-mapped” by substituting the literals in the function cubes
corresponding to each divisor with a literal from the new code
system. The substitution needs to be done concurrently, as the
divisors may share literals that will be removed in substitution.

Example 3.1 A 3-of-5 code system contains the variables
 and the code-words:

The set of 2-of-5 sub-cubes of the code-words are:

The sub-cubes form an unordered divisor set, and hence an SSC.
The code-words of code system W are:

4. Reduced Divisor Sets
Theorems 3.2 and 3.3 demonstrate that technology independ-

ent implementations of any m-of-n code can be created using
unordered divisor sets. However the cost of implementing a code
in this way can be expensive. If the m-of-n code is reduced or
consists of smaller m-of-n codes concatenated together it may
not be necessary to use all of the k-width sub-cubes of code-
words and unordered divisor sets may be constructed from a sub-
set of possible divisors. In the remainder of this paper we present
efficient methods to find reduced divisor sets that may be used
to decompose m-of-n codes.

4.1 Differentials

In order to reduce the number of shared literals between the
code-words of the code system, the variables of code system W

Figure 2: Function block Decomposition
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are formed from common cubes of code system X. A divisor set,
U, is unordered if each pair of subsets, Ui and Uj (containing the
divisors of code-words di and dj respectively), are not properly
contained in each other. If di and dj share a common divisor, c,
then U must contain two further divisors, that intersect with the
differential of each code-word to ensure that the sets Ui and Uj
are not subsets of each other. 

The divisors in an unordered divisor set have two purposes:
to reduce sharing between code-words by extracting common
cubes and to differentiate code-words that share divisors. In
order to make a divisor set unordered, it may be necessary to add
non-shared divisors to the set to differentiate code-words. How-
ever, if the quotient, q, of divisor c, in a code-word is also a com-
mon cube, q may be used to differentiate other divisors as well.
Therefore, the size of divisor sets can be reduced by selecting
divisors that share quotients with other divisors in the set.

Example 4.1 A reduced 4-of-7 code system contains the varia-
bles  and the code-words:

If a divisor set is created using the common divisors: 
and . Then 4 additional divisors are required to differ-
entiate all the code-words:

and the code-words of code system W are:

If however, a divisor set is created from common divisors:
 and . The quotients of these cubes are also

shared cubes and only two additional divisors are required to dif-
ferentiate all code-words:

and the code-words of code system W are:

4.2 Kernel Extraction

The algorithms to find the reduced unordered divisors sets of
a code system aim to determine sets of divisors that share quo-
tients. In order to achieve this kernel-extraction techniques are
employed. Kernel extraction was developed by Brayton [2] as an
efficient way to determine the multiple-cube divisors of a set of
expressions:
• The primary divisors of an expression f, PD(f) is the set:

• An expression is cube-free if no single cube divides f evenly.
• The kernels of expression f, K(f), is the set of cube-free pri-

mary divisors of f. The expression c where  is called
the co-kernel.

• Two expressions, f and g, share a common multi-cube divisor
if and only if there exists a  and  such that

.
Kernel intersections exploit the fact that in irredundant

expressions each multiple-cube divisor must contain a cube-free
core. Therefore only the cube-free divisors of expressions, the
kernels, need to be explored and the search space is reduced.

Rudell [12] presented an efficient approach to determining
the kernel-intersections of a network, based on finding rectan-
gles within matrices:
• A matrix is a two-dimensional grid, B, where Bij ∈ {Ø,1}. 
• A rectangle is a pair of sets of (not necessarily adjacent) rows

and columns (R,C) of matrix B, such that Bij ≠ Ø for all ri ∈
R and cj ∈ C.
Kernel intersections can be identified by constructing a co-

kernel cube matrix from the kernels of a network. In a co-kernel
cube matrix (figure 3); there is a row for each co-kernel, cki, of
each expression and its corresponding kernel, ki. The columns of
the matrix represent the unique cubes, ktj, of all the kernels. The
cubes of each function, cl, are numbered and Bij = l (instead of
1) if . Rectangles in this matrix correspond to kernel
intersections within the network.

Rudell’s algorithm’s assign values to rectangles in the matrix
and the highest value rectangle selected for extraction. The value
of each rectangle is the reduction in literals that substituting the
cube into the network will bring and is defined by the number of
literals covered by the rectangle minus its weight:

where Vij is the number of literals in the cube covered by (i,j).
The weight of a rectangle is the cost of substituting into the net-
work and is given by:

where wri represents the number of literals + 1 in the co-kernel
associated with row ri and wcj the number of literals in the cube
associated with column j.
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w1 x1x2= w2 x3x4=

w3 x5x6= w4 x5x7=,

d1
W w1w3 d2
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Figure 3: Co-kernel Cube Matrix for an example network

a b c ce de f g

F a • • • • 5 1 3

F b • • • • 6 2 •

F de 5 6 7 • • • •

F f 1 2 • • • • •

F c • • • • 7 • 4

F g 3 • 4 • • • •

G a • • • 10 • 8 •

G b • • • 11 • 9 •

G f 8 9 • • • • •

G ce 10 11 • • • • •

F = af1 + bf2 + ag3 + cg4 + ade5 + bde6 + cde7
G = af8 + bf9 + ace10 + bce11

Co-
kernel

Kernel

F a de + f + g

F b de + f

F de a + b + c

F f a + b

F c de + g

F g a + c

G a ce + f

G b ce + f

G f a + b

G ce a + b

cki ktj⋅ cl=

v R C,( ) Vij
i R∈ j C∈,

∑ w R C,( )–=

w R C,( ) wri
i R∈
∑ wcj

j C∈
∑+=



4.3 Intersecting Rectangles

Kernel-intersections are used within conventional synthesis
routines as a method of reducing the search space when deter-
mining multiple-cube divisors. In the techniques described in
this paper kernel-intersections are used in a different way: to
determine sets of divisors that share quotients.

The co-kernels of a code system represent the largest com-
mon cubes shared between the code-words of the code-system.
The cubes of each kernel represent the quotients of the co-kernel
within the code system. Therefore if two co-kernels share a ker-
nel-intersection, the co-kernel forms a common-cube whose
quotient is shared. Reduced divisor sets can be constructed by
finding sets of cubes whose quotients are shared. This results in
two divisor sets each of whose members will differentiate the
divisors in the other. These sets form Intersecting Rectangles in
a co-kernel matrix constructed from the code-system

Definition 4.1 An intersecting rectangle, IR, of a matrix is a 
pair (Rn,Cn) of sets of rows and columns where for each row ri 
(column ci) of Rn (Cn), the set Cn (Rn) contains all intersecting 
columns cj (rows rj) where .

As they all share quotients, all of the cubes in each set have
the same width. If the width of the cubes in Rn is k, the width of
cubes in Cn will be m-k.

Figure 4 shows the co-kernel cube matrix of an example
code-system. The code system is constructed from a 2-of-4
code-group (variables a0-a3) and a 1-of-2 code group (variables
b0-b1). The intersecting rectangles are all shaded on the matrix.
There are 4 IRs, which form two sets of transposed rectangles.
As both co-kernels and kernel-cubes are shared the transpose of
rectangle (Rn,Cn), (Cn,Rn), is also an IR in the matrix. The rec-
tangles A and B correspond to a partition of the two code groups.
In rectangle A: 

In rectangles C and D, the IRs actually decompose the 2-of-4
code groups and create sub-cubes of the code-words. In rectan-
gle C:

In this example all four IRs are unordered divisor sets and
maybe substituted into the network. However, not all IRs form
unordered divisor sets and there are some checks that need to be
performed on each IR.

4.3.1 Complete Rectangles

In order to reduce the search space of the algorithm, co-ker-
nels and kernels are used instead of primary divisors. In an unor-
dered code system the kernel-cubes of a co-kernel correspond to
all of the instances of the co-kernel within the code system.
However, the intersections of a kernel-cube may not correspond
to all of the instances of the kernel-cube within the code and the
kernel-cube is not a co-kernel itself. There are two reasons the

quotient, cki, of a kernel-cube, ktj, in code-word dl may not be a
co-kernel and hence not in the cube-literal matrix:
i cki is not contained in any code-word other than dl.
ii The quotients of cki within the code system (including ktj) are

not cube-free.
In order to ensure that an intersecting rectangle is complete,

the quotients of all of the kernel-cubes in Cn need to be checked
and any missing divisors added to Rn. Once the IR is complete,
Rn and Cn form two sets of cubes where all the quotients of the
cubes in one set are contained within the other set. If a complete
IR does not cover a code-word, ci, of the code system, then the
IR cannot be an unordered divisor set as  and hence is
contained in every other subset of U.

4.3.2 Types of Intersecting Rectangle:

As both the rows and columns of the intersecting rectangle
are shared, each IR has a transposed rectangle corresponding to
the divisor set generated when the shared cubes of the columns
form co-kernels themselves. There are two types of intersecting
rectangle:
• Distributed: The cubes of Rn and Cn do not differentiate eve-

ry term independently and must be combined in order to con-
struct an full unordered divisor set. An IR is distributed if:

where  is the set union of the literals in cubes cki and
ckj.

• Combined: The cubes of both Rn and Cn differentiate all of
the code-words and each set forms an unordered divisor set.
An IR is combined if:

 if 

 otherwise

Theorem 4.1 If an IR is a complete combined intersecting rec-

Bij 0≠

Rn a01a1 a0a2 a0a3 a1a3 a2a3, , , ,{ }=

Cn b0 b1,{ }=

Rn a0 a1 a2 a3, , ,{ }=

Cn a0b0 a1b0 a2b0 a3b0 a0b1 a1b1 a2b1 a3b1, , , , , , ,{ }=

Co-
Kernels

a0 a1 a2 a3 b0 b1 a0
b0

a1
b0

a2
b0

a3
b0

a0
b1

a1
b1

a2
b1

a3
b1

a0
a1

a0
a2

a1
a2

a0
a3

a1
a3

a2
a3

a0 0 1 3 6 7 9
a1 0 2 4 6 8 10
a2 1 2 5 7 8 11
a3 3 4 5 9 10 11
b0 0 1 2 3 4 5
b1 6 7 8 9 10 11

a0b0 0 1 3
a1b0 0 2 4
a2b0 1 2 5
a3b0 3 4 5
a0b1 6 7 9
a1b1 6 8 10
a2b1 7 8 11
a3b1 9 10 11
a0a1 0 6
a0a2 1 7
a1a2 2 8
a0a3 3 9
a1a3 4 10
a2a3 5 11

Figure 4: Co-kernel Cube Matrix of a 2of4/1of2 Code 
System
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cki ckj, Rn dl
X X cki ckj dl
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cki ckj∪

cki ckj, Rn dl
X X cki ckj∪ ∈,∈∃ dl

X= k m 2⁄≥

kti ktj, Cn dl
X X kti ktj∪ ∈,∈∃ dl

X=

A

B
C
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tangle then the co-kernels of the IR form an unordered divisor 
set.

Proof If (Rn,Cn) is a complete rectangle, then there exists an
equivalent complete rectangle (Cn,Rn), therefore without loss of
generality we assume . The IR is combined if there
exists two co-kernels, cki and ckj, whose union is equal to code-
word . As the IR is complete, there exists two kernel-cubes in
the IR, ktp and ktq, where 

as :
 and 

The set Rn contains all the quotients of kernel-cubes, ktp and
ktq. As kernel-cube ktq is contained in cki there must be quotients
of ktq in Rn that are contained in each cube of the kernel ki asso-
ciated with cki. The cubes of each kernel are the differentials of
the code-words containing the co-kernel, therefore, for every
code-word that contains cki there is some ckl contained within Rn

that differentiates it from every other code-word containing cki.
In order for a row or column to be added to the IR it must

intersect with some co-kernel or kernel-cube in the IR. For each
ckr that intersects with cki over kernel-cube kts, there is a cube in
Rn that contains kts (whose quotient is ktq) and hence a further
kernel-cube that is contained in ckr. Therefore, as in the previous
paragraph, all code-words that contain ckr are differentiated. The
process continues with all intersecting co-kernels and hence the
divisor set is unordered. 

A combined rectangle can be viewed as a merge of two trans-
posed intersecting rectangles. As a code-word can be con-
structed from the union of two co-kernels (or kernel-cubes) the
two rectangles intersect each other, and the rectangle contains all
of the divisors necessary to ensure it is unordered. Figure 5
shows such a rectangle, the two sub-rectangles are shaded in dif-
ferent shades. The rectangles intersect in code-word d6.

If an IR is not a combined rectangle it is still possible to create
an unordered divisor set out of it. However, in order to differen-
tiate all code-words a further divisor set will be needed.

Theorem 4.2 If an IR is a complete distributed intersecting rec-
tangle then the co-kernels of the IR form an unordered divisor 
set provided Rnand Cn have disjoint support.

Proof If an IR is distributed then the union of any two co-ker-
nels does not equal any code-word. There are two types of dis-
tributed IRs, depending on the relationship between pairs of co-
kernels:

Type 1: 
If the union of any pair of co-kernels is not contained within

any code-word, then each code-word in the code system can
have at most one divisor in the divisor set. As all code-words are
covered by a complete IR, no subset of U can be a proper subset
of another and so the divisor set is unordered. However, subsets
Ui and Uj can be equivalent and in order to differentiate equiva-
lent code-words a further divisor set is necessary.

Type 2 
The union of some pair of co-kernels is contained within

some code-word of the code system . As  is a proper
subset of , there exists a sub-cube of  that is not in cki or
ckj. Therefore, the kernel-cubes ktp and ktq, where 

are not contained in cki and ckj:
 and 

and, unlike combined IRs, cubes which intersect with the differ-
ential of each co-kernel may not be in Rn. As  has two divisors
in the divisor set and the set cannot be guaranteed to be unor-
dered.
Therefore, without explicitly checking the rectangle forms an
unordered divisor set only distributed rectangles of type 1 may
be employed. If we select a distributed rectangle of type 1, in
order to differentiate all code-words, both Rn and Cn will need
to be applied to the code system. If Rn and Cn have disjoint sup-
port then the divisors of each set form independent code systems
that may be decomposed independently. If the support of Rn and
Cn is not disjoint then the divisors form a single code system. If

, the widths of the divisors in the two set will not be
equal and the divisors will not form an m-of-n code. 
If the IR is a type 2 distributed rectangle, then two co-kernels
must be contained within a code-word. In order for two co-ker-
nels to be contained within a code-word, the quotient of each co-
kernel must contain the non-shared literals of the other co-ker-
nel. Therefore, distributed IRs where Rn and Cn have disjoint
support are all type-1 distributed IRs and form independent
unordered divisor sets. 

The intersecting rectangles A and B of figure 4 are distributed,
where as IRs C and D are combined. In general, distributed rec-
tangles with disjoint support will partition variables between
code-groups and combined rectangles will decompose the cubes
within groups.

Theorems 4.1 and 4.2 determine which IR can be employed
to construct unordered divisor sets. However, in order to imple-
ment divisor sets correctly, distributed divisor sets must be dis-
tinguished from combined sets. It is possible to get a distributed
divisor set where Rn and Cn have the same support and so the
individual cubes of Rn and Cn must be checked for containment.
If a cube of one set contains a cube of another, the IR is com-
bined, if the support of the two sets is not identical or no cube is
contained within a cube from the other set the IR is distributed.

As distributed IRs form independent code systems it is not
always necessary to use Cn to differentiate code-words if other

k m 2⁄≥

dl
X

cki ktp⋅ ckj ktq⋅ dl
X= =

cki ckj∪ dl
X=

cki k⊆ tq ckj ktp⊆

cki ckj, Rn dl
X X cki ckj dl

X⊄∪ ∈,∈∀

Figure 5: Example Combined Intersecting Rectangle
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X X cki ckj∪ ∈,∈∃ dl
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dl
X cki ckj∪

dl
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X

cki ktp⋅ ckj ktq⋅ dl
X= =
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X
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IRs with disjoint support are available. Therefore, any IRs with
disjoint support may be applied together.

To select between rectangles with overlapping support, a cost
function is used which determines the cost, in literals, of adding
combined rectangles to the network:

where n(Rn,Cn) represents the number of code-words actually
covered, and |(Rn,Cn)| is the number of matrix elements in the IR.

The weight of the rectangle is reflects the fact that, if the IR
is combined, several divisors will be substituted in to each orig-
inal network cube:

where wri is the number of literals in the co-kernel associated
with row i,  is the number of matrix entries in column j and

 is the number of literals in the support of column set that
are not in the support of the row set.

4.4 Multi-cube Divisor Sets

In combinational logic function blocks, the functions of the
output code system are dependent on different code-words of the
input code system. In order to reduce the cost of the function-
block, divisor sets may be selected in such a way that the code
system divisors form multiple-cube divisors of the output func-
tions in the function-block. As kernel-extraction techniques
were developed to find multiple-cube divisors, the techniques
described in the previous section can easily be modified for this
purpose. 

A multi-cube divisor introduces an OR-gate into the network.
In order to maintain indication within the network, the OR gate
must translate the transitions on its inputs (the code system divi-
sors) and all of the transitions on the output must be translated.
Therefore, we select only divisors which have the same quo-
tients in each function within the function block. Such a divisor
is called a maximal kernel-intersection.

Theorem 4.3 If mki is a set of kernel-cubes whose quotient is 
the same in all dependent functions of the function-block then 
mki is an indicating multiple-cube divisor.

Proof In order to be indicating, a multiple-cube divisor must
translate all of the transitions on the inputs of the divisor and all
of the outputs of the divisor must be translated by output func-
tions:

Output Translation If all the cubes of mki share the same quo-
tient in all the functions that are dependent on any cube, then mki
is a divisor of every dependent function of it cubes and can be
substituted in to all of them. The properties of indication mean
that for each ATS in an input code system, at least one output will
transition and translate the transitions in the input ATS. As mki
is substituted into every dependent function, for each ATS in
which mki transitions, some output it is substituted into also tran-

sitions and so all transitions on the output of mki are translated.

Input Translation: An OR-gate will translate all of its inputs if
and only if they are mutually-exclusive [18]. If two cubes, cki
and ckj have the same quotients in all dependent functions of the
logic block then they must be mutually exclusive. In order for cki
and ckj to be non-mutually exclusive, there must be some code-
word, , of which both cubes are divisors. The quotients of cki
and ckj in  are qi and qj respectively. The literals of  can be
partitioned in to four sets:

, , 

, 
Therefore:

, 
, 

If cki and ckj have the same quotient in all functions, then there
exists a cube of f, , where:

and

This violates the SSC code system and so cki and ckj are mutu-
ally-exclusive within code system X. 

As in conventional multi-cube divisor synthesis, the co-ker-
nel cube matrix is constructed from the kernels of the individual
functions in the function-block. The unordered divisor sets are
constructed from intersecting rectangles within these matrices.
A divisor set has a multi-cube divisor if it has a maximal kernel
intersection. As the cube-literal matrix is constructed from the
kernels of the individual functions of the function-block rather
than the whole code system, there may be even more missing
kernel-cubes than in single-cube divisor set extraction. When
searching for any missing quotients of the kernel-cubes care
must be taken that no missing function-cube contain any cubes
of the maximal intersections within the rectangle as this will vio-
late the properties of theorem 4.3 and mean that the cubes of the
intersection may not be mutually-exclusive within code system
X. Once the IR is complete, the checks described in the previous
section must be used to determine whether it is an unordered
divisor set.

5. M-of-N Code Decomposition Algorithm
An algorithm for m-of-n code decomposition is shown in fig-

ure 6. The algorithm enumerates all possible intersecting rectan-
gles and substitutes as many disjoint rectangles as possible with
the highest value. The algorithm only considers the value when
differentiating between rectangles with overlapping support
rather than the amount of shared literals between the cubes in the
divisor set. If the new code system W forms an m-of-n code (i.e.
the size of each subset Uj is the same), then code-system W can
be decomposed to produce a technology-independent imple-
mentation. When selecting an intersecting rectangle, the rectan-
gle must first be made complete by adding any missing quotients

Vij
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∑
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X
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to the rectangle. This is combined with a check to ensure that the
new code-system W is an m-of-n code. If the support of Rn and
Cn are disjoint then the rectangle is distributed and no further
checks are necessary. However if  then the
IR must be checked to ensure it is combined. The algorithms to
determine the IRs within an extract matrix are very simple. The
main overheads of the selection procedure are involved in check-
ing all of the code-words of the code system to ensure the IR is
complete and performing a containment check on the cubes of
Rn and Cn to determine if the IR is combined. The impact of
these checks can be reduced by performing them after the selec-
tion process, if a selected IR fails the checks then the selection
process must be repeated. After a set of IRs are substituted into
the function-block the process is repeated. As all code systems
are independent, the entire set of input code systems can be
treated as a single expression, when calculating the kernels. The
algorithm terminates when there are no further common cubes
in the network. If there exists common cubes, but no further
intersecting rectangle, then a reduced divisor set is not possible
and an unordered divisor set can be constructed from the set of
differentials of all common cubes (the kernel-cubes).

The algorithm presented in figure 6, enumerates all of the
possible IRs of all widths to minimise the total cost of the
decomposed function-block. There are many possible optimisa-
tions to this algorithm to reduce the efficiency:
• The kernel extraction process could be limited to k width co-

kernels, starting initially at m-1.
• Heuristic rectangle selection algorithms such as

PING_PONG [12] could easily be adapted for IRs eliminat-
ing the need to enumerate all rectangles.

• Many of the IR checks can be eliminated if rectangle (Rn, Cn)
is only selected if the transposed rectangle (Cn,Rn) exists.
The trade-offs between algorithmic complexity and the qual-

ity of implementation have yet to be evaluated.

6. Results
Table 7 shows the results of the decomposition algorithm on

function blocks generated from the ISCAS benchmark c6288. It
is impractical to implement full datapaths using indicating logic
synthesis methods, because all of the ATS within the system
must be enumerated to ensure the signal is indicating. The func-
tion blocks in table 7 were created using a clustering algorithm
that traverses a single-rail netlist adding gates to a cluster until a
fixed number of inputs is reached. The gates of each cluster are
then flattened to create a single truth-table. Each cluster can then
be encoded into any m-of-n encoding. The results show the ini-
tial literal counts of each cluster in the canonical architecture
(assuming unbounded C-elements and 2-input OR gates), the
savings due to DIMS minterm sharing and the decomposed lit-
eral counts. Also shown are the number of multi-cube intersect-
ing rectangles used, the number of single-cube intersecting
rectangles. The final column displays whether or not a non-
reduced divisor set had to be used. The results show a large
improvement in literal count over both implementations in the
canonical architecture and DIMS implementations. However,
large function-block implementations are impractical unless
optimisations such as those presented in [7] and [18] are
employed. The techniques presented in this paper are to be used
in conjunction with such block-level techniques in order to allow
a much wider range of blocks to be implemented. The incorpo-

Figure 6: Intersecting Rectangle Selection Algorithm

decompose_function_block(FB) {
unique_exp = unique(FB);
kernels = extract_kernels(unique_exp);
if kernels = Ø then return FB
construct-cokernel-cube-matrix(kernels);
intersecting_rects = {};
while not empty CK-matrix do {
 gen_intersecting_rectangles(CK-Matrix,0,rect)

rectangle-cost(rect);
intersecting_rects ∪ rect;}

if intersecting rects = Ø {
DS = unique(kernels);
substitute(FB,DS); return;}

while (valid_rect = FALSE) {
max-rectangles= max_value_IR_with_

disjoint_support(intersecting-rectangles);
foreach IR in max_rectangles {

R = rows(IR), C = columns(IR)
foreach cube in unique_exp {

Ci = divisors of cube in C;
for_each c in Ci {

q = cube/c;
if q ∉ R then C = C ∪ q }

Ri = divisors of cube in R;
if |Ri| ≠ m then discard = true; break;}

if sup(R) ∪ sup(C) ≠ Ø {
if sup(R) ≠ sup(C) discard = true;
foreach r in R {

foreach c in C {
 if((c ⊆ r) or (r ⊆ c)) contain = true}}

if contain = false then discard = true;}
if discard then delete(max_rectangles,IR);
else {

substitute(FB,C);
valid_rect = true;}}}

sup Rn( ) sup Cn( )=

Cluster Input 
Encoding

Output
Encoding

Total
Literal 
Count

DIMS
Literal
Count

Decom-
posed 
Literal 
Count

Multi-
cube 
IRs

Single- 
Cube 
IRs

No IR

261
6inputs
5outputs

1of2 1of2 2560 1014 216 3 4 YES
1of4 1of4 960 566 147 3 1 NO
2of7 2of7 960 567 489 1 1 NO
3of6 3of6 1536 760 657 1 2 NO
4of8 3of7 1536 760 867 1 2 NO

156
8 inputs
5 outputs

1of2 1of2 12800 4598 294 6 6 YES
1of4 1of4 4608 2550 206 6 2 YES
2of7 2of7 4608 2551 266 3 2 YES
3of6 3of6 8192 3576 584 2 4 NO
4of11 3of7 6144 3061 2603 1 2 NO

174
9 inputs
5 outputs

1of2 1of2 28160 9718 340 6 7 YES
1of4 1of4 10752 5622 227 7 1 YES
2of7 2of7 10752 5623 436 4 6 YES
3of6 3of6 18432 7672 1430 3 2 YES

5of12 3of7 18432 7672 1430 3 2 YES
106

10 inputs
6 outputs

1of2 1of2 73728 22516 1584 4 8 YES
1of4 1of4 21504 11252 666 3 2 NO
2of7 2of7 21504 11253 6921 1 3 NO
3of6 3of6 36864 15350 1625 3 4 NO

6of13 4of8 61440 20468 7670 2 3 NO

Figure 7: Decomposition Results



ration of the decomposition techniques in to a block-level opti-
misation framework is the subject of future work.

7. Conclusions and Future Work
This paper presents an efficient method to implement any m-

of-n encoded function block using bounded gates. The method
decomposes the m-of-n code system of the inputs, to reduce the
sharing between code-words and allow each gate to be decom-
posed without violating indication. The method decomposes m-
of-n codes by determining reduced divisor sets, that are used to
construct further m-of-n with reduced sharing. An efficient algo-
rithm was presented to determine reduced-divisor sets effi-
ciently. Further research to optimise the algorithm in this paper
will be undertaken. In particular heuristic methods may be
employed to avoid enumerating all intersecting-rectangles. The
decomposition will also be incorporated in to a function-block
based self-timed synthesis tool allowing much larger function
blocks to be implemented than currently possible.
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