A Low Latency Wormbhole Router for Asynchronous On-chip Networks

Wei Song and Doug Edwards
School of Computer Science, University of Manchester, Manchester, M13 9PL UK
{songw,doug}@cs.man.ac.uk

Abstract—Asynchronous on-chip networks are power
efficient and tolerant to process variation but they are
slower than synchronous on-chip networks. A low la-
tency asynchronous wormhole router is proposed using
sliced sub-channels and the lookahead pipeline. Chan-
nel slicing removes the C-element tree in the comple-
tion detection circuit and convert a channel into mul-
tiple independent sub-channels reducing the cycle pe-
riod. The lookahead pipeline uses the early evaluation
protocol to reduce cycle period. Using the lookahead
pipeline on the pipeline stages with the maximal cycle
period improves the overall throughput. The router is
implemented by a 0.13 ym technology. The cycle period
of the router at the typical corner is 1.7 ns, providing
2.35GByte/sec throughput per port.

I. INTRODUCTION

Network-on-chip [1] is the state-of-the-art on-chip com-
munication fabric for current multi-processor SoC systems.
The on-chip network could be a synchronous network where
routers are driven by a global clock, or an asynchronous
network where routers are self-timed circuits connected by
asynchronous pipelines. Thanks to mature EDA tools and
the timing assumptions allowed by the global clock, syn-
chronous networks are fast and area efficient but the clock
tree is power consuming [2]. By contrast, the clock-less
asynchronous networks are comparatively slow but power
efficient. In addition, they are tolerant to process variation
and could divide the whole chip into several isolated clock
domains, which unifies the network interface and shortens
the overall design time.

Although asynchronous networks tend to be slow, their
advantages are crucial to nanoscale SoC systems. In this
paper, a low latency asynchronous router is designed using
two novel techniques: channel slicing and the lookahead
pipeline [3].

Channel slicing: The state-of-the-art quasi delay-
insensitive (QDI) pipelines in routers are built by synchro-
nizing multiple bit-level pipelines (sub-channels) [4, 5, 6, 7,
8]. The C-element tree in the completion detection circuit
(synchronization circuit) increases the cycle period and re-
duces throughput. Instead of synchronizing sub-channels,
we propose to use sub-channels in parallel. Since the C-
element tree is removed, sub-channels run faster than the
synchronized channel. Extra controllers are added to resyn-
chronize sub-channels during special intervals, such as the
route decision procedure.

Lookahead pipeline: The lookahead pipeline is an im-
proved dual-rail pipeline using an early evaluation proto-
col, proposed by Montek [3]. It is not QDI but the timing
assumptions are satisfiable and it could be used to reduce

the period of the critical cycle (pipeline stages with the
maximal cycle period).

In this paper, the router is implemented using a 0.13 pym
standard cell library and the cycle period is 1.7 ns, provid-
ing 2.35 GByte/sec throughput per port.

The remainder of this paper is organized as follows: sec-
tion II describes the general architecture of the on-chip net-
work. Section IIT explains how channel slicing and the look-
ahead pipeline can improve speed. Section IV demonstrates
the detailed implementation of the router. Section V shows
the simulation results of the implementation, analyzes the
effect of the two techniques used, and compares our router
with other published asynchronous router designs. Finally
the paper is concluded in section VI.

II. NETWORK ARCHITECTURE

A network node in a globally asynchronous and locally
synchronous (GALS) network comprises a processor ele-
ment, a network interface and a router. The processor ele-
ment could be a local system controlled by a processor or a
hardware IP running a specific function. Serving as a slave
device to the processor element, the network interface pro-
vides a duplex channel for the processor element to commu-
nicate with the chip level asynchronous network. To ease
the network communication, the network interface splits
the frames generated by the local processor element into
flits of fixed length before sending them to routers. It also
regroups received flits into frames before delivering them to
the local processor element. In a GALS network, the net-
work interface also serves as a synchronous/asynchronous
adaptor to ensure the faultless cross timing domain data
transmission. Similar to the routers used in macro net-
works, routers in on-chip networks are distributed route
deciders and message delivers but with tighter area budget
and higher throughput requirement. They are fully asyn-
chronous circuits in the proposed GALS network.

This paper concentrates on the wormhole flow control
method and the hardware implementation of asynchronous
routers; therefore, all other design aspects are set to broadly
accepted configurations. A mesh topology is used due to its
easy mapping on a 2-D layout. Frames are routed by the
XY dimension order routing algorithm. Nodes in the net-
work are identified by a (z,y) address. Network interfaces
have enough buffer space to guarantee that a flit is con-
sumed by a network interface in finite time. The network
is assmued to be error-free so that no deadlock or livelock
occurs. The data width of all ports is set to 32-bit to meet
the throughput requirement for a normal multi-processor
SoC application. A flit is also 32 bits and is transmitted
in one cycle. A frame comprises a head flit, several data
flits and a tail flit. The head flit contains a 1 byte address,

16-bit ack of sub-channels

2-bit [E}
I

d_i 16 :
2-bit i @

ack_i

Fig. 1. (a) A 32-bit 1-of-4 pipeline, (b) the completion detection
circuit and (c) the channel sliced pipeline

denoting the target node, and 3 bytes data. The maximal
size of a network is 16x16.

III. WAY TO IMPROVE THE SPEED

A. Channel Slicing

Many handshake protocols could be used to build asyn-
chronous circuits but only some of them are suitable for
asynchronous router designs. The 4-phase bundled-data
protocol has been used in MANGO [9], QNoC [10] and AS-
PIN [8]. The 4-phase dual-rail protocol has been used in
ASPIN [8] and the 4-phase 1-of-4 protocol has been used
in CHAIN [4], QoS [5] and ANoC [6]. Finally, m-of-n pro-
tocols have been used in SpiNNaker [7].

The 4-phase 1-of-4 protocol is preferred. Bundled-data
protocols work under cautious timing constraints and the
matched delay lines are vulnerable to process variation [9].
M-of-n protocols transmit more data bits in one cycle than
the 1-of-4 protocol but they need extra decoders and en-
coders [11]. Because the address in the head flit is ana-
lyzed by every router on the path, a decoder is added on
each input port to translate the head flit, which introduces
area overhead. The 4-phase 1-of-4 protocol is QDI, compa-
rably area efficient than m-of-n protocols and more power
efficient than the dual-rail protocol.

In all QDI routers, a wide channel is built by synchroniz-
ing multiple bit-level sub-channels [4, 5, 6, 7, 8], such as
the 32-bit 1-of-4 channel shown in Figure 1(a). The syn-
chronized channel behaves similar to the pipeline formed
by flip-flops in synchronous circuits. Techniques used in
synchronous routers, such as the virtual channel, could be
easily adopted. However, the completion detection (CD)
circuit is a 16-input C-element tree, shown in Figure 1(b).
Assuming that all 2-input gates have the same latency and
the C-element is a two level combinational logic, this com-
pletion detection circuit has 8 levels of logic. As the forward
path of a basic 1-of-4 pipeline only has 4 levels of logic, the
completion detection circuit accounts for 66% of the cycle
period.

Synchronization is necessary for timing division multiple
access (TDMA) technologies, such as the virtual channel

ack_o

ack_i ack_o

Fig. 3. (a) A QDI pipeline and (b) a Lookahead pipeline

flow control, but not for wormhole routers. According to
the wormhole flow control method, the route is decided
and reserved by the head flit and data flits simply follow
the head flit. Since no frames could prevent data flits from
following the head flit, no synchronization is needed. We
propose to slice the synchronized channel into sub-channels,
illustrated in Figure 1(c), to allow independent data trans-
mission on sub-channels. Extra controllers are added to
ensure that the head flit is successfully analyzed.

B. Lookahead Pipeline

Similar to synchronous circuits where throughput is con-
strained by the maximal latency between any two adjacent
registers, the throughput of asynchronous circuits is con-
strained by the maximal cycle period of any two adjacent
pipeline stages. The loop path of the two adjacent pipeline
stages with the maximal cycle period is called the ‘critical
cycle’ of the circuit.

Figure 2 shows a part of the data path in a wormhole
network. It is easy to observe that two loops could be
the critical cycle: the loop around the long interconnects
between routers and the loop that traverses the crossbar.
A simple solution for the long interconnect between routers
is to insert more pipeline stages in it. Many papers have
concentrated on this long wire effect [12, 13, 14] and, thus,
it is beyond the scope of this paper. The loop traversing
the crossbar is the critical cycle.

The internal pipeline stages of routers are not necessarily
strictly QDI. Utilizing some easily satisfiable timing con-
straints (see section IV-B), the cycle period of the critical
cycle could be significantly reduced. We propose to use the
lookahead pipeline [3] on the critical cycle to improve the
overall throughput.

A QDI pipeline and a lookahead pipeline are shown in
Figure 3. Unlike the QDI pipeline, the ack line to stage
N, in the lookahead pipeline, comes from the subsequent
stage N + 1 and the successor N + 2. Stage N could re-
ceive a new data D + 1 after D has been captured by stage
N + 2 instead of waiting D to be released by stage N + 1
in the QDI pipeline. As reported, the dual-rail lookahead
pipeline could reduce 27% cycle period from the dual-rail
QDI pipeline [3].

crossbar }
data from
other inputs

put buffer}

data from
other inputs

ack from
other outputs

sujedd

sI9yN01
usamjaq
aul| Buoj
suadid
auadid

ack from
other outputs

L e

S|

Fig. 2. The data path of wormhole networks

80
d_i 0 m— d_o_0
ack i 0 < +— ack_o_0
=
ctl
.
:

U:D 1> do4
ack_o_4

d_i 4 m—
16 .
ack_i_4 <
[
ctl

Fig. 4. Router structure

IV. ROUTER DESIGN

A. Router Structure and Data Flow

Figure 4 shows the internal structure of the proposed
router. A router has five input and five output ports for
four adjacent routers and the local network interface. A
buffer with two pipeline stages is added on each input port
and output port. Input buffers and output buffers are con-
nected by a crossbar configured by the arbiter on each out-
put port. Route decisions are made on each input buffer
and routes are reserved by obtaining a grant from the cor-
responding arbiter on the output port. Since sub-channels
run independently, they have their own ack wires. An end-
of-frame (EOF) wire is also added to each sub-channel to
identify the tail flit. As a result, one sub-channel has five
data wires and one ack wire, the same as Chain [4]. A 32-
bit channel has 16 sub-channels. Every port contains 80
data wires and 16 ack wires.

The basic wormhole data flow is slightly changed due to
the removed synchronization. Figure 5 shows the modified
data flow. A flit is sliced into 16 parts and each of them
is transmitted on a sub-channel. The head flit is firstly
blocked in the first stage of the input buffer. Then the
control logic analyzes the address in the head flit and makes
a request to one of the arbiters. After the request is granted,
a path is reserved in the crossbar and the frame is delivered
by independent sub-channels. The crossbar is reset by the
input buffer once all parts of the tail flit are delivered.

The head flit is blocked in the first stage of the input buffer
instead of the last stage as in ASPIN [8] for two reasons:
firstly, it reduces the fan-out of the second stage which is
on the critical cycle; secondly the route decision procedure
and the crossbar reset proceed in parallel.

[DID[D[DID[D[T
[DID[D[D[DIDIT]
[D[D[D]D[D[D[T]

s|auueyd-gns
- —z/T

[D[D[DID[DIDIT]
[DID[D[DIDID[T]
D[D[D[D]|D[D[T]

head routing data

time

Fig. 5. The modified wormhole data flow

B. The Data Path of a Sub-channel

Figure 6 illustrates the data path of a single sub-channel
and its signal transition graph (STG). rt_err and acken are
two signals driven by the extra controller added on each
sub-channel (section IV-C). acken, the active low signal
enabling the data path, is set low after a route request is
initiated and it is driven to high to stall the data path when
the tail flit is detected on ic_d. rt_err indicates incorrect
route requests and is set high when a faulty frame is going
to be dropped. gnt is the grant result from arbiters (sec-
tion IV-D), which enables the MUXes and DEMUXes in
the crossbar. Because the values of acken, rt_err and gnt are
preserved during the whole data session, they are omitted
in the STG.

A modified lookahead pipeline [3] is used to generate
ib_pa. oc_a is the equivalent ack line generated by the
lookahead pipeline. It is set after the ack signal ob_pa
from the first stage in the output buffer and reset by ob_a
from the successor stage. The pipeline stages of the origi-
nal lookahead pipeline are dynamic logic, which are directly
precharged by ack lines. However, the dynamic logic cannot
be implemented by standard cells. Pipeline stages imple-
mented by C-elements, used in this paper, reset after the
release of the input data. If the data are not reset early
enough and the new ack arrives too fast, the data path
would be blocked. Therefore, a C2N element is added after
ic_a to ensure ib_pa only drops when the data on ic_d is
released (defer the new ack).

The STG of the lookahead pipeline is not speed-
independent. If the transition from ob_d+ to oc_a+ is slow
enough, oc_a could be reset even before it is firmly high.
The length of the positive pulse on oc_a is ensured by timing
constraints instead of STG. The dotted arrow from ob_pa-
to oc_a- illustrates the timing assumptions present.

The critical cycle is highlighted by the dark bold line.
Without using the lookahead pipeline, the critical cycle of

input buffer
ib_d

crossbar output buffer

ic_d

ib_pa+

p ic_d- ——>» oc_d-

The Critical Cycle of the
\ oc_a- > Lookahead pipeline

. i - Part of the Critical Cycle
ib_pa- 4—— ic_a —_

of the QDI pipeline

Fig. 6. (a) The data path of a sub-channel and (b) its STG

normal the QDI pipeline traverses the crossbar four times
(the grey bold line) because ic_d+ only occurs after the data
on ob_d is released. Since the lookahead pipeline allows
data to be captured in parallel with the reset of the next
stage, the critical cycle traverses the crossbar twice. The
cycle period is reduced.

Two timing constraints must be satisfied for the correct
data path operation.

Ack setup time: data on ic_d is cleared by ib_pa+. Thus,
the positive pulse on ic_a must remain long enough to make
it captured by the C2N gate. This constraint includes two
timing relations:

tic,d+—»ic,da+ < tic,d+—>ic,a+ (1)

tob,d+—>ic,a— - tob,d+—>ic,a+ > tCZN,setup (2)

Equation (1) ensures that the C2N element is ready to
capture the ack pulse on ic_a before its arrival. As the
transition from ic_d+ to ic_a+ traverses the crossbar, it is
always satisfied. Equation (2) requires the length of the
pulse on ic_a is long enough to stabilize the feedback loop
in the C2N element. It could be easily met by constraining
the minimal delay of the transition from ob_d+ to op_d+
and the throughput is not affected because this transition
is outside the critical cycle.

Data override: The new data should be securely captured
after the previous data is cleared. In the proposed router,
ob_d is the only pipeline stage not ensured by STG. To
avoid the data override on ob_d,

tic,d——mc,d-i— - tic,d——u)c,d— > tCQ,setup (3)

rt_dec rt_err ch_fing ch_finys el ®-

N
rt_dec+ T rt_err+
* rt_en+ L
rt_en-/1 4 rt_en-/2
* ch_fin_a- L
ch_fin_a ch_fin_a+/1 4 ch_fin_a+/2
¥ v

[—> normal frame — faulty frame]

(a) (b)

Fig. 7. (a) A route decision controller and (b) its STG

This constraint is already satisfied by hardware. Both
transitions in (3) share the path from ic_d to ob_d. Sup-
pose the positive and negative transitions on this path are
around the same speed, the left side of Equation (3) is the
length of the negative pulse on ic_d. Since the minimal
length of this pulse is half of the period of the fastest 1-
of-4 pipeline, it is normally larger than the setup time of a
C-element.

C. Channel Control

Although sub-channels run in parallel during the data ses-
sion, they stall after the tail flit to keep the next head flit in
the first pipeline stage in the input buffer. An input buffer
has one route decision controller and several sub-channel
controllers, one for each sub-channel. For an incoming
frame, the route decision controller enables the route de-
cision procedure. Once a route request is initiated, sub-
channel controllers enable their data paths.

Figure 7 demonstrates the internal structure of the route
decision controller and its STG. The route decision pro-
cedure is always enabled through rt_en+ after a frame is
transmitted. A route decision could be a possible route re-
quest (rt_dec+) or a faulty request (rt_err+). The frame gen-
erating a faulty request will be dropped. After the route
request is made, the route decision procedure is disabled
until the frame is transmitted, denoted by ch_fin+ on all
sub-channels.

Figure 8 shows a sub-channel controller and its STG. A
data session begins after a route request is made. A faulty
frame is dropped by connecting the ack line generated from
ic_d directly to itself, enabled by rt_err in Figure 6(a). Note
that the ack line connected back is generated from data
bits but not the EOF bit to guarantee that the EOF bit
is always detected by the sub-channel controller. When
the tail flit arrives, it is dropped by acken+ and then the
sub-channel stalls until the next data session. For normal
frames, the ack line acki from output buffers is used. As the
output of the C2N element added on ic_a in Figure 6(a),
acki only drops when the data on ic_d is released.

D. Routing and Arbitration

As an example, Figure 9 shows the route decision circuit
in the south input buffer and the connected arbiter on the
east port. Enabled by rt_en, the 8-bit address (16-bit in
1-of-4 code) blocked in the first pipeline stage enters com-
parators after the second pipeline stage is cleared (ib_a is

h_fi /1/ﬂ©‘
ch_fin-, f *

eof acki rt_err rt_dec ch_fin-/2
rt_dec+ rt_err+ \
rt_dec+ ¢ L rt_err-
f acken-/1 acken-/2 T
ch_fin+/1 ¢ i ch_fin+/2
T eof+/1 eof+/2 T
acki- ¢ \ eof-/2
b #
? acki+ acken+/2 —
eof-/1 J — normal frame
ch_fin acken k acken+/1 — faulty frame

(2) (b)

Fig. 8. (a) A sub-channel controller and (b) its STG

rt_en ch_fin_a
ib_ap

. local_x
ib_do[0..3] 4
= L _
1b_& 4-bit (1-0f-4) _
ib_di[0..3] 4 8 | comparator =
T = target_x =
ib_a,

target_y
ib_d,[0..3] 4
—t 8

ib_az

ib;dg[O..SIQ:)— |_
local_y

Fig. 9. The routing decision circuit and the arbiter

gnts from
other ports —

>
4-bit (1-0f-4) _
comparator _

low). The route request is captured by C2P elements en-
abled by ch_fin_a-. One-hot coded, the route request drives
rt_dec or rt_err to ‘1’, which then disables the route decision
procedure and starts the data session. C2P elements hold
the value during the whole data session. The south input
buffer could not be connected with the south output buffer,
therefore, the corresponding route request is connected to
rt_err.

Valid route requests are sent to arbiters. Since only four
input buffer could request to one output port concurrently,
the multi-way MUTEX arbiter [15], shown in Figure 9, is
faster and smaller than other arbiter styles [16, 17, 15]. The
successful request is granted by one of the four gnt outputs.

V. PERFORMANCE

A. Physical Implementation

The router has been implemented using the Faraday 0.13
pm standard cell library based on the UMC 0.13 pm tech-
nology. Route decision controllers and sub-channel con-
trollers are speed independent circuits generated from their
STGs using Petrify [18] and other parts are manually writ-
ten in Verilog HDL.

The area after synthesis is around 14.3K gates (0.057
mm?). The final router is placed and routed on a 0.3x0.3
mm block using 5 metal layers. The speed simulation is
back-annotated with the RC extraction from the layout and
run under the typical corner (25 °C, 1.2 V). The cycle pe-
riod for data flits is 1.7 ns, providing maximal 2.35 GByte/s
throughput on a single port. The average latency of a data
flit is also 1.7 ns. For the head flit, the routing decision and
the arbitration procedures consume about 0.8 ns without

TABLE 1
AREA OVERHEAD OF CHSLICE AND LH

Block | ChSlice & LH | ChSlice | No ChSlice/LH
Input Buffers 6.2K 5.8K 4.3K
Output Buffers 4.5K 4.5K 4.4K
Crossbar 3.3K 3.2K 2.4K
Total 14.5K 13.9K 11.3K
TABLE II

SPEED IMPROVEMENT OF CHSLICE AND LH

ChSlice & LH | ChSlice | No ChSlice/LH
Period 1.7 ns 2.2 ns 2.9 ns
Latency 1.7 ns 2.1 ns 2.8 ns
Route Overhead 0.8 ns 0.8 ns 0.8 ns

contention.

B. Effect of Channel Slicing and the Lookahead Pipeline

Channel slicing and the lookahead pipeline are the two
major contributions of this paper. Removing the C-element
tree in the completion detection circuit in Figure 1(a), chan-
nel slicing (ChSlice) splits a synchronized asynchronous
channel into multiple independent sub-channels, which re-
duces the cycle period. However, the increased wire count
and extra sub-channel controllers increase area. It is im-
portant to evaluate the area overhead of ChSlice against its
speed benefit. The lookahead (LH) pipeline reduces cycle
period through the early evaluation protocol. Although all
constraints required by LH are satisfiable, they would make
the data path vulnerable to the extreme process variation.
It is interesting to evaluate the performance of a router only
with ChSlice.

To answer these questions, a router without ChSlice or
LH (the router using QDI synchronized channels) and a
router only with ChSlice are implemented. Table I shows
the area after synthesis and Table II illustrates the speed
performance after RC extraction.

ChSlice significantly increases the area of input buffers
and crossbars but output buffers. ChSlice increases the
wire count of data paths but also removes the C-element
tree. The C-element tree in the router without ChSlice or
LH utilizes 15 C-elements. ChSlice adds 16 C-elements for
EOF bits and increases the fan-in of the OR gate in the
completion detection circuit from four to five. Because the
removed C-element tree compensates the area of the extra
C-elements introduced by ChSlice, ChSlice only adds one
extra C-element to each output buffer and increases the fan-
in of OR gates, which explains the slightly changed area
of the output buffers. The area of the crossbar increases
because it is linear to the wire count. The area of the input
buffers grows due to the extra sub-channel controllers. The
LH technique only increases the area of the input buffers
significantly. Shown in Figure 6(a), the added C2N element
sites on the critical cycle. They are severely optimized with
larger driven strength and buffer insertion during synthesis.
As aresult, ChSlice introduces 23.0% area overhead and the
LH pipeline causes further 5.3% overhead.

ChSlice and LH reduce the cycle period by 24.1% and
17.2% respectively, as shown in Table II. ChSlice and LH
reduce 41.4% cycle period (70.6% improvement in peak

TABLE III

ASYNCHRONOUS ROUTER COMPARISON

Router | Period Latency Tech Library & Layout Protocol
MANGO [9] | 1.26 ns | unknown | 0.12 pum unknown bundled-data
ANoC [6] 4 ns 2 ns 0.13 um | augmented cell lib 1-of-4
QNoC [10] | 4.8 ns 10 ns 0.18 pm standard cell lib bundled-data
ASPIN [8] | 0.88 ns 1.53 ns 90 nm | partial customized | dual rail & bundled-data
Our Router | 1.7 ns 1.7 ns 0.13 pm standard cell lib 1-of-4 & Lookahead

throughput) with 28.3% area overhead, compared with the
router without them.

C. Compare with Other Asynchronous Routers

Table III compares the performance of asynchronous
routers published in recent years. Only MANGO and AS-
PIN have better speed performance. MANGO, ASPIN and
QNoC have used the bundled-data protocol. Instead of us-
ing completion detection circuits as QDI pipelines, bundled-
data pipelines use matched delay lines to ensure timing
constraints. However, the non-completion-detection struc-
ture makes bundled-data pipelines fast and most high speed
asynchronous FIFOs are built by them [19, 20, 21], includ-
ing the custom designed FIFOs in the ASPIN router [8].
The lookahead pipeline is not QDI either but, as mentioned
in section IV-B, the timing constrains are satisfiable with-
out matched delay lines. It is only used on the critical cycle
inside the router. Compared with a router fully or partially
implemented by bundled-data pipelines, our router is more
immune to process variation.

ANoC has used the augmented cell library from TIMA
[22] for C-elements and MUTEXes. ASPIN has also used
a set of special designed asynchronous cells for the SXLIB
cell library [23]. Our router is a pure standard cell imple-
mentation, therefore, the speed could be further improved
by using those asynchronous cells.

VI. CONCLUSION

In this paper, a low latency asynchronous router has been
implemented. The router utilizes two novel techniques:
channel slicing and the lookahead pipeline.

Channel slicing removes the C-element tree in the com-
pletion detection circuit of QDI pipelines. This removal
reduces the cycle period and make sub-channels run in
parallel during the data session. The router implementa-
tion shows that channel slicing reduces the cycle period by
24.1% for a 32-bit wormhole router with 23.0% area over-
head. The lookahead pipeline is a fast pipeline style al-
lowing early acknowledge generation, proposed by Montek
[3]. For a wormhole router, the peak throughput is deter-
mined by the critical cycle. We propose to use the look-
ahead pipeline on the critical cycle to increase throughput.
Implementation results show that it reduces the cycle pe-
riod by 17.2% with 5.3% area overhead.

The final router using both channel slicing and the look-
ahead pipeline has been implemented on a 0.3x0.3 mm
block using the Faraday 0.13 pum standard cell technology.
The synthesis result is around 14.5K gates. Simulations are
back-annotated with RC extraction and run at the typical
corner. The cycle period is around 1.7 ns providing 2.35
GByte/sec throughput on each port.

(1l

(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

[14]

(15]

(16]

(7]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

W. J. Dally and B. Towles, “Route packets, not wires: on-chip inter-
connection networks,” in Proc. of DAC, 2001.

A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olsson, P. Nils-
son, J. Oberg, P. Ellervee, and D. Lundqvist, “Lowering power con-
sumption in clock by using globally asynchronouslocally synchronous
design style,” in Proc. of DAC, 1999, pp. 873-878.

M. Singh and S. M. Nowick, “The design of high-performance dy-
namic asynchronous pipelines: lookahead style,” IEEE Transactions
on VLSI Systems, vol. 15, no. 11, pp. 1256-1269, November 2007.

J. Bainbridge and S. Furber, “Chain: a delay-insensitive chip area
interconnect,” IEEE Micro, vol. 22, pp. 16-23, 2002.

T. Felicijan and S. B. Furber, “An asynchronous on-chip network
router with quality-of-service (qos) support,” in Proc. of SOCC,
Sept. 2004, pp. 274-277.

E. Beigne, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin, “An
asynchronous NOC architecture providing low latency service and its
multi-level design framework,” in Proc. of ASYNC, March 2005, pp.
54-63.

L. A. Plana, S. B. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and
S. Yang, “A globally asynchronous, locally synchronous infrastruc-
ture for a massively-parallel multiprocessor,” IEEE Design and Test
of Computers, vol. 24, no. 5, pp. 454-463, 2007.

A. Sheibanyrad,
network-on-chip,
Curie, 2008.

T. Bjerregaard and J. Sparsg, “A router architecture for connection-
oriented service guarantees in the MANGO clockless network-on-
chip,” in Proc. of DATE, 2005, pp. 1226-1231.

R. Dobkin, R. Ginosar, and A. Kolodny, “QNoC asynchronous
router,” Integration, the VLSI Journal, vol. 42, no. 2, pp. 103-115,
2009.

J. Bainbridge, W. Toms, D. Edwards, and S. Furber, “Delay-
insensitive, point-to-point interconnect using m-of-n codes,” in Proc.
of ASYNC, May 2003, pp. 132-140.

S. Hollis and S. W. Moore, “RasP: an area-efficient, on-chip network,”
in Proc. of ICCD, October 2006, pp. 63-69.

R. R. Dobkin, Y. Perelman, T. Liran, R. Ginosar, and A. Kolodny,
“High rate wave-pipelined asynchronous on-chip bit-serial data link,”
in Proc. of ASYNC, 2007, pp. 3-14.

C. D’Alessandro, A. Mokhov, A. Bystrov, and A. Yakovlev, “De-
lay /phase regeneration circuits,” in Proc. of ASYNC, 2007, pp. 105~
116.

D. J. Kinniment, Synchronization and Arbitration in Digital Sys-
tems. John Wiley & Sons Inc., 2007.

K. S. Low and A. Yakovlev, “Token ring arbiters: An exercise in asyn-
chronous logic design with Petri nets,” Newcastle University, Tech.
Rep., 1995.

M. B. Josephs and J. T. Yantchev, “CMOS design of the tree arbiter
element,” IEEE Transactions on VLSI, vol. 4, no. 4, pp. 472-476,
Dec 1996.

J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Petrify: a tool for manipulating concurrent specifi-
cations and synthesis of asynchronous controllers,” IEICE Transac-
tions on Information and Systems, vol. E80-D, no. 3, pp. 315-325,
1997.

M. Singh and S. M. Nowick, “MOUSETRAP: ultra-high-speed
transition-signaling asynchronous pipelines,” in Proc. of ICCD, 2001,
pp. 9-17.

I. Sutherland and S. Fairbanks, “GasP: A minimal FIFO control,” in
Proc. of ASYNC, 2001, pp. 46-53.

P. Wielage, E. J. Marinissen, M. Altheimer, and C. Wouters, “De-
sign and DfT of a high-speed area-efficient embedded asynchronous
FIFO,” in Proc. of DATE, 2007, pp. 853-858.

P. Maurine, J. Rigaud, F. Bouesse, G. Sicard, and M. Renaudin,
“Static implementation of qdi asynchronous primitives,” in Proc. of
PATMOS, 2003, pp. 181-191.

A. Greiner and F. Pcheux, “ALLIANCE: A complete set of CAD tools
for teaching VLSI design,” in Proc. of the 3rd Eurochip Workshop
on VLSI Design Training, 1992, pp. 230-237.

“Asynchronous implementation of a distributed

” Ph.D. dissertation, University of Pierre et Marie

