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Abstract—we propose a system based on the Izhikevich model
running on a scalable chip multiprocessor — SpiNNaker — for
large-scale spiking neural network simulation. The design takes
into account the requirements for processing, storage, and
communication which are essential to the efficient modelling of
spiking neural networks. To gain a speedup of the processing as
well as saving storage space, the Izhikevich model is
implemented in 16-bit fixed-point arithmetic. An approach
based on using two scaling factors is developed, making the
precision comparable to the original. With the two scaling
factors scheme, all of the firing patterns by the original model
can be reproduced with a much faster execution speed. To
reduce the communication overhead, rather than sending
synaptic weights on communicating, we only send out event
packets to indicate the neuron firings while holding the synaptic
weights in the memory of the post-synaptic neurons, which is
so-called event-driven algorithm. The communication based on
event packets can be handled efficiently by the multicast system
supported by the SpiNNaker machine. We also describe a
system level model for spiking neural network simulation based
on the schemes above. The model has been functionally verified
and experimental results are included. An analysis of the
performance of the whole system is presented at the end of the

paper.

I. INTRODUCTION

EURONS and their connections are basic components of
biological neural networks. A typical neural network
comprises millions of neurons and billions of
connections. Human brains have about 10'? neurons with
each neuron connecting to thousands of others. To simulate a
neural network at the scale of human brains is still
unachievable; however, several systems are under
construction to simulate large-scale neural networks [1, 2].
Because of the parallel nature of neural networks, a recent
trend in computational neural science is to use parallel
machines to simulate neural networks [3-5]. In a parallel
system, processing and information storage are distributed
and the system is usually more complex than a serial system.
Such systems benefit from the multiple processing resources,
but also face the drawbacks of communication overheads
since information exchange is always required between the
processing units and, to use a parallel system to simulate
neural networks, one needs maximum use of parallel
processing with minimum impact of the communication
overheads. In this context, optimal processing of the neural
model and efficient mapping of the neural network are
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essential.

SpiNNaker is a scalable chip multiprocessor system
designed for real-time large-scale spiking neural network
simulation [6, 7]. Each SpiNNaker chip contains 20
ARMOI68E-S processors. Chips are organized in a hexagonal
mesh, each communicating with 6 neighbors through
asynchronous links. A multicast system is developed to make
available efficient one-to-many communications to support
the way neurons interact. We propose to use the Izhikevich
model of spiking neurons in SpiNNaker for its simplicity in
computation and richness in reproducing diverse neural firing
patterns.

Three factors crucial to the efficient simulation of spiking
neural networks are processing, storage, and communication.
In this paper, we propose a scheme for the efficient simulation
of spiking neural networks based on the Izhikevich model on
the SpiNNaker system taking these three factors into account.
Firstly, a 16-bit fixed-point implementation of the Izhikevich
model is investigated to get a better processing speed as well
as to save storage space. By adopting two scaling factors, the
precision of the 16-bit implementation is still comparable to
the original (floating-point) model. The architecture of
efficiently mapping spiking neural networks onto the
SpiNNaker machine is also presented, focusing on the
communication efficiency and system scalability. By holding
synaptic weights in the memory of post-synaptic neurons, the
communication throughput required is reduced when using
the multicast system supported by SpiNNaker.

The design is functionally verified and evaluated on a
system modelled using the RealView ARMulator Instruction
Set Simulator (RVISS).

II. NEURON MODELS

In biological neural networks, neurons communicate
through spikes and use the timing of the spike to compute.
Previous models, including the Mcculloch-Pitts model [8],
the PDP model [5] and some others, are non-spiking since
they do not employ individual pulses as do biological neurons.
In recent years, models of spiking neurons have become
increasingly popular as they capture the spiking nature of real
neurons and can reproduce various neuron spiking patterns.
Spiking neural networks based on these models are more
biologically plausible and more powerful than non-spiking
ones [9, 10].

The Hodgkin-Huxley model [11] is one of the most
detailed and best known models of spiking neurons. It
quantitatively describes the subcellular level ionic behaviors
and the membrane current underlying the generation and
propagation of neural spikes. Although it is biologically
meaningful and powerful, the Hodgkin-Huxley model is too
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computationally complex to use in large-scale neural network
simulation.  Only computationally simple models are
practical in large-scale modelling because of the limited
hardware resources. Some simplified models, such as the
integrate-and-fire model, have been proposed as a
consequence. These models can simulate the spiking nature
of neurons as well as most key behaviours, while keeping the
cost of the computation at a comparatively low level.

The Izhikevich model is a simplified model that has a good
performance both on computational efficiency and functional
richness [12]. The Izhikevich model is based on a pair of
coupled differential equations:

vV =0.04v" +5v+140+ 1 —u (1)
u'=albv—u) 2)

When V=30,
v=c, u=u+d 3)

Where "= d/ dt, t is time (in ms), / is the synaptic current, v
represents the membrane potential of the neuron (in mV), u
represents a membrane recovery variable (also inmV). a, b, ¢,
and d are parameters:

= the parameter a is the time scale of the recovery

variable u. Smaller values results in slower recovery.

= b describes the sensitivity of the recovery variable u to

the subthreshold fluctuations of the membrane
potential v. Greater values couple v and u more
strongly, resulting in possible subthreshold
oscillations and low-threshold spiking dynamics.

= ¢ describes the after-spike reset value of the membrane

potential v.
= 4 describes the after-spike offset of the recovery
variable u.

Notice that the threshold value of this model is between
about -70 mV and -50 mV and is dynamic [13]. In this model,
when the membrane potential v exceeds the threshold value,
the neuron spikes with a 30 m} apex of membrane potential v.
The membrane potential v is limited to 30 mV. If the
membrane potential v goes above the limitation, it is firstly
reset to 30 mV. Then the membrane potential v and the
recovery variable u are both reset according to (3).

With the choice of neuron parameters a, b, ¢, and d, the
model can exhibit different firing patterns. The Izhikevich
model is so computationally simple compared to the
Hodgkin-Huxley model that it takes only 13 floating-point
operations to simulate 1 ms of the model, but can reproduce
firing patterns of all known types of cortical neuron [13]. The
H-H model takes 1200 floating-point operations for 1 ms.

III. SPINNAKER

The SpiNNaker project is a joint project between the
Advanced Processor Technologies (APT) Group at the
University of Manchester and the School of Electronics and
Computer Science (ECS) at the University of Southampton.
The objective is to build a scalable chip multiprocessor for
real-time large-scale spiking neural network simulation.

The basic components providing the computational
capability for the SpiNNaker system are the ARM968E-S
processing subsystems, each of which is called a fascicle

2814

processor and is responsible for modelling a number (in the
region of 1,000) of neurons. Each subsystem comprises a 200
MHz ARM968E-S core with a 32 KB Instruction Tightly
Coupled Memory (ITCM) and a 64 KB Data Tightly Coupled
Memory (DTCM).

Each SpiNNaker chip contains 20 identical ARM968E-S
processing subsystems, as shown in Fig.1, with a block of
external SDRAM associated with each chip. Processors share
access to the SDRAM through a self-timed packet-switched
System NoC. CHAIN technology[14] is used in this fabric to
provide a high bandwidth of around 1 GB/s [7]. There is a
Multicast Router on the chip for one-to-many routing
between chips and processors.
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Fig.1. A SpiNNaker chip. Each chip contains 20 processors sharing an
external memory block through the System NoC. Processors connect to
the Multicast Router through the Communication NoC. There are 6
input ports and 6 output ports on each chip for inter-chip communication.

A SpiNNaker chip, together with its associated SDRAM,
forms one processing node of the SpiNNaker system. A
typical SpiNNaker system comprises a large number of
processing nodes which are organized in a hexagonal 2D
mesh, each communicating with 6 neighbours through
self-timed packet-switched links. This kind of asynchronous
connection decouples the different clock domains between
and within SpiNNaker chips and, as a result, makes the
system scalable. To meet the communication throughput
demand of the high connectivity of the neural network system,
8-wire inter-chip link are used to obtain a capacity of around 1
Gbit/s when connecting two SpiNNaker chips [7, 15].

IV. 16-BIT FIXED-POINT IMPLEMENTATION OF THE
[ZHIKEVICH MODEL

The Izhikevich model of spiking neurons is selected as the
neuronal model used in the SpiNNaker system.
Floating-point numbers are used in the original Izhikevich
model, however, fixed-point operations are normally more
efficient than their floating-point alternatives and the
ARMOI68E-S processor does not have a Floating Point Unit
(FPU). As a result, we propose to use fixed-point operations
instead of floating-point operations in the system. 16-bit
fixed-point arithmetic is used to further speed-up the
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processing and save storage space. Pearson er al. have
implemented spiking neural networks based on fixed-point
leaky-integrate-and-fire (LIF) model on FPGA [16, 17]. We
are modeling spiking neural networks of a different neuron
model on different hardware with a new approach of using
two scaling factors.

A. Choice of scaling factors

To approximate the floating-point arithmetic by the
fixed-point arithmetic we need to adopt scaling factors. The
choice of scaling factors is essential in the floating-point to
fixed-point transformation. To choose a proper scaling factor,
firstly we investigate the ranges of the variables and
parameters relevant to the transformation.

According to the experimental results from the simulation
of the Izhikevich model, the value of the membrane potential
v during computing is in the range -80 to 380, where 380 is
the value before reset (It is reset to 30 immediately after it
reaches 380 and then reset to ¢). A 16-bit half word can
represent a signed integer number in the range -32768 to
32768. Hence we get

—32768 <vp <32767 (80 <v <380) (4)

Where, p is the scaling factor.

According to (4), we get p < 86.

In this case, we only consider values for p that are powers
of 2 so that they can be implemented simply by shifting.
Since a greater value of p always leads to better precision (see
experimental results in Table I and Table II below), we
choose p = 64. If we select any value for p greater than 64, the
membrane potential v may overflow during computation.

However, ARM968E-S is a 32-bit processor. Some 32-bit

operations are therefore as efficient as some 16-bit operations.

This allows us to expand some operations from 16-bit to
32-bit during computation to gain better numerical precision
without losing performance, and we can still keep variables in
the data structure in 16-bit format. In this way, a greater value
of p can be applied to produce better precision without
increasing the computation time and the storage space.

Although the value of the membrane potential v during
computing is in the range -80 to 380 as we described above,
the final value of the membrane potential v hold in the data
structure will be in the range -80 to 30. We get

~32768 <vp <32767 (-80<v <30) )

p =256 can be selected to satisfy (5) .

So far, we have considered only the variable which has the
greatest numerical value. Some parameters in (1) and (2) with
very small floating-point values also need to be considered
since they may cause a decrease of the precision if the value
of the scaling factor is not big enough. There are two
parameters a, b, and one constant 0.04 that we should care
about in (1). a and b range roughly from 0.02 to 0.1 and from
0.2 to 0.25 respectively when modelling different types of
neuron. The scaling factor p = 256 is probably just enough for
these values. However, to get a better performance, some
changes to the presentation of (1) and (2) are made (detailed
below), in which case, parameters a and b are integrated into
one parameter ab. ab is in the range 0.004 to 0.025, which
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makes the precision worse when the equations are
transformed to fixed-point using the scaling factor p = 256.

The solution we have adopted here is to use two scaling
factors p; and p, with a small and large value respectively. We
apply the smaller scaling factor p; to parameters, variables
and constants with values greater than 0.5 and the larger
scaling factor p; to those with values less than 0.5. p,= 65536
is selected because it is both large enough and efficient to
implement using multiply-accumulate operations (detailed
below). So we get

p, =256, p, = 65536 (6)

B. The transformation of the equations

In order to get an extremely fast processing speed, a few
changes are made to the presentation of (1) and (2). These
changes are made based on two objectives:

= Pre-computing as much as possible.

= Reducing the number of operations as much as

possible.

Continuous-time differential equations (1) and (2) can be
implemented in discrete-time by the following equations,

v=v+7(0.04" +5v+140+1 —u) 7
u=u+ta(bv—u) ®)

Where 7 is time step which can be small to achieve
adequate numerical precision. We set 7= 1 in this paper for 1
ms resolution.

In the ARMVSTE architecture, there is a signed
multiply-accumulate operation (32 <= 32 x 16 + 32) --
“SMLAWB”, where “B” means use the bottom half of the
register (bits [15:0]). An operation with the form of
(ax-b)/x+c can be implemented by one “SMLAWB”
instruction when x = 2'° and b is a 16-bit value. It takes only
one CPU cycle to obey this instruction in the ARM968E-S.

We transform (7) and (8) to the following:

v=1(0.04v+6)+140+ [ —u )

(10
After applying scaling factors p; and p,, (9) and (10) turn
out to be:

u =—au+u+abv

vp, =vp,[(0-04p, -vp )/ py

)
+6pl]}/p1 +140p1 -%—Ip1 —up
bp,)-vp, 1/ (12)
+up, +[(abp,)-vp,1/ p,
We setup a new data structure for each neuron:
struct NeuronState
{
signed short Param_v; /I'vp,
signed short Param_u; /' up,
signed short Param_a; // abp,
signed short Param_b; /I —ap,
signed short Param_c; !l ep,
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signed short Param_d; // dp,

}NeuronStates;

In this data structure, scaling factors p; and p, have been
applied. Hence variables and parameters are fixed-point
numbers and pre-computed. Constants 6p; and 140 p; in (11)
are also pre-computed. Meanwhile, neuron parameters are
re-defined according to the new equations, i.e. neuron
parameters @ and b in (2) are replaced by ab and -a
respectively. In ARM assembly code, when p, = 2'¢ (65536),
Ims simulation of (11) and (12) consists of:

1) A=(0.04p, -vp))/ p,+6p, ,

operation.
2) A=A<<(16-log, p,), one shifting operation.

3) A={A-vp,}/ p, +140p,, one “SMLAWB” operation.
4) A= A+Ip,, one “ADD” operation.
5) vp, = A—up, , one “SUB” operation.

one “SMLAWB”

6) A=[(-ap,)-up,1/ p, +up,, one “SMLATT” operation,
which is a signed multiply-accumulate operation (32 <=
16 x 16 + 32), “T” means use the top half of the register

TABLEI
SPIKE COUNTS FOR TONIC SPIKING AND BURSTING

Tonic Spiking. Simulated for 20000 ms, 1ms resolution
a=0.02,b=02c=-65d=06;

v(0) =-70, u(0) = 0.2v(0), I = 14 after 0 ms

Number of spikes (floating-point): 642

Spike 16-bit fixed-point
Py P, =64 Py =256 | P,=8192
256 449 437 482
2048 542 542 566
8192 596 620 611
65536 631 654 651

Tonic Bursting. Simulated for 5000 ms, 1ms resolution
a=0.02,b=0.2 ¢c=-50, d=2; threshold = 3;

v(0) =-70, u(0) = 0.2v(0), I = 15 after 22 ms

Number of spikes (floating-point): 502

Spike 16-bit fixed-point
P, P =64 | P,=256 | P,=8192
256 364 375 393
2048 424 443 454
8192 449 444 495
65536 462 501 502

7)
8)

(bits [31:16]).
A= A4>>log, p,, one shifting operation
up, = A+[(abp,)-vp,1/ p, , one “SMLAWB?” operation

The above table shows a comparison of the number of spikes generated
in a certain period of time by different choices of p; and p;in fixed-point
simulation. Results from the floating-point implementation are also given
as benchmarks. Results in the top sub-table are for “tonic spiking” while

Where 4 represents the partial result of each step. In step 1,
vp; is stored in the bottom 16 bits of a register. When the
“SMLAWB?” instruction is obeyed, what it actually does is
multiplying 0.04 p, (32 bits) by vp, (16 bits) in the bottom 16
bits of a register and only the top 32 bits of the multiplication
result is prereserved. If p, = 2'¢, the division operation of
“/p,” is done automatically as the bottom 16 bits is dismissed
during the multiplication. The result is added to 6p, finally.
However, in step 3, p; 7 2'® so we need a shift operation in
step 2 to fit the condition. In step 6, -ap, and -up, is kept in
the top 16 bits of two different registers respectively. The

computational result of step 6 is in the most significant 16 bits.

As a result, a shift operation is required in step 7.

In this approach, 1 ms simulation only takes 6 fixed-point
mathematical operations plus 2 shifting operations.
Obviously it is more efficient than the original which took 13
floating-point operations.

C. The precision

Different choices of scaling factors p; and p, lead to
different levels of precision. Table I illustrates a comparison
of the number of spikes generated in a certain period of time
by different combinations of p; and p,. Results generated
from floating-point implementations of (7) and (8) with =1
are also given in Table I as benchmarks. The top sub-table in
Table I comprises results from “tonic spiking” while the
bottom sub-table comprises results from “tonic bursting”. As
we can see, greater values of the scaling parameters lead to
better precision. Results from the simulation with p,= 256,
p= 65536 are very close to the benchmarks.
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results in the bottom sub-table are for “tonic bursting".

Our approach can meet the requirement to reproduce all
firing patterns with good precision as illustrated in Table II. In
Table II, the number of spikes of four different patterns
generated in a certain period of time by the fixed-point and
the floating-point simulation respectively are compared.
Other patterns which can be reproduced by the original model
can also be modelled by this implementation. According to
these results, the numbers of spikes generated by the
fixed-point simulation are exactly the same as those
generated by the floating-point simulation.

TABLEII
SPIKE COUNTS FROM DIFFERENT SPIKING PATTERNS
Simulated for 1000 ms, 1ms resolution
P, =256, P,= 65536

Spikes TS TB RS 1IS
Fixed-Point 34 102 1 6
Floating-Point 34 102 1 6

This table shows a comparison of the number of spikes generated in a
certain period of time by the fixed-point simulation with the number of
spikes generated by floating-point simulation. Results from 4 different
firing patterns are listed. TS represents the “tonic spiking”, TB represents
the “tonic bursting”, RS represents the “rebound spiking” and IIS
represents the “inhibition induced spiking”.

In addition to the number of spikes, we also evaluate the
level of precision by other schemes. However, in some cases,
the precision is not ideal. Table III shows the input current
required to reproduce the pattern of rebound spiking with
different choices of scaling factors. The result from the
floating-point simulation is also given as the benchmark. If
we choose p;= 256, p,= 65536, only when the input current /
= -50 units can the rebound spike be reproduced, while in the
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floating-point simulation, the required input current / is -21.
If we choose p;= 8192, p,= 65536 or even greater values, then
the result is comparable to the result from the floating-point
simulation. However, this is not achievable in 16-bit
fixed-point arithmetic.

According to the result, although floating-point to
fixed-point transformation does have drawbacks in respect of
the precision, it still can reproduce firing patterns with an
acceptable level of precision.

TABLE III
INPUT CURRENT REQUIRED FOR REBOUND SPIKE

Rebound Spike. Simulated for 200 ms, 1ms resolution
a=0.03, b=0.25, c=-60, d=4;

v(0) = -64, u(0) = 0.2v(0), I lasts for 5 ms
Floating-point: I =-21

1 16-bit fixed-point
P, P, =64 | P, =256 | P, =8192 | P,=65536
32768 -48 -50 -50 -50
65536 -49 -50 -23 -23

The input current / required to reproduce the pattern of “rebound
spiking” with different choices of scaling factors is listed. The result from
the floating-point simulation is given as the benchmark.

D. The processing speed

We program in assembly code using the RealView
ARMulator Instruction Set Simulator (RVISS) 1.4 supplied
with the RealView Developer Suite (RVDS) 2.2. RVISS
simulates the instruction sets and architecture of ARM
processors together with a memory system and peripherals. It
can be used for software development and for benchmarking
ARM architecture targeted software[18]. In RVISS, we
model the system with a 200 MHz ARM968 core, a 100 MHz
AHB bus, a 32 KB ITCM, a 64 KB DTCM and a 100 MHz
SDRAM.

If we store data structures of neurons in the DTCM, 1 ms
simulation of processing of (11) and (12) (i.e. an update of
one neuron state in one millisecond), takes 240 ns if resetting
the input current / to a constant number after updating and it
takes 330 ns if resetting / to a random number (adding noise
to the input). If we store the neuron data structures in the
SDRAM, it takes 660 ns when resetting the input current / to
a constant number.

More analysis of the processing speed is presented in
chapter VL.

V. MAPPING SPIKING NEURAL NETWORKS

The SpiNNaker chip has efficient on-chip and inter-chip
connections and a multicast mechanism for high-performance
communication. Each fascicle processor in the system models
a bunch of neurons. Neurons have to communicate to each
other based on their connections. To map neural networks
onto SpiNNaker, we have to solve the problem of how to
distribute  processing workloads while keeping the
communication overhead low. This is a common problem in
the parallel computing domain.

Generally speaking, there are two types of algorithm for
the simulation of spiking neural networks: clock-driven and
event-driven. In the former, all neurons are updated at every
tick of the clock while in the latter, neurons are updated only
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when they receive or emit a spike [19]. The proposed
algorithm is a combination of clock-driven and event-driven.
Firstly, as in the clock-driven algorithm, neurons in our
system are updated every millisecond as the differential
equations are solved. Then, at the point when a spike (event)
arrives, the value of the synaptic weight will be added to an
element in a circular array in the neuron data structure where
the input currents / are held. The circular buffer is indexed by
time. The detail of the algorithm and the mapping strategy are
described in the rest of this section.

A. Propagation of spikes

In a neural network system, when a neuron fires, it
generates a spike that propagates to the post-synaptic neurons
it connects to. Each connection is associated with a synaptic
weight which indicates the strength of the effect that the
pre-synaptic neuron has on the post-synaptic neuron. There is
a high density of fan-out transmissions of dissimilar packets
due to the high connectivity of neural networks. This pattern
of traffic leads to inefficient communication on parallel
hardware.

The heart of the communication system of the SpiNNaker
chip is the Multicast Router mechanism. Using this
mechanism, one-to-many communication with identical
packets is efficient. As a result, we propose a strategy that
when a neuron fires, it sends out an event packet as a spike to
others only to indicate that it has fired. We use a routing key
as the event packet which comprises the source fascicle ID
and the neuron ID. The multicast router directs the routing
key to one or more destinations based on its source fascicle ID
and a route lookup table in each router. Finally, identical
routing keys will arrive at each destination fascicle.

Synaptic weights are held at the post-synaptic ends. When
the post-synaptic neuron receives a routing key, which
indicates that one of its pre-synaptic neurons fired, it will look
up its local memory to find out the synaptic weight associated
with this connection based on the source fascicle ID and
neuron ID in the routing key. More details about the routing
key and the routing algorithm of SpiNNaker can be found in
[20].

B. Storage of synaptic weights

The SDRAM is used for synaptic weight storage. As
illustrated in Fig.2, synaptic weights are organized into banks
in the SDRAM determined by the fascicle on the chip they
belong to. Each fascicle owns one bank. Synaptic weights in
the bank, indicated as “Wgt for LocFasc” in Fig.2, are only
for the fascicle which possesses this bank of weights.

In each bank, synaptic weights are sorted into groups by
source fascicles which have any pre-synaptic neuron
connecting to post-synaptic neurons on this fascicle. Each
group contains synaptic weights of all connections from
neurons on a source fascicle to neurons on this fascicle,
indicated as “Wgt for SrcFasc” in Fig.2. Each fascicle
maintains a lookup table which can be used to look for the
memory address of the group based on the source fascicle ID
in the routing key received.

Each group again comprises several blocks. Each block
contains synaptic weights for all connections from one

2817



pre-synaptic neuron (on the corresponding source fascicle) to
post-synaptic neurons on this fascicle, which is indicated by
“Wgt for SrcNero” in Fig.2. A variable “BlkSize” is defined to
indicate the number of connections. It is a scenario of
one-to-many connections: one neuron on the source fascicle
and many neurons on the local fascicle.

>

Block 1.1.1

Bank 1 Group 1.1
Wgt for Wgt for Wgt for
LocFasc 1 SrcFasc 1 SrcNero 1
Bank 2 \ Group 1.2 \ Block 1.1.2
LocFasc 2 \ SrcFasc 2 \ SrcNeuro 2
\ \
\ \
\ \
\ \
\ - \
\ . \
\ \
\ \
Memory Bank 1 Group 1.1

Fig.2. Synaptic weights storage. Synaptic weights are organized in
different levels. Each bank comprises several groups and each group
again comprises several blocks.

Each entry in the lookup table is a 16-byte data structure
corresponding to a source fascicle. They are organized in a
binary tree with all “<” branches occupying contiguous
memory locations.

struct SFascicle

{
int SFascAddr; //address to match
int SFascMask; //bits to ignore
int *SFascPtr; //Sdram address of fasc start
struct SFascicle *NextSFasc; //go here if >
3
Lookup Tb.

Routing Key
X 0x30

N 0x100200

0x100400

BlkSize = 12

0x100400
Ox10043
0x100460

0x100490
0x1004C0O

SDRAM

Fig.3. Lookup of the block of synaptic weights. The lookup table on the
fascicle contains a list of source fascicle IDs each of which points to a
base address of memory in the SDRAM. When a routing key arrives at
the fascicle, the fascicle will search its lookup table based on the fascicle
ID in the routing key. If it finds a hit, the base address to which the
fascicle ID points (the group address) will be fetched. After that, the
neuron ID in the routing key will be added to the base address to produce
a full start address of the block. In this figure, the block size is 12 Words
(48 bytes).

In the lookup table, each entry comprises a source fascicle
ID and a memory address. The memory address points to the
start address of the group associated to the source fascicle.

An example of locating a block of synaptic weights is
illustrated in Fig.3. In Fig.3, a routing key arrives at the local
fascicle with a source fascicle ID “X” and neuron ID 0x30,
which indicates that the 0x30 neuron in the “X” source
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fascicle has fired. The local fascicle then searches its lookup
table for any entries matching the fascicle ID “X”. In Fig.3, in
terms of the source fascicle ID “X”, we get the start address
0x100400 as a base address. The group of weights in the
memory starting at address 0x100400 are for connections
coming from the source fascicle to the local fascicle. Then,
we need to find the right block of weights for the fired neuron
based on the neuron ID. In this case, the block of weights
starting at memory address 0x100430 is for the neuron fired.
If the block size for one neuron is 12 (BlkSize = 12), this
indicates that the fired neuron connects to 12 neurons in the
local fascicle. All of the weights in this block have to be
added into the circular arrays of the 12 respective neurons.

C. Synaptic Delay

Synaptic delays are the latency of the neuron
communication. A spike generated by the pre-synaptic
neuron may take time (in milliseconds) to arrive at the
post-synaptic neuron. This is also considered in this algorithm.
Each synaptic weight has a structure of

|--4b-delay-|0|-11b-index-|-16b-weight-|.

The highest 4 bits are for the synaptic delay and the lowest
16 bits are for the synaptic weight. The 11-bit index in the
middle corresponds to the index of the post-synaptic neuron
on the fascicle of this connection. The highest 4 bits allow us
to simulate up to 16 ms synaptic delays.

DelayPtr
L]
Delay b ms

—4b—de]ay—‘ 0 ‘—11b—indexf16b—weight—

Fig.4. The circular array. A spike arrives after b ms, so the synaptic
weight is added to the position of “DelayPtr + b” in the array.

Each data structure of the neuron possesses a circular array
which contains 16 half-word integer numbers. Each element
of the array corresponds to the input current / arrives at
different time with 1ms resolution.

Neurons

{

struct NeuronState
signed short Bin[16];
b

If a pre-synaptic neuron i spikes at time a ms, and a spike
arrives at the post-synaptic neuron j after » ms, the synaptic
weights of the connection from neuron 7 to neuron j will be
added to the / in position “a+b” of the circular array
belonging to the post-synaptic neuron. In the real-time
simulation, a is always equal to the current time and there is a

//delayed input
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pointer -- “DelayPtr” pointing to the current time in the
circular array. As a result, “a+b” is equivalent to “DelayPtr

+b as shown in Fig.4.

D. System scheduling

In the implementation, to speed up the progress of adding
synaptic weights to the circular arrays, before starting the
process we move the whole block of weights for one fired
neuron from the SDRAM to the DTCM by a DMA operation
(the DTCM is much faster than the SDRAM), once the
address of the block in the SDRAM has been calculated. As a
result, the system is driven by three event signals:

1) The clock (every 1ms)

2) The arrival of spikes (packets)

3) The completion of the DMA operation.

A co-operative multi-tasking system is designed to
schedule the event handling. There are three tasks
corresponding to the three signals for each fascicle processor:
1) “Update neuron state”, which is executed every 1 ms to

update the states of all neurons on the fascicle.

2) “New input processing ", which is invoked by the packet
arrival signal to identify the fired neuron and work out
the memory address of the synaptic weights based on the
routing key. Then, start a DMA operation.

3) “Update circular arrays”, which is invoked by the DMA
completion signal to update the circular arrays of the
respective neurons.

VI. SYSTEM PERFORMANCE
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Fig.5. A firing pattern of one second simulation generated by one of
neurons in the simulation

We simulate the behaviour of one fascicle processor based
on the above algorithm again on RVISS. The RVISS model is
the one described in section IV. To make the fascicle
processor self-contained, we wire neurons on the same
fascicle together. Spikes are sent to the buffer rather than
through the real communication system, since only one
fascicle is modelled. Neuron parameters are set in accordance
with those in [13] to generate comparable results. 1000
neurons are modelled. Neurons are connected to each other
randomly with a connectively around 10%, so each neuron
has 100 inputs.

Fig.5 shows a firing pattern of one second simulation in

2008 International Joint Conference on Neural Networks (IJCNN 2008)

real-time generated by one of the neurons on the fascicle
processor during the simulation.

A. Processing speed

The result of experiments shows that,

1) “Update neuron state”. As shown above, it takes 240 ns
to update one neuron state.

2) “New input processing”. It takes 280 ns to process an
incoming packet and start a DMA operation.

3) “Update circular arrays”. It takes 110 ns to update one
weight (4 bytes).

So the processing time of each fascicle can be estimated by
240 ns/Neuron + 280 ns/Input + 110 ns/Connection

Where, in a certain period of time, Neuron is the number of
neurons which have to be updated, /nput is the number of
incoming packets, Connection is the number of connections
which have to be updated.

If a fascicle models N neurons with / inputs (incoming
packets) each firing at /' Hz and each neuron connects to all of
others with a percentage of C, let 7 to be the processing time
required (CPU time in ns) for 1 ms real-time simulation, we
get
1)  Nneurons have to be updated per millisecond.

2) F-1/1000C inputs arrive per millisecond.
3) F-1-N/1000 connections have to be updated per
millisecond.

For each fascicle, we get

T =240N+0.28FI /C+0.11FIN (13)
According to (13), the processing time required 7 increases
with the increase of the number of inputs per neuron / and the
firing rate F. When keeping others constant, the inputs per
neuron / and the firing rate allowed F' for each neuron are
mutual exclusive from the processing time point of view.
Modelling 1000 neurons in real-time with 10% connectivity
on one fascicle, it allows a firing rate up to 67 Hz on
according to (13), which is quite close to the result got from
the simulation which is 60 Hz.

B. Data memory usage

DTCM usage:

1) Neuron data structures. Each neuron data structure is 44
bytes, including two 16-bit variables, four 16-bit
parameters, and a 16-bit circular array which takes 32
bytes. Modelling 1000 neurons takes 44 KB of the
DTCM space in total.

2) Lookup table. Each entry for one source fascicle is 16
bytes. Let the number of source fascicles in the lookup
table be M, then requires /6M bytes.

3) DMA buffer. The size of DMA buffer depends on the
implementation. Each block of DMA has to be 4
bytes*BlkSize which equals to 4NC bytes. If a smaller
size of DMA buffer is wanted, a bigger input buffer may
be required. In our simulation, a double-buffer scheme is
used, which takes SNC = 800 bytes in total.

SDRAM usage:
There are NI connections on one fascicle. Each connection
takes 4 bytes. So 4NI bytes are required in total. Each

SDRAM is shared by 20 fascicles; therefore one SpiNNaker

2819



chip requires 80N/ bytes if all processors on a chip are used
for neuron modelling.

If each fascicle simulates 1,000 neurons, modelling 1,000
neurons with 100 inputs each (10% connectivity) requires
400 KB and uses only one processor. Modelling 20,000
neurons with 1,000 inputs each (5% connectivity) requires 80
MB in the SDRAM and uses one SpiNNaker chip. To model a
large-scale neural network, we have to localize the
connections to limit the SDRAM usage.

C. Communication

Components in SpiNNaker most related to the
communication performance are the Multicast Routers and
the links. Each router processes three types of packets
categorized by their destinations: incoming packets, outgoing
packets, and bypassing packets. The traffic and bandwidth
required can be estimated based on these packets. Six links
between one SpiNNaker chip and its 6 nearest neighbours
support a total of 6 Gbit/s of bandwidth. In addition to the
scale of the system modelled, the communication pattern on
routers and links also relies on the routing scheme. Some
description of their performance can be found in [7], [15] and
[20]. More detailed analysis of the system throughput and
communication patterns will be given in future.

VII. CONCLUSION

In this paper, we present an efficient way of modelling a
spiking neural network on a scalable chip multiprocessor
architecture. The design focuses on three aspects: the
processing speed, the memory usage and the communication.
Some exciting experimental results and analysis show that the
system is capable of simulating large-scale neuron networks
at lms resolution efficiently. Although the implementation
proposed in this paper is hardware-specific, it still provides
some generic ideas for the design of hardware platforms for
computational neural networks.
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