
Implementing Spike-Timing-Dependent Plasticity on SpiNNaker
Neuromorphic Hardware

Xin Jin, Alexander Rast, Francesco Galluppi, Sergio Davies, and Steve Furber

Abstract— This paper presents an efficient approach for
implementing spike-timing-dependent plasticity (STDP) on the
SpiNNaker neuromorphic hardware. The event-address map-
ping and the distributed synaptic weight storage schemes used
in parallel neuromorphic hardware such as SpiNNaker make
the conventional pre-post-sensitive scheme of STDP implemen-
tation inefficient, since STDP is triggered when either a pre- or
post-synaptic neuron fires. An alternative pre-sensitive scheme
approach is presented to solve this problem, where STDP is
triggered only when a pre-synaptic neuron fires. An associated
deferred event-driven model is developed to enable the pre-
sensitive scheme by deferring the STDP process until there are
sufficient history spike timing records. The paper gives detailed
description of the implementation as well as performance
estimation of STDP on multi-chip SpiNNaker machine, along
with the discussion on some issues related to efficient STDP
implementation on a parallel neuromorphic hardware.

I. INTRODUCTION

Synaptic plasticity is one of the most important features of
a neural network, and many different plasticity mechanisms
have been developed since the last century to mimic the bio-
logical process of learning. Spike-timing-dependent plasticity
(STDP) based on Hebbian theory has received much attention
in recent years [4], [13].

In this paper the approach towards developing STDP
rule on SpiNNaker is demonstrated. The STDP rule mod-
ifies synaptic weights according to the difference between
pre- and post-synaptic spike timings. The ordering decides
whether the modification is potentiation or depression. Nor-
mally, STDP is triggered whenever a pre-synaptic spike
arrives, or a post-synaptic neuron fires, which in turn requires
keeping indices of synaptic information in both pre- and
post-synaptic orders for efficiency [4]. The difficulty in
implementing this scheme on SpiNNaker’s event-address
mapping (EAM) model is that when a post-synaptic neuron
fires, relevant synaptic weights are still located in the external
memory. Synaptic information will show up in the local
memory only when a pre-synaptic spike arrives.

This problem is solved by applying a novel pre-synaptic
sensitive scheme with an associated deferred event-driven
model. The pre-sensitive scheme only triggers the STDP
when a pre-synaptic spike arrives and requires keeping
only one index of synaptic weights (in pre-synaptic order),
hence it reduces the processing and the memory bandwidth
requirements. However, the pre-synaptic sensitive scheme
relies on “future” spike timing information to perform STDP.
The deferred event-driven model postpones the STDP for a

The authors are with the School of Computer Science, The University of
Manchester, Manchester, UK (email: {jinxa}@cs.man.ac.uk)

Fig. 1. The STDP modification function.

certain period of time, waiting for the emergence of future
spike timing, enabling then the pre-synaptic scheme.

The pre-sensitive scheme and deferred event-driven model
proposed are verified and evaluated by running a four-chip
SpiNNaker simulation and comparing the results with the
Matlab simulation using pre-post-sensitive scheme. When
enabling STDP on SpiNNaker, this scheme does involve cer-
tain approximation however, as compared to the conventional
STDP implementation. The impact of the approximation on
the system performance will be discussed at the end of this
paper.

The rest of the paper is organized as following: Section II
gives a brief introduction to the STDP rule. Section III deals
with the difficulties of implementing STDP on SpiNNaker,
presenting the pre-sensitive scheme and the deferred event-
driven model to tackle these difficulties; finally the algorithm
is converted into the actual implementation. Section IV
presents some simulations along with results. Related issues
are discussed in Section V followed by a conclusion in
Section VI.

II. STDP

The learning rule implemented on SpiNNaker is the well-
known spike-timing-dependent plasticity (STDP) [4], [13],
where the amount of weight modification is decided by the
function shown below:

F (Δt) =

{
A+e

Δt
τ+ Δt < 0,

−A−e
−Δt
τ− Δt ≥ 0.

(1)

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain IJCNN

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 2302

Fig. 2. The pre-post-sensitive scheme. STDP is triggered when either a
pre-synaptic neuron fires or a post-synaptic neurons fires.

Fig. 3. The pre-sensitive scheme. STDP is triggered only when a pre-
synaptic neurons fires (a spike arrives).

Where Δt is the time difference between the pre- and
post-synaptic spike timing (Δt = Tpre − Tpost , being
Tpre the pre-synaptic spike time stamp and Tpost the post-
synaptic spike time stamp), A+ and A− are the maximum
synaptic modifications, and τ+ and τ− are the time windows
determining the range of spike interval over which the STDP
occurs. If the pre-synaptic spike arrives before the post-
synaptic neuron fires (i.e. Δt < 0), it causes long-term
potentiation (LTP) and the synaptic weight is strengthened
according to A+e

Δt
τ+ . If the pre-synaptic spike arrives after

the post-synaptic neuron fires (i.e. Δt ≥ 0), it causes long-
term depression (LTD) and the synaptic weight is weakened
according to A−e

−Δt
τ− . The corresponding function curve is

shown in Figure 1. The choice of STDP parameters can be
found elsewhere [13].

III. METHODOLOGY

A. The pre-post-sensitive scheme

In most desktop computer simulations, the implementa-
tion of STDP is quite straightforward. Because all synaptic
weights are locally accessible, the STDP can be triggered
whenever a spike is received or a neuron fires. In this
approach, calculating Δt is simply a matter of comparing
the history records of spike timings. This corresponds to
examining the past spike history (at least within the STDP
sensitivity window), as shown in Figure 2 where pre-synaptic
spikes are shown in blue and post-synaptic spikes are shown
in red. We call the STDP triggered by the receiving spike
as a pre-synaptic STDP, since it is caused by a pre-synaptic
spike; and the STDP triggered by a neuron firing hence as
a post-synaptic STDP, since it is caused by a post-synaptic
spike. The pre-synaptic STDP causes LTD which depresses
the connection, whereas the post-synaptic STDP causes LTP
which potentiates the connection. The scheme used by most
desktop computer simulations is termed a pre-post-sensitive
scheme, since both pre-synaptic and post-synaptic STDPs are
involved.

Problems on SpiNNaker: SpiNNaker uses a distributed
memory system. Each chip is associated with one SDRAM

shared by 20 processors. Each processor has a fast internal
memory called DTCM. According to the Event Address
Mapping (EAM) scheme, synaptic weights are pre-synaptic
indexed and stored in the SDRAM of the post-synaptic
end. They will only be transmitted to the DTCM by a
DMA operation when a spike arrives. This memory system
guarantees a good balance between the memory space and
the accessing speed. Detailed description of SpiNNaker can
be found in [6], [8], [7], [12], [11].

Two problems arises however if STDP is implemented
using the conventional pre-post-sensitive scheme:

1) The required synaptic weights are NOT in the DTCM
when a local neuron fires which disables post-synaptic
STDP. It is inefficient to use a second DMA operation
to move synaptic weights from the SDRAM to the
DTCM when a neuron fires, as it will double the
memory bandwidth requirement.

2) Since the synapse block is a neuron-associative mem-
ory array, it can only be indexed either by the pre-
or post-synaptic neuron. If synapses are stored in pre-
synaptic order, the pre-synaptic STDP will be very effi-
cient while the post-synaptic STDP will be inefficient,
and vice versa - because one or the other lookup would
require a scattered traverse of discontiguous areas of
the synaptic block.

As a result, an alternative scheme is required for STDP
implementation on SpiNNaker.

B. The pre-sensitive scheme

We propose a new scheme for implementing STDP on
SpiNNaker, called the pre-sensitive scheme as shown in
Figure 3. The pre-sensitive scheme triggers both pre-synaptic
STDP (LTD, left headed arrow) and post-synaptic STDP
(LTP, right headed arrow), when a pre-synaptic spike arrives.
This ensures the synaptic weights are always in the internal
DTCM when STDP is triggered, and makes accessing in-
dividual synapses possible by efficient iteration through the
array elements when the synapse block is in pre-synaptic
order.

The difficulties: However the implementation of the pre-
sensitive scheme is not as easy as the pre-post-sensitive
scheme. There are two difficulties involved:

1) This scheme requires the examination of not only the
past spike history records, but also of future records.
Naturally, future spike timing information is not avail-
able at the time the pre-synaptic spike arrives since it
has not yet happened.

2) SpiNNaker supports a range of synaptic delays from
0 ms to 15 ms for each connection [5] to compensate
for the time differences between electronic and neural
timings. The spike arrives at the electronic time rather
than the neural time, while the effect of the input is
deferred until its neural timing due to the delay. The
STDP should be started at the neural time.

2303

Fig. 4. The pre-synaptic time stamp.

Fig. 5. The time stamp representation.

C. The deferred event-driven model

Both of the above difficulties can be overcome by deferring
the STDP operation by introducing another model termed
deferred event-driven (DED) model. In the DED model, no
STDP is triggered immediately on receiving a pre-synaptic
spike. Instead, the spike timing is recorded as a time stamp
and STDP is triggered after waiting a certain amount of
time (the current time plus the maximum delay and the time
window). The DED model ensures that information on future
spike timings is obtained.

1) Timing records: STDP requires information on both
pre-synaptic and post-synaptic spike timings. A pre-synaptic
time stamp at 2ms resolution is kept in the SDRAM along

Fig. 6. The post-synaptic time stamp.

Fig. 7. Updating the pre-synaptic time stamp.

with each synapse block as shown in Figure 4 (the global ID
of the pre-synaptic neuron is added in front of the time stamp
for debugging purposes), and is updated when pre-synaptic
spikes arrive. The time stamp comprises two parts, a coarse
and a fine time. The coarse time is a 32-bit digital value
representing the last time the neuron fired. The fine time is
a bit-mapped field of 24 bits (bit [31:8]) representing spike
history in the last 48 ms. The coarse time always points to
the least significant bit of the fine time (bit 8). As a result,
the least significant bit (bit 8) of the fine time is always set.

Figure 5 shows how time history is represented by the time
stamps. Assuming the coarse time is a ms, bit 8 in the fine
time represents the last spike arriving at a ms. Each higher bit
represents a spike arrival time which is 2 ms earlier. In Figure
5 for instance, it is able to calculate that the pre-synaptic
spikes arrive at a, (a − 4) and (a − 44) ms respectively.

Post-synaptic time stamps reside in local DTCM (Figure 6)
and have a similar format to pre-synaptic time stamps except
that they are 64 bits long (bit [63:0], representing 128ms),
allowing longer history records.

2) Updating timing records: A pre-synaptic time stamp
is updated when a packet is received. During the update,
firstly, the coarse time is subtracted from the new time to
produce a time difference tdif , as shown in Figure 7. The
time difference is divided by the time resolution, to get the
number of bits to be shifted (2ms in this case, so the shift is
by tdif/2 bits). Then the fine bit is shifted left by tdif/2 bits.
If any “1” is shifted out of the most significant bit, STDP
will be triggered. Bit 32 represents the pre-synaptic spike
time which triggers STDP.

The updating of the post-synaptic time stamp is similar to
that for the pre-synaptic, except:

1) The post-synaptic time stamp is updated when a neuron
fires.

2) The update of the post-synaptic time stamp will NOT
trigger STDP.

D. The STDP process

If STDP is triggered by a “1” going to bit 32 in the
pre-synaptic fine time, its post-synaptic connections in the
Synaptic Block are firstly traversed word by word. For each
Synaptic Word (one connection), the pre-synaptic spike time
(the time of bit 32) is added to the synaptic delay to convert
the electronic timing to the neural timing T ; the processor
then calculates the LTD [T −τ−, T] and the LTP [T, T +τ+]
windows. If any bit in the post-synaptic time stamp is set
within the LTD or LTP window, the synaptic weight is either
weakened or strengthened according to the STDP rule.

The post-synaptic time stamp can be retrieved from the
DTCM as determined by the neuron ID in the Synaptic
Word. The processor then scans the post-synaptic time stamp
looking for any “1” located within the learning window, and
updates the weight accordingly.

E. Implementation

The flow chart of the STDP implementation is shown
in Figure 8 which comprises three nested loops in the

2304

w�

0()t T T� � �

Fig. 8. STDP implementation flow chart.

Fig. 9. Calculate the time window and time word.

programme to handle a new spike and to do STDP. Each
of the three loops may run through several iterations:

• Loop1: Update the pre-synaptic time stamp. This loops
tdif/2 times. If there are n “1”s shifted to bit 32, the
STDP will be triggered n times.

• Loop2: Traverse the post-synaptic connections. This
loops m = Blksize times, the number of words in
a Synaptic Block, i.e. the number of post-synaptic
connections in this fascicle from the pre-synaptic neuron
that fired.

• Loop3: Scan the post-synaptic time stamp. This loops
x = (T1 − T0)/2 times (T0 and T1 will be explained
later), and each time 1 bit will be detected. If there are y
bits found within the time window, the weight updating
will be executed y times.

The computational complexity of the bit-detection in Loop3
is o(nmx) and the computational complexity of weight
updating in Loop3 is O(nmy). As a result the shifting and
the weight updating in Loop3 needs to be as efficient as
possible.

Here follow a detailed description of the main processes
used in the algorithm:

1) Process 1 - the time window: Process 1 in flow chart
8 is responsible for calculating the time window, in this
implementation a dynamic window, from T0 to T1, which
differs from the window defined in the STDP rule by τ−
and τ+. Three restrictions are applied when calculating the
time window (shown in Figure 9):

1) The time window must be in the range of [τ−, τ+].
2) There are history records in the post-synaptic time

stamp in the time window. In Figure 9, the time
window becomes [T0, T + T+].

3) The left window and the right window are the same
length. In Figure 9, the time window becomes [T0,
T1], as T − T0 = T1 − T = a.

2) Process 2 - the time word: The post-synaptic fine time
stamp field is 64 bits and a 64-bit shifting operation in ARM
takes 8-9 CPU cycles, while a 32-bit one takes only 1. The
meaningful bits of the fine time stamp are those within the
time window [T0, T1], which is smaller than 32 bits if τ− =
τ+ ≤ 32ms. These bits are referred to as the “time word”,
which represents the bits of the post-synaptic fine time stamp
within the time window [T0, T1], after bit-time conversion.
If any of the bits is set in the “time word”, the weight needs
to be updated accordingly.

2305

(a) Spike raster plot.

(b) Weight curves of connections from pre-synaptic neuron 6. The
synaptic weight going rapidly to 0 is a self-connection.

Fig. 10. STDP results.

3) Bit detection: There are two bit detection operations in
the STDP implementation. The “LSLS” instruction provided
by the ARM instruction set is efficient in detecting if there
is any “1” moved into the carry bits (bit 32), and allows
the processor to do a conditional branch. To use the “LSLS”
instruction, bits [31:8] (instead of bit [23:0]) of a word is
used for the pre-synaptic fine time stamp.

4) Lookup table: Since the parameters of the STDP are
determined before the simulation starts, the Δw can be pre-
computed based on different values of Δt and loaded into
a lookup table. When the Δt is obtained, Δw can easily be
fetched from the lookup table. Compared to the real-time
computation of Δw, using a lookup table is obviously more
efficient.

5) Performance: The processor time usage for each step
of processing is shown in Figure 8 where process 1 and
2 in Loop 2 are the most time consuming operations. The
calculation of Δw in Loop 3 takes only 140 ns, with the help
of a lookup table.

(a) Synapse of neuron 6 to 6 (weaken) within 400 – 900 ms.

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10
Weight curve, from neuron 6 to 26, time window: [-32ms, 32ms]

Time (ms)

w
ei

gh
ts

 (m
v)

PRE-
POST-
weight

(b) Connection from neuron 6 to 26 (strengthen) within 0 – 4000 ms.

Fig. 11. Weight modification caused by the correlation of the pre and post
spike times.

IV. SIMULATION RESULTS

A. 10s 60-neuron test

A 60-neuron network is simulated on the four-chip SpiN-
Naker SOC Designer model. The network is largely based
on the code published in [4] (but in a smaller scale), which
was also used to test the consistency of our results. There
are 48 Regular Spiking excitatory neurons a = 0.02, b =
0.2, c = −65, d = 8 and 12 Fast Spiking inhibitory neurons
a = 0.1, b = 0.2, c = −65, d = 2. Each neuron connects
randomly to 40 neurons (self-connections are possible) with
random 1-15 ms delays; inhibitory neurons only connect to
excitatory neurons. Initial weights are 8 and -4 for excitatory
and inhibitory connections respectively. Parameters τ+ =
τ− = 32ms, A+ = A− = 0.1 are used for STDP.
Inhibitory connections are not plastic [1]. Following learning
the weights of excitatory neurons are clipped to [0, 20]. There
are 6 excitatory and 1 inhibitory input neurons, receiving
constant input current I = 20 to maintain a high firing rate.
Weights are updated in real-time (every 1 ms).

The simulation is run for 10 sec (biological time) and
Figure 10(a) shows the spike raster, and Figure 10(b) shows
the evolution of synaptic weights of connections from pre-
synaptic neuron ID 6 (an input neuron). At the beginning of

2306

the simulation input neurons fire synchronously, exciting the
network which exhibits high-amplitude synchronized rhyth-
mic activity around 5 to 6 Hz. As synaptic connections evolve
according to STDP, uncorrelated synapses are depressed
while correlated synapses are potentiated. Since the network
is small and the firing rate is low, most synapses will be
depressed, leading to a lower firing rate. The synaptic weight
going rapidly to zero is the self-connection of neuron ID 6:
since each pre-synaptic spike arrives shortly after the post-
synaptic spike the synapse is quickly depressed.

Detailed modifications of the self-connection weight (the
blue curve) is shown in Figure 11(a) along with pre- (red
vertical lines) and post-synaptic timing (blue vertical lines),
from 400 ms to 900 ms. Modification is triggered by pre-
synaptic spikes. The weight curve between two pre-synaptic
spikes is firstly depressed because of the LTD window and
then potentiated because of the LTP window. The detailed
modification of the strengthened synapse (from neuron 6 to
26) from 0 ms to 4000 ms is shown in Figure 11(b).

B. 30s 76-neuron test

The system is also tested by a 30-second simulation of a
76-neuron network (60 excitatory and 16 inhibitory neurons)
with each excitatory neuron randomly connects to 10 other
neurons and each inhibitory neurons randomly connects to 10
excitatory neurons. A random 10 neurons receive a constant
biased input of 20 mV. A comparison between a simulation
without STDP (Figure 12(a)) and with STDP (Figure 12(b))
after the first 1,000 ms, is shown. The simulation with STDP
shows a more synchronized firing pattern than the simulation
without.

The result from the 30th second is shown in Figure 12(c),
and the corresponding Matlab (fixed-point, using pre-post
sensitive scheme) results1 is shown in Figure 13. The firing
pattern during the 30th second shows a more obviously
synchronized behavior. Figure 14(a) shows the activity of
neuron ID 1 during the 1st second. Figure 14(b) shows the
activity of neuron ID 1 during the 30th second.

The weight distribution at the end of the simulation can
be observed in Figure 15: most of the excitatory weights
are slightly de/potentiated around their initial value of 10.
Some connections are potentiated up to their maximum (20)
because they are systematically reinforced, due to converging
delays. For example we found a group of 7 neurons strongly
interconnected at the end of the simulation. Examining their
connections and delays (as shown in Figure 16 two circuits
with converging delays could be found: the first one starts
from neuron 57 and propagates through neuron 8, 47 and
43, ending at neuron 19; the second one starts from neuron
55 exciting neuron 57, propagates through neurons 47 and
19 and ends at neuron 42. All the weights are strongly
potentiated, near or up to their maximum at the end.

1The Matlab simulation is based on the code provided in [4]. The STDP
parameter setting is slight different: τ+ = τ− = 15ms, A+ = 0.1, and
A− = 0.12; weights are updated every 1 second instead of 1 millisecond.

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

Raster Plot from SpiNNaker

N
eu

ro
n

ID

Time (ms)

(a) Simulation with STDP disabled during the 1st second.

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

Raster Plot from SpiNNaker with STDP

N
eu

ro
n

ID

Time (ms)

(b) Simulation with STDP enabled during the 1st second.

2.9 2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98 2.99
x 104

0

10

20

30

40

50

60

70

Raster Plot from SpiNNaker with STDP

N
eu

ro
n

ID

Time (ms)

(c) Simulation with STDP enabled during the 30th second.

Fig. 12. Comparison between the simulation with and without STDP on
SpiNNaker during 1st second and 30th second.

2307

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

Raster Plot in Matlab with STDP 30 second
N

eu
ro

n
ID

Time (ms)

Fig. 13. The STDP result from the Matlab simulation (fixed-point) with
parameters: τ+ = τ− = 15ms, A+ = 0.1, and A− = 0.12.

0 200 400 600 800 1000
-80

-60

-40

-20

0

20

40
States of Neuorn ID 1

Time (ms)

m
V

electrical current
membrane potential

(a) The activity of neuron 1 during the 1st second.

2.9 2.92 2.94 2.96 2.98 3
x 104

-80

-60

-40

-20

0

20

40
States of Neuorn ID 1

Time (ms)

m
V

electrical current
membrane potential

(b) The activity of neuron 1 during the 30th second.

Fig. 14. The behavior of an individual neuron (ID 1) during the 1st second
and the 30th second.

Fig. 15. Weight distribution at the end of the simulation. Weights for
excitatory neurons are clipped to [0, 20]

Fig. 16. Group of neurons with converging delays. It is possible to track
down two circuits with converging delay (neurons 55, 57, 47, 19 ending at
neuron 42 and neuron 57, 47, 43 and 8 ending at neuron 19.

Fig. 17. Relationship between the firing rate and the length of timing
records.

V. DISCUSSION

A. Firing rates and the length of timing records

The length of the time stamp affects both the performance
and precision of the STDP rule. Longer history records
yield better precision at the cost of significantly increased
computation time. The optimal history length is therefore
dependent upon the required precision and performance. A
24-bit pre-synaptic time stamp with 2 ms resolution and a
maximum of 15 ms delay guarantees a 24 ∗ 2− 15 > 32ms
right (LTP) window for any delay.

The pre-sensitive scheme and the deferred event-driven
model require the new input to push the old input record
into the carry bit to trigger STDP. What happens, however,
if the new input does not come or it comes at a very low rate?
The post-synaptic time stamp is pushed forward when new
post-synaptic spikes are generated, and the history records
will be lost. If the pre-synaptic firing rate is too low, there
will be no post-synaptic time records within the time window
at the time STDP is triggered. As a result, there are certain
restriction in terms of the firing rate of pre-synaptic neurons
to ensure that STDP will be triggered in time. As shown in
Figure 17, at the time a new pre-synaptic spike (4) arrives,
the time difference between pre-synaptic spike 2 and post-
synaptic spike 1 is 32 ms – the same size of left window
(LTD) as the size of right window. Let the average interval of
two pre-synaptic spikes to be Tpre, and the average interval
of two post-synaptic spikes to be Tpost.

1) When Tpost ≤ Tpre + 32 (post-synaptic neurons fire
more frequently), to guarantee a 32 ms left window,
the interval between two pre-synaptic spikes must be

2308

no more than 128− 32 = 96ms; this, in turn, requires
a firing rate of more than 1000/96 = 10.4Hz.

2) When Tpost > Tpre + 32 (post-synaptic neurons fire
less frequently), a 32 ms left window can be guaranteed
with any pre-synaptic firing rate.

B. Approximation and optimization

Since the Matlab and SpiNNaker simulations employ
different implementation schemes, exactly the same results
are not achievable. At present the role of different synaptic
types is imperfectly understood and remains an area of
intense research interest [2]. Equally significantly, the level
of biophysical realism necessary to achieve useful behavior
or model actual brain dynamics is unclear. For instance, in
the case of the well-known STDP plasticity rule, while many
models exist describing the behavior [3], the actual biological
data regarding STDP is noisy and of low accuracy. Observed
STDP synaptic modifications exhibit a broad distribution for
which the nominal functional form of STDP models usually
constitute an envelope or upper bound to the maximum
modification [1], [9]. This suggests that high repeatability
or precision in STDP models is not particularly important.

While SpiNNaker is capable of modelling synapses with
biophysical realism down to the molecular level if necessary,
such high biological fidelity is computationally expensive.
For understanding the computational properties of synapses,
such exact replication appears to be unnecessary in view of
the observed synaptic variability. Equally, however, fidelity to
a precise functional form need not be particularly high. This
gives considerable latitude for experimenting with different
synaptic models in order to investigate various tradeoffs
between computational cost and functional accuracy.

The SpiNNaker STDP implementation can be further
simplified by using “nearest spike approximation” [10] which
limits LTD/LTP to the first/last presynaptic spike before/after
the postsynaptic one. The implementation of the STDP rule
involves a series of processing steps. Most of the processing
steps are in nested loops and will be executed for a number
of iterations during the STDP process. Thus the performance
will decrease significantly with STDP enabled, a common
problem of using STDP. The use of the “nearest spike
approximation” potentially reduces the number of iterations,
and will therefore significantly reduce the overhead.

The length and resolution of the time stamp are reconfig-
urable to meet different requirements; if a larger time window
is required, the length of the pre-synaptic time stamp can be
increased or the resolution can be reduced to 4 ms per bit.
The dynamic adjustment of the time stamp length is also a
possible optimization, by which users will be able to modify
the length of the time stamp or the time resolution at run-
time, to meet the accuracy-performance requirement during
different simulation periods.

VI. CONCLUSION

In this paper we have presented a way to implement an
efficient STDP algorithm on the SpiNNaker, a multi-chip
neuromorphic parallel hardware with a distributed memory

system, where synaptic data is stored on the post-synaptic
end and is retrieved only upon the arrival of pre-synaptic
spikes. The problem is solved by introducing a pre-synaptic
scheme and an associated deferred event-driven model, which
permits to update the weights only when a pre-synaptic
spike arrives, hence reducing memory requests and indexing
process operations. The methods shown in this paper validate
the practicality of learning on multi-chip neuromorphic par-
allel hardware and illustrates ways to translate theoretical
learning rules into actual implementation, leading to the
further development of universal learning support for spiking
neural networks on neuromorphic hardware.

ACKNOWLEDGMENT

We would like to thank the Engineering and Physical
Sciences Research Council (EPSRC), Silistix, and ARM for
support of this research.

REFERENCES

[1] Guoqiang Bi and Muming Poo. Synaptic modifications in cultured hip-
pocampal neurons: dependence on spike timing, synaptic strength, and
postsynaptic cell type. The Journal of Neuroscience, 18(24):10464–
10472, 1998.

[2] D. Durstewitz. Implications of synaptic biophysics for recurrent
network dynamics and active memory. 22(8):1189–1200, October
2009.

[3] M. Hartley, N. Taylor, and J. Taylor. Understanding spike-time-
dependent plasticity: A biologically motivated computational model.
Neurocomputing, 69(16):2005–2016, July 2006.

[4] Eugene M. Izhikevich. Polychronization: Computation with spikes.
Neural Computation, 18(2):245–282, February 2006.

[5] X. Jin, S. Furber, and J. Woods. Efficient modelling of spiking
neural networks on a scalable chip multiprocessor. In Proc. 2008
International Joint Conference on Neural Networks, Hong Kong, 2008.
inproceedings.

[6] X. Jin, F. Galluppi, C. Patterson, A.D. Rast, S. Davies, S. Temple,
and S.B. Furber. Algorithm and software for simulation of spiking
neural networks on the multi-chip spinnaker system. In Proc. 2010
International Joint Conference on Neural Networks, 2010.

[7] X. Jin, M. Lujan, M.M. Khan, L.A. Plana, A.D. Rast, S.R.Welbourne,
and S.B. Furber. Algorithm for mapping multilayer bp networks
onto the spinnaker neuromorphic hardware. In Proc. International
Symposium on Parallel and Distributed Computing (ISPDC’2010),
2010.

[8] Xin Jin. Parallel Simulation of Neural Networks on SpiNNaker
Universal Neuromorphic Hardware. PhD thesis, Computer Science,
The University of Manchester, 2010.

[9] H. Markram and M. Tsodyks. Redistribution of synaptic efficacy
between neocortical pyramidal neurons. Nature, (382):807–810, 1996.

[10] Timothe Masquelier, Rudy Guyonneau, and Simon J. Thorpe. Spike
timing dependent plasticity finds the start of repeating patterns in
continuous spike trains. PLoS ONE, 3(1):e1377, 01 2008.

[11] A. D. Rast, F. Galluppi, X. Jin, and S.B. Furber. The leaky integrate-
and-fire neuron: A platform for synaptic model exploration on the
spinnaker chip. In Proc. 2010 International Joint Conference on
Neural Networks, 2010.

[12] A.D. Rast, X. Jin, F. Galluppi, L.A. Plana, C. Patterson, and S.B.
Furber. Scalable event-driven native parallel processing: The spinnaker
neuromimetic system. In ACM International Conference on Computing
Frontiers 2010, 2010.

[13] Sen Song, Kenneth D. Miller, and L. F. Abbott. Competitive hebbian
learning through spike-timing-dependent synaptic plasticity. Nature
Neuroscience, 3:919 – 926, 2000.

2309

