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Abstract

Self-timed datapaths require their data to be encoded in
a delay-insensitive manner. The dual-rail encoding is com-
monly used, but more complex codes offer the possibility of
better energy efficiency or fewer wires-per-bit. However,
these advantages are often negated by datapath manipula-
tions within large systems that require code-groups to be
split and reformed. These overheads may be reduced by het-
erogeneously encoding circuits based on the datapath
requirements within the circuits. In this paper, such an
approach is evaluated within the Balsa asynchronous syn-
thesis system. 

Techniques for synthesising arbitrary m-of-n encodings
for datapath components are presented. These implementa-
tions allow each channel within a handshake circuit to be
assigned an individual encoding. An automated encoding
mechanism is described which analyses the datapath
requirements of Balsa circuits and assigns codes to chan-
nels based on the interaction between sections of datapaths.
The performance of the heterogeneous approach is evalu-
ated on two microprocessor implementations.

1. Introduction

Process variation is becoming a key concern of VLSI
designers. Geometry and gate threshold parameters may vary
by as much as 45% and 15% respectively in 70nm processes
[10]. To cope with these variations, timing overheads are
added to synchronous designs resulting in designs that are
often clocked at half their actual maximum potential opera-
tional speed [6].

The use of self-timed [14] design paradigms can over-
come the problems of process variation. The execution of
self-timed operations is initiated by the arrival of their oper-
ands. The validity of data is encoded into the operands,
avoiding the need for an external timing reference, making

self-timed operations tolerant to variations in propagation
delay. Data is encoded within DI codes [17]: codes in which
no code word is contained within any other, allowing each
code word to be detected unambiguously. 

There are many different types of DI code. The most sim-
ple is the dual-rail code. Here, each bit of data is represented
by two wires, one for each binary value. A transition on
either wire represents the arrival of valid data. A dual-rail
code can be generalised to the 1-of-n codes, where datapaths
are constructed from groups of n wires, each of which repre-
sents n symbols – again the arrival of a single transition in a
code group represents the arrival of valid data. In general
only codes where  are used so as to simplify the con-
struction of binary width datapaths.

The dual-rail code is the most commonly used 1-of-n code
as logical functions are simple to construct. However, a 1-of-
4 code has greater communication efficiency [17] than a dual-
rail code. In the 1-of-4 scheme, two binary-bits are encoded
within a single code group. Half the number of transitions are
therefore required to transmit data compared to a dual rail
code. Communication efficiency is especially important in
self-timed paradigms because most systems employ a 4-
phase RTZ (Return-To-Zero) signalling protocol. In a RTZ
protocol, all wires in a code group return to a “spacer”
(invalid) state in between transmissions of valid datawords,
therefore doubling the number of transitions and thus the
energy required to transmit data.

1-of-n codes are part of a family of codes known as m-of-n
codes: each code group contains n wires and valid data is sig-
nified by the arrival of m transitions upon these wires. The
number of symbols represented by an m-of-n code group, its
size [17], is given by n choose m. Therefore, the size of
m-of-n codes, where m > 1, is greater than that of the equiv-
alent 1-of-n code and hence fewer wires are required to carry
a datapath. In codes where m is relatively small ( ) the
communication efficiency may also be better than that of
1-of-n codes. However, employing complex m-of-n codes is
difficult because if codes are not chosen correctly, the cost of
implementing logic functions can be high. For example,
because each code group of the 1-of-4 code represents two
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binary-bits, odd width datapaths are difficult to represent,
and usually one bit (either the most or least significant) is
implemented with a dual-rail code. This may incur problems
when manipulating odd-width datapaths, as shown in
figure 1.1. The figure shows the results of combining a 3-bit

(InputA) and a 4-bit (InputB) datapath to form a 7-bit datap-
ath using a 1-of-4 code. Input A consists of two code-groups:
one 1-of-4 (InputA0) and one dual-rail (InputA1). InputB
consists of two 1-of-4 code-groups (InputB0 and InputB1).
The combined output consists of four code-groups: three
1-of-4 groups (Output0, Output1 and Output2) and a dual-
rail code group (Output3).

In conventional binary and dual-rail encodings, InputA
and InputB may be combined by simply renaming the wires
of the two datapaths. In the example above the first code
group of InputA requires no conversion. However, because
the most significant bit of the InputA is encoded in a dual-
rail code, it must be incorporated with the least signficant bit
of InputB into a single 1-of-4 code group in the output. The
remaining code-groups of inputB must then be recoded into
the code-groups of the output which requires circuitry to
extract the values of individual bits from each code group.
Clearly this operation could be avoided if the output was
encoded in a manner that reflected the width of the inputs. 

The problem of recoding datapaths applies to all datapath
operations, such as bit-extraction, combining and splitting
datapaths, when using 1-of-4 encodings. A measure of the
overhead of these operations can be gained from a 1-of-4
implementation of the SPA, an ARM Compatible CPU

developed at the University of Manchester [13]. SPA con-
tained 623 odd-width datapath manipulations, resulting in a
total extra cost of 85186 transistors, around 8% of the entire
CPU.

The solution to these difficulties is to allow the encodings
of function outputs to be determined by the encodings of
their inputs. Thus reducing any unnecessary overhead trans-
lating between the two. As in the example shown in
figure 1.1, this often requires datapaths to be encoded with
multiple different codes. Hence, a system is required that can
synthesis heterogeneously-encoded circuits and provide a
method of specifying new codes.

As the outputs of one function often form the inputs to
other functions, conflicts can occur between the require-
ments of each operation. Therefore the encoding of each
datapath must take into account, not only its own operation,
but also the operation of the datapaths adjacent to it. For this
reason, a gradated encoding scheme has been developed,
where the encoding of each datapath is determined not only
by its own inputs and outputs, but also by the operation of
datapaths in its vicinity. The effect of other datapaths on the
encoding deminishes with distance from the original datap-
ath, allowing a gradual change in the encoding across the cir-
cuit, thus reducing the overheads of changing encodings.

The structure of this paper is as follows: Section 2 defines
a method of specifying codes and encodings for the construc-
tion of datapaths and describes possible protocols that may
to be employed to allow datapaths with different encodings
to interact. Section 3 introduces the Balsa synthesis system
and handshake components. Section 4 describes the adapta-
tion of the Balsa system, in particular new implementations
of handshake components, to synthesise heterogeneously-
encoded circuits. Gradated code assignment is outlined in
section 5. The results of implementing the gradated encoding
mechanism on two microprocessor implementations are pre-
sented in section 6.

2. Heterogeneously Encoded Systems

In order to create arbitrary-encoded DI circuits, a specifi-
cation must be designed to allow for the description of DI
codes and datapath structures; decisions must also be made
on how different datapaths interact with each other within
components. The term channel is used to describe atomic
elements of datapaths which may be assigned different
encodings.

2.1 Code Definitions

There are three important properties of a code:

• Size - The number of symbols contained in each code-
group.

• Width - The number of wires in the code-group

Figure 1.1: Combining 1-of-4 datapaths
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• Values - The values of the code-group and their order.

Given this information, the structure of datapaths for any
width can be determined, provided a method for constructing
datapaths from code groups is defined.

It is inefficient to use large codes on their own to construct
arbitrary-width datapaths. Where a datapath’s size is not a
multiple of the code’s size, the number of symbols must be
truncated to fit the number of symbols of the datapath. A
more efficient structure for the channel may be constructed
by employing smaller codes within the channel to achieve a
better fit. Each code definition can contain a set of diminished
codes which are used to implement varying sizes of datap-
aths. For example, the 1-of-4 code contains only one dimin-
ished code (dual-rail) to represent single data bits in odd-
width datapaths. Larger codes comprise code sets that con-
tain several smaller codes decreasing in size, that are used
when appropriate. Once the set of code-groups covering a
datapath has been determined, the number of wires in the
datapath and the datapath symbols may be determined easily.

The set of codes that can be described in this manner is
limited by practical considerations such space and computa-
tion time. Large codes are difficult to define because of the
need to describe all of the code values, which requires enu-
merating every code word. 

2.2 Channel Encodings

Once codes have been defined, describing the encodings
of datapaths is relatively simple. A heterogeneous encoding
for a datapath consists of a sequence of (code . width) pairs.
e.g.
((“2-of-7” 4) (“dual-rail” 1) (“2-of-5” (symbols 8)))

The code name is the reference to a code description and
the width is the number of bits the code represents. The sym-
bols keyword allows the width of the code to be determined
by the actual number of symbols representd, allowing non-
binary width codes to be represented. All further information
required to implement channels can be determined from the
code descriptions.

2.3 Channel Interaction

In heterogeneously encoded systems, each channel may
have a different encoding and so interaction between differ-
ent channels is complex. Interaction is defined by a function
which may be a logical or arithmetic function, or a connec-
tion function which implements datapath manipulations such
as splitting, combining etc. The implementation of this func-
tion is determined by the model of interaction employed
between the two channels.

For two channels to interact, the channels must be decom-
posed into atomic groups, called segments, on which opera-
tions (including connection) can occur. Values within the
datapath are determined by the products of the individual

segments; the position of segment in the datapath determines
the significance of its values in the value of the datapath. In
binary datapaths, each segment consists of a single binary
bit. In encoded datapaths, each segment consists of a single
code group. The boundaries of a segment are defined by the
symbols of the datapath represented before the segment
(lower boundary - sl), and the symbols represented by the
datapath up to the end of the segment (upper boundary - sh).
For example, the 16th bit of a binary datapath forms a seg-
ment with sl = 215 = 32768 and sh = 216 = 65536.

Where channels with separate encodings interact, seg-
ments have to be constructed by combining the code groups
of each channel. Segment boundaries may coincide with
boundaries of code groups or occur on factors of the code
groups size (given by ).

Figure 2.1 shows the segments of the combine component
of figure 1.1. The boundaries of the input code groups and
the output code-groups do not coincide within the datapath
and so a decision must be made where to place segment
boundaries to implement the function.

There are four possible methods of combining code
groups in order to decompose a datapath into atomic seg-
ments:

(a) Groups are combined at the highest common divisor of
all group sizes.

(b) Groups are combined on group boundaries of inputs and
integer divisors of any output sizes.

(c) Groups are combined on group boundaries of outputs
and integer divisors of any inputs.

(d) Groups are combined only on code-group boundaries.

Figure 2.1: Code-Group Boundaries of the Combine 
Component of figure 1.1
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Figure 2.1 shows the various segment options for the
combine example. Each of the segments is depicted as filled
rectangles and each option has a different shading.

Where segment boundaries do not coincide with code-
group boundaries, mapping functions must be used to map
between the values of the input code-groups to the segment
values and vice versa. For each segment there is a mapping
function: where xi corresponds to a value
of an input code group and si is a value of the segment. Asso-
ciated with each input code group are two sets of boundaries:
the boundaries of the segment within the code group cl and
ch and the boundaries of the code-group within the segment
sl and sh. cs is the size of the segment within each code group.
Mapping functions take the form:

These values can be illustrated using the example segment
Y marked in figure 2.1. The two least significant symbols of
segment Y are determined by code-group InputB1, and so the
boundaries of this code-group within the segment are sl = 1
and sh = 2. Segment Y intersects the first code-group and so
the boundaries of the segment within InputB1 are cl = 2 and
ch = 4. The second code-group InputB2 determines the two
most significant symbols of segment Y and so sl = 2 and sh =
4. The boundaries of segment Y within InputB2 are cl = 1 and
ch = 2.Therefore the mapping function for segment Y marked
in figure 2.1 is:

The code-groups of output channels dominate the con-
struction of segments. Input code-groups may be used in sev-
eral different functions, whereas the values of output groups
must be calculated in a single logic stage.

The size of large logic functions can sometimes be
reduced, particularly in functions with two or more inputs, by
performing the input and output mappings in two separate
stages.This requires assigning an intermediate DI-code to the
values of the segment and usually involves “converting”
complex codes into simpler codes in order to perform logic.
However, employing two-stage mapping may detract from
the advantages of employing complex encodings. As all
operations are performed upon small groups and then recom-
bined, extra logic stages and transitions are required. Options
(a) and (b) implement such a mapping because the segments
produced under these schemes are not delimited by the out-
put code-group boundaries and so several segments may
need to be combined together to form a each output code-
group. Option (d) is the simplest of the channel interaction
models as it does not require input mapping. However, as in
the example above, segments can be very large if the code
groups of channels do not coincide at regular intervals.

3. A Self-Timed Synthesis Test-bed

Balsa [8] presents the ideal system to explore heterogene-
ously encoded systems since it synthesises behavioural
descriptions into an intermediate form which abstracts away
implementation details from the behavioural description
allowing several different implementations to be created
from a single description. The structure present in the inter-
mediate form allows functional components within the sys-
tem to be identified and tools devised to implement the
circuit components in an arbitrary coding scheme.

3.1 Handshake Circuits and Balsa Synthesis

Balsa uses syntax-directed translation to synthesise
descriptions into handshake circuits, which consist of inter-
connected handshake components [4]. Handshake compo-
nents are connected via channels, which communicate via
handshaking. Most components have a set of parameters,
such as width, number of ports, operation or decoder/encoder
specification, which allows a wide range of circuits to be cre-
ated. An example handshake circuit is shown in figure 3.1.

No information about the internal structure of channels or
handshake components is given in a handshake circuit graph,
and so new circuit styles may be synthesised by providing
new implementations of each of the handshake components.
Currently Balsa can synthesised bundled-data, dual-rail and
1-of-4 encoded QDI implementations. As Balsa handshake
components can be parameterised, instantiating arbitrary
component implementations is non-trivial. The Balsa syn-
thesis system contains a complete language to aid the crea-
tion of handshake component descriptions, as well as
containing several file and netlist formats to allow implemen-
tation technologies and cell-libraries to be targeted easily [2].

map x1 … xn, ,( ) si

map x1 … xn, ,( )
x1

cl1

----- cs1
mod sl1

…
xn

cln

----- csn
mod sln

+ +=

map x1 x2,( )
x1

2
----- 2mod 1×

x2

1
----- 2mod 2×+=

Figure 3.1: ALU Handshake Circuit
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As Balsa does not contain its own combinational logic syn-
thesis engine, combinational logic functions in Balsa are
constructed from a set of pre-defined primitives: gate-level
modules consisting of adders, comparators, etc. Information
about the structure of channels is hard coded into handshake
component descriptions and primitives must be defined for
each logical or arithmetic function. Complex encodings
require the generation of many different primitive cells, as
cells must be created to cope with every possible datapath
structure. The 1-of-4 component implementations required
66 different primitives to cope with all possibilities of odd
and even datapath widths in logical operations.

To allow Balsa to synthesise heterogeneously-encoded
circuits, new generic implementations of handshake compo-
nents and channels must be created. Each channel may be
assigned a unique structure and handshake component
implementations must be created that allow each port to con-
tain a different encoding. As the encoding of components is
initially undetermined, logic functions can not be imple-
mented using pre-defined primitives, and combinational
logic synthesis must be used to implement all functions. 

4. Implementing Handshake Components

4.1 Design Methodology

There are several different self-timed methodologies
which vary in the assumptions made about the delays within
circuit components. Robust methodologies that make few
assumptions about the delays within the circuit components
are more tolerant to variations in the process and the environ-
ment and therefore require less timing verification post-lay-
out. In order to study the feasibility of heterogeneously
encoded systems, the Quasi-Delay-Insensitive methodology
[9] was adopted, allowing highly complex systems to be con-
structed and laid-out without the need for complex timing
constraint checking to ensure correct behaviour. 

It should noted that much of the complexity in construct-
ing generic handshake components concerns the handling
and interaction of the encodings and so other self-timed
methodologies may be employed by replacing the combina-
tional logic synthesis engine, and performing the appropriate
constraint checking and code conversion at the input and out
ports of the components.

There exist very few QDI combinational logic synthesis
tools, which are capable of synthesising arbitrary logic func-
tions. Most of these require auxiliary tools, such as cell com-
pilers or conventional logic synthesis systems, in order to
implement functions. For this reason a new synthesis method
was developed to allow arbitrary QDI functions to be created
using standard cells. The method was implemented in a tool
called Oolong and was used to implement all of the combi-
national logic within the new system. A description of the
Oolong synthesis flow is given in [15].

Oolong employs algebraic extraction to implement multi-
level implementations of strongly-indicating QDI circuits.
The restrictions of the strongly-indicating model mean that
conventional minimisation techniques, such as those exploit-
ing ‘don’t care’ states within functions, are difficult to
employ without violating the model. However, large circuits
may be synthesised without the need to check whether the
QDI requirements are upheld throughout the synthesis pro-
cedure, which limits the applicability of other synthesis
engines to datapath circuits.

4.2 Function Generation

All the logical functions implemented by the Balsa sys-
tem operate on the binary values of encoded channels, rather
than the signalling within these channels, and so operations
are dependent only on the lexicographical value [11], rather
than the binary value, of the input code word. The lexico-
graphical value of a code-word is the position of the word in
an ordered list of code words. For each segment in a datapath,
a function is synthesised using the Oolong synthesis tool.
Functions are generated by enumerating all the possible val-
ues of the set of input code-groups. Mapping functions,
described in section 2.3, are used to determine the lexico-
graphical value of function outputs for each input code-word.
This value may then be used to extract the correct code-word
from an ordered list of output values. This truth table is input
to Oolong which returns a list of synthesised functions writ-
ten in Balsa’s implicant format, a set of (don’t-care-mask,
value) pairs. Abstract gates are generated from each impli-
cant by mapping the original inputs to the input names pro-
vided to the function-generator. Once the abstract gates have
been generated, they are evaluated and expanded using
Balsa’s internal gate expansion system.

4.3 Completion Detection

Completion Detection is used extensively throughout DI-
encoded circuits to acknowledge the receipt of data. For
1-of-n codes, completion detection is simply an OR of the
wires of the code group but for more complex codes, it can
be substantially more expensive. The Sorting Network (SN)
based approach defined by Piestrak [12], provides an effi-
cient method to implement completion detection for arbi-
trary m-of-n codes and was adopted to implement
completion detection throughout the system.

Sorting Networks are switching networks which “order”,
by logic level, a set of inputs to a set of outputs. The SNs used
by Piestrak are based on Batcher’s Odd-Even Merging Net-
works [3]. Odd-Even Merge Networks take two ordered lists
and merge them into a single ordered set by splitting them
into odd and even merging networks for the odd and even
indices of the two lists. Their outputs are then combined with
a row of comparison elements. The inputs are split into two
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sets and ordered with smaller odd-even merging networks,
before being combined in a large merging network.

Piestrak’s method for completion detection relies on the
fact that a “1” on the ith input of a SN signifies that i “1”s have
been received by the network and hence can be used in the
detection of m-of-n codes. In Piestrak’s completion detec-
tion, inputs are split into two odd-even merge networks, the
outputs of which are then combined to cover all possibilities
of receiving m active inputs in the two sorting networks.

In order for the sorting networks to maintain the QDI
assumptions, the outputs of the networks must be pruned (as
suggested by Piestrak) to prevent unacknowledged transi-
tions occurring within the network. As networks are con-
structed recursively, pruning is a relatively simple operation
achieved by reducing the weight of the code with each itera-
tion of recursion. Pruning has the added advantage that net-
works are reduced in size. 1-of-n networks are reduced to
OR-gate trees and so the technique provides efficient com-
pletion detection for all unity weight codes. For sorting net-
works with m active inputs, outputs O1 to Om will all
transition, although only Om will be used within the combi-
nation network to determine the arrival of data. To acknowl-
edge all of the outputs and the internal transitions that
generated them, a set of cascading C-elements must be
placed on the outputs of the sorting networks. The C-ele-
ments delay the transition of Om until after the outputs O1 to
Om-1 have transitioned, allowing all transitions within the
pruned sorting network to be acknowledged. Figure 4.1
shows a QDI sorting-network implementation of a comple-
tion detector for a 2-of-7 code. The shaded C-elements and

wires represent components that have been pruned from the
original sorting-network.

For DI codes without unity weighting, Piestrak’s method
cannot be used as it relies on summing the number of transi-

tions rather than a comparison or enumeration based
approach. Therefore, to implement non m-of-n codes, enu-
meration-based methods employing QDI logic synthesis are
used.

4.4 Encoders and Decoders

Several Balsa components contain encoder and decoder
elements. Decoders activate a single control channel from an
array of channels, based on the binary value of a data channel
and encoders encode binary values onto a channel based on
an event on a control channel. Encoders and decoders are
design dependent and, unlike logic functions, must be syn-
thesised rather than generated from primitives. In Balsa, they
are synthesised using the Espresso logic minimiser [5].

In order to implement a completely QDI generic back-
end, Espresso-based synthesis of decoders was replaced with
QDI synthesis. However, to implement QDI synthesis, each
input transition must be acknowledged correctly. In order for
the synthesis tool to achieve this, the set of all possible input
transitions must be supplied. This requires constructing
truth-tables using an entry for each symbol that is possible in
the datapath. For large datapaths, the size of these tables
becomes prohibitive, consequently synthesis is difficult and
time consuming and often results in large implementations.
Datapaths therefore need to be decomposed to implement
decoders efficiently.

Synthesis of QDI decoders is a two stage process: the
datapath is first decomposed into segments for synthesis, and
secondly, the outputs of the segments are combined to create
the encoder outputs. Figure 4.2 shows a 24-bit dual-rail
decoder implementation. 

In order to ensure there are no unacknowledged transi-
tions on the outputs of the segments in the first stage, the seg-
ment outputs must reflect not only the results of the encoder
output functions over the values of the segment, but also the

Figure 4.1: 2-of-7 Completion Detection
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relationship between encoder outputs for specific values. If
two implicants, a and b, share a common value within a seg-
ment, then, upon receipt of this value, the outputs of the seg-
ment for a and b will both transition. As the decoder outputs
are mutually-exclusive, only one of the implicants, a, can be
true in all segments of the datapath, and produce an output.
Therefore, the transition on output b of the segment will not
be acknowledged by the second stage of the decoder. Instead
of describing the state of individual implicants, the outputs
of each section describe the relationship between implicants.
For each input value in the segment, the implicants activated
are recorded. The output of the segment is a one-hot code
with an output for each different combination of active impli-
cants. This process is similar to the technique for determin-
ing the symbolic cover for a set of states using positional
cube notation [7]. 

If the implicants within a segment are mutually-exclusive,
i.e. no implicant covers the same value, then there will be one
output for each implicant. If all the implicants cover all val-
ues of the segment, only a single output is generated and the
segment is part of the don’t care set of the decoder and the
logic can be replaced by completion detection. In the worst
case-scenario, if each input value causes a different set of
implicants to be activated, then there will be as many seg-
ment outputs as input values and hence, the second stage
decoder logic will have as many input terms. However, as the
outputs of each segment are one-hot, there are fewer concur-
rent inputs in the second stage and so synthesis will be sim-
pler.

The second stage logic combines the one-hot outputs of
the first stage together and generates signals for the original
implicants. All the different possibilities of segment outputs
must be enumerated to enable QDI synthesis. The size of the
two stage decoders is often a lot larger than implementations
generated using Espresso, where don’t care values are
removed from the expressions entirely. Ironically, the pres-
ence of large don’t care sections within decoder specifica-
tions can actually increase the size of QDI implementations.
Each implicant covers a larger range of values, leading to an
increase in the number of implicant possibilities within seg-
ments and, hence, an increase in the number of segment out-
puts.

4.5 Storage

Generic storage implementations for m-of-n codes are
expensive. This is because, to fulfil QDI requirements,
implementations require completion detection to determine
when data has arrived and when it has been stored.
Figure 4.3 shows three possible generic storage implementa-
tions. A series of experiments into the properties of each
implementation was conducted [15].

Figure 4.3.a shows a generic SR-latch implementation.
Explicit completion detection is required on each of the

wires to determine when to reset the latch if a valid data has
been received on the other wires. For m-of-n codes with unity
weighting, the completion detection can be implemented
using Piestrak’s method on the m-of-(n-1) network. For com-
plex codes this implementation is vastly expensive in terms
of area and power as it requires n different completion detec-
tion networks. Although it is the fastest, as the completion
detection of m-of-(n-1) networks is much simpler and is per-
formed in parallel.

The storage implementation of figure 4.3.b is constructed
from a two-stage muller pipeline. This device requires two
C-elements per data wire and three separate completion
detection networks. The Muller pipeline implementation is
much slower than the SR-latch implementation as the previ-
ous data must be cleared before new data may be stored. For
codes where n > 3, the area and power consumption of the
Muller pipeline is less than that of the SR-latch implementa-
tion owing to the reduction in number of completion detec-
tion networks.

Figure 4.3.c shows an attempt to combine the advanta-
geous features of the two previous implementations. The
generalised C-elements, shaded on the diagram, determine
when the storage C-elements have latched the data by com-
paring it with the input data, and so reduce the amount of
completion detection required. For complex code implemen-
tations, the device is smaller and lower power than both the
previous two implementation, although not as fast as the SR-
latch implementation. However, in order to acknowledge all
transitions in the device, the C-elements must be imple-
mented as a single gate which may not be practical in a stand-
ard cell library.

One final problem with implementing generic m-of-n
storage is the initialisation of data. Balsa allows reads from
variables before writes; in order to initialise the devices prop-
erly, a valid code word must be inserted into the device. In
1-of-n codes, this requires setting a data wire high, however
in m-of-n codes this is more complex, and a valid code-word
must be generated by setting or resetting each of the storage
elements as appropriate. The implementations shown in
figure 4.3 depict a 1-of-4 code group with a single wire set
on initialisation.

5. Code Assignment

The aim of code assignment is to analyse the behaviour of
circuits and assign separate codes to different parts, allowing
more complex codes to be incorporated while reducing the
overheads caused by extracting data values from large code
groups. This process is different from state-encoding, which
may also be applied to DI-encoded circuits, where code val-
ues and orderings are selected to reduce the cost of logic
implementations. State encoding techniques for DI-codes
have been suggested [16] although have not been imple-
mented. It is anticipated that the system described in this
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paper will provide a platform for further research in this area
by creating a framework in which they maybe evaluated and
heuristics generated to improve their performance.

The code assignment procedure presented in this paper
attempts to encode circuits using gradated encoding. Encod-
ings are assigned to sets of channels, called paths, within the
circuit. Each encoding is determined by attributes of the cur-
rent path and those of other paths in the vicinity. The effect
on the encoding of other paths in the circuit decreases with
their increasing distance from the path being encoded.
Hence, the encoding changes gradually across the circuit, to
accommodate the data requirements of the various parts of
each circuit. Clearly, the gradient of the encoding - the extent
to which the encoding changes across the circuit - greatly
effects the circuit characteristics. If the gradient is too steep,
then circuitry needs to be employed to convert between
encodings. However, reducing the gradient homogenises the
encoding of the circuit and often means that small size codes
become dominant throughout the design reducing the appli-
cation of complex codes.

Each path within a design may be surrounded by several
different distinct paths. The aim of the encoding procedure
is to produce an encoding for the path that is compatible with
the encodings assigned to all adjacent paths. As each adja-
cent path may have separate or conflicting requirements,
paths are assigned an encoding that will be suitable for all
adjacent paths. The algorithm proceeds in four stages:

(i) Small single-width datapaths are determined throughout
the design

(ii) These single width datapaths are amalgamated, where
possible, into larger more complex datapath structures.

(iii) Conflicts between datapath structures are resolved by
exchanging information about the datapath operations
that operate on each structure.

(iv) An encoding for each datapath structure is determined
based on its own datapath operations, and the requirements

of the adjacent structures.

Each of these stages is discussed in detail in the following
sections.

5.1 Components and Atomic Paths

The structure of handshake circuits allows codes to be
determined and assigned very simply. As there exists only a
small number of handshake circuit components, the opera-
tion, and hence data requirements, of a datapath can be deter-
mined easily. Atomic paths are small constant width paths
through a datapath, and are the basic blocks of the encoding
process. They are constructed from sets of channels and are
determined by analysing the behaviour of the components to
which each channel belongs. Each component with data-
ports in a handshake circuit, performs some role upon the
paths in which the channels connected to its ports are con-
tained. There are three possible actions a component can per-
form on paths:

• Initiate: initiate a path on an output port.

• Terminate: terminate a path on an input port

• Distribute: distribute a path between input and output
ports.

Atomic paths are generated by traversing channels from
circuit inputs and initiators to terminators and outputs.
Figure 5.1 shows the atomic paths of the alu circuit intro-
duced in figure 3.1. The circuit has 10 atomic paths labelled
0 .. 9. Notice that the inputs to the two binary function com-
ponents are all on separate atomic paths, but the two outputs
are on the same path. This is because the path between the
outputs consists of only distributor components.

Each atomic path has associated path attributes that are
used to determine its encoding requirements. A path’s
attributes are defined by handshake components on the path
that perform logical operations or datapath manipulations on
data ports. Path attributes take two forms: structural and

Figure 4.3: Generic Storage Implementations: a) SR-latch, b) Muller Pipeline, c) Asymmetric C-element
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functional. Structural attributes take the form of a binary
mask and are generated in handshake components where the
ports of a path are of different width. As all atomic paths have
a single width, components which alter the size of datapaths
initiate and terminate two different width atomic paths. How-
ever, to ensure that the encodings of the two paths are com-
patible, the larger path assumes a structural path attribute that
describes the position of the smaller path within the larger. 

Functional path attributes are generated in handshake
components that perform logical operations on the ports of
the components. No succinct way was available to describe
these attributes in a general manner and so they are described
by the parameters of the handshake component in which they
were initiated. The encoding scheme described in this paper
is concerned only with the structural attributes of paths. To
employ the functional attributes of paths in a non-trivial way
requires complicated state-encoding techniques.

5.2 Propagations

Assigning codes is a heuristic procedure and the complex-
ity of the task can be reduced by combining paths together
into a single structure where possible. As the encoding of
each path is determined by the encodings of its neighbours,
reducing the number of paths reduces the complexity of the
encoding process. Therefore, after all atomic paths are gen-
erated, each path is examined to see if it may be expanded to
incorporate other paths. 

Paths of different widths may be amalgamated into multi-
width path structures which consist of a dominant (largest
width) path and a set of sub-paths. Each sub-path has a mask
describing the location of the path within the dominant path.
Where two multi-width paths are amalgamated, the sub-path
masks of the smaller path are expanded to fit the larger paths
and both paths are combined into a single multi-width path.

As handshake circuits may be instantiated within other
handshake circuits, information about the role of the instan-
tiatee on the circuit of the instantiator must be generated.
This is achieved by creating information about the external
paths of the instantiated circuit: the paths within the circuit
connected to its ports.

The set of external paths of a handshake circuit forms the
set of encodings that need to be supplied to the circuit in
order for it to be instantiated, this allows different instances
of the same handshake-circuit to have different encodings.
Only completely internal paths may be encoded at this stage.
Before the internal paths can be encoded or the external paths
created, the conflicts between paths must be resolved.

5.3 Conflicts

Conflicts between paths are very important as they repre-
sent adjacent paths which, for some reason, could not be
combined into a single encoding. The use of conflicts may be
beneficial by reducing the length and attributes of paths,
allowing different paths to be encoded independently. Con-
flicts between paths may be artificially inserted by the user
to increase the number of encodings within a design. In order
to reduce the logic required to communicate data between
adjacent paths, the encodings of each path must be made
compatible with the other. When paths are involved in a con-
flict, each path is encoded separately and attributes must be
exchanged between paths to reduce the likelihood of incom-
patibilities in encodings. However, exchanging too much
information increases structural dependencies between
paths, increasing the homogenisation of the encoding, so a
balance has to be achieved.

The point at which attributes are exchanged during con-
flict resolution is important. As the two paths are independ-
ent, they may collect further attributes which could create
incompatibilities between the encodings of each path. In fact,
the conflicts themselves form cyclic dependencies on each
other, where the resolution of a conflict between two paths is
affected by unresolved conflicts from each path. The unre-
solved conflicts are, in turn, dependent on the outcome of the
resolution of the current conflict. In order to correctly resolve
a conflict, information needs to be extracted not only about
paths involved in other conflicts with the two conflictees but
also about the other paths with which those paths are in con-
flict. To employ gradated encoding, the locality of the con-
flict information to the original path must be recorded and
taken into account during the encoding process. In the proc-
ess described in this paper, only structural information was
exchanged during conflict resolution, although it would be
possible to exchange functional or encoding information in
the same way.

For each path, a set of structural masks are produced that
describe the structure of paths that conflict with the original
path at that level. Level 0 paths are those within the multi-

Figure 5.1: Atomic Paths of ALU Handshake Circuit Graph
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width path structure being examined. Level 1 paths are those
that immediately conflict with level 0 paths and level n paths
are those which conflict with level n-1 paths. The structural
masks at each level are combined to produce a single struc-
tural mask, and these level based masks are then combined
into one mask for the original path. Small regions are filtered
out of masks from higher levels, to reduce the number of
regions within the final mask.

If one of the paths involved in a conflict is external, then
complete path information is not available at the time con-
flicts are resolved, leading to possible incompatibilities
between adjacent path encodings. It may be necessary to
export the internal path involved in the conflict as an external
path so that it may be encoded when the handshake circuit is
instantiated.

5.4 Encoding

Once all of the paths and their attributes have been deter-
mined, each path may be encoded. Encodings are incompat-
ible if they result in a section being created within a
handshake component that is too large to be effectively syn-
thesised because of the resulting computational complexity.
Once an encoding mask has been determined for a path struc-
ture, the path maybe encoded by selecting a suitable code for
each region within the mask. In the circuits described in this
paper, only code groups with a size equal to a power of two
were used in order to reduce the complexity of encoding. For
some codes this meant the number of valid symbols had to
be reduced. Since no analytical encoding system exists for
DI codes, the selection of code words and ordering for all
codes used was arbitrary.

6. Circuit Implementations

The effectiveness of heterogeneously encoded systems
was evaluated by encoding and synthesising two example
circuits using the system described in the paper. Both circuits
are complete commercially compatible 32-bit processor
cores, designed entirely in the Balsa language. The circuits
represent the largest designs attempted in Balsa to date and
so give a reasonable indicator of performance of the encoder
on complex systems. The circuits are:

• SAMIPS: A MIPS 3000 compatible processor developed
by the Distributed Systems Group at the University of
Birmingham [18]. The SAMIPS has a 5-stage pipeline
and a Harvard Architecture.

• SPA: An ARM V5T compatible core developed at the
University of Manchester [13]. The SPA is a 3-stage
pipeline with a Harvard Architecture. It was initially de-
veloped as part of a project to increase the security of
smartcards by homogenising power and timing of all in-
structions.

Table 7.1 shows area, speed and energy figures for several
implementations of each processor. The circuits were auto-
matically placed and routed with First Encounter from
Cadence in a standard cell library developed at the University
of Manchester using ST’s HCMOS8D 0.18μm process. The
speed and energy figures are based on running an example
program on each processor, simulated with single-node
capacitance in Synopsys’s Nanosim. The example program
for the SAMIPS was a single loop of the Dhrystone test
bench. The SPA test program was T1 from the ARM valida-
tion suite.

The table shows the benefits of implementing complex
codes over a dual-rail code as all of the complex-code imple-
mentations are faster and consume less energy than the dual-
rail implementations, albeit at the expense of some area over-
head. The improvements of the heterogeneously encoded
systems over the standard 1-of-4 implementation are less
dramatic and highlight the difficulties in implementing such
circuits.

All the implementations were encoded using the tech-
niques described in section 5, and were synthesised using the
fourth channel interaction model (d) described in section 2.
The dual-rail/1-of-4 implementations were generated by
constraining the selection of possible encodings to dual-rail
and 1-of-4 only. The m-of-n implementations were encoded
using dual-rail, 1-of-4, 2-of-5, 2-of-7 codes. The use of each
code can be measured by calculating the percentages of each
code in the channels of the design, these percentages are
shown in table 7.1.

As can be seen from the encoding percentages of the het-
erogeneously encoded systems, each contains a high propor-
tion of dual-rail code. Despite this, significant improvements
in speed are demonstrated for both the dual-rail/1-of-4 and
m-of-n codes albeit at the cost of an increase in area and
energy consumption. The use of complex codes may be
increased by implementing a better model for channel inter-
action, which would reduce the size of segments in some
cases for incompatible codes. However, increasing the pro-
portion of the complex codes may also increase the gradient
and therefore have a negative effect on the performance of
the circuit. The encoding mechanism regulates the gradient
of the encoding by using conflicts. To allow the user of the
system to evaluate the effectiveness of the encoding some
method of determining the gradient of the encoding must be
employed. Defining the gradient of a system is non-trivial
and is the subject of on-going research, it is believed that
such information will also help generate heuristics to guide
the encoding procedure.

7. Conclusions

This paper presented techniques to automatically encode
and synthesise QDI circuits using a range of different DI-
codes. There are many advantages to using complex 
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DI-codes within circuits to increase performance and reduce
energy consumption of circuits. However, implementing het-
erogeneously encoded circuits is complex. The methods pre-
sented in this paper merely represent an initial study into
synthesis and encoding techniques. In order to implement
such systems effectively, more research is necessary into sev-
eral aspects of the research:

The significance of ordering and code word selection in
reducing the size of codes has been highlighted elsewhere
[1], in order to make effective use of m-of-n codes, state-
encoding techniques must be applied to DI-encoded circuits
such systems have already been conceptualised [16] but are
yet to be implemented.

The combinational logic synthesis techniques used in the
Oolong tool were developed for this system. The use of a
strongly-indicating methodology often results in large circuit
implementations. The performance of heterogeneously-
encoded circuits could be increased by implementing com-
binational logic functions in a less restrictive methodology,
allowing minimisation techniques to be implemented more
successfully.

Both of these techniques have much wider applicability
outside of the domain of heterogeneously-encoded circuits,
and it is envisaged that the system described in this paper will
present a framework to allow these techniques to be explored
and refined.
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SAMIPS SPA

Implementation
Dual-
Rail

1-of-4 2-of-5 2-of-7
Area

(mm2)
Speed

(MIPS)
Energy 

(μJ)
Dual-
Rail

1-of-4 2-of-5 2-of-7
Area

(mm2)
Speed

(MIPS)
Energy 

(μJ)

Dual-Rail 100% - - - 2.1 6.8 2.6 100% - - - 2.6 3.8 4.2

1-of-4 - 100% - - 2.7 7.7 1.6 - 100% - - 3.5 4.0 3.5

Dual-Rail/1-of-4 45% 55% - - 3.0 9.8 1.7 65% 35% - - 3.5 5.0 3.7

m-of-n 54.0% 11.5% 9.3% 8.6% 3.2 8.6 2.0 54.0
%

11.5
%

12.0
%

22.5
%

4.0 4.5 4.0

Table 7.1: Area, Speed and Energy figures for Heterogeneously encoded Microprocessor Implementations
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