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Abstract. Loop tiling is a fundamental optimization for improving data
locality. Selecting the right tile size combined with the parallelization
of loops can provide additional performance increases in the modern of
Chip MultiProcessor (CMP) architectures. This paper presents a runtime
optimization system which automatically parallelizes loops and searches
empirically for the best tile sizes on a scalable multi-cluster CMP. The
system is built on top of a virtual machine and targets the runtime
parallelization and optimization of Java programs. Experimental results
show that runtime parallelization and tile size searching are capable of
improving performance for two BLAS kernels and one Lattice-Boltzmann
simulation, despite overheads.
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Feedback-Directed Optimization.

1 Introduction

The tiling of loop iteration spaces is among the most popular and most extensvely
studied automatic program optimization for improving data locality and cache
performance [17, 6]. Selecting a suitable tile size is a critical step for improving
performance. Some approaches have been proposed to calculate an optimal tile
size for single processor architectures[7, 13].

In the context of CMPs [9, 12] and automatic parallelization, selecting the
tile size not only affects cache performance but also the load balance among
processors. For example, consider a 2-dimensional perfectly nested loop with a
square N ×N iteration space for which the optimal tile size is N

3 ×
N
3 for a given

CMP using only one processor. When 4 processors are used in that CMP, load
imbalance will occur using the same tile size; 9 tiles divided among 4 processors
results in one processor receiving one extra tile.

Runtime optimization systems have the advantage of being able to observe
the behavior of an executing application, whereas static compilers rely on pre-
dicting that behavior. Due to the limited amount of information available to a
static compiler, optimizing parallel loop tiling for large CMP architectures can
only become more and more complex. Performing runtime empirical searches,
however, provide an alternative approach to improve the parallel execution of a
program on different configurations of a CMP architecture.
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Based on our previous research [19], at runtime it is feasible to automatically
parallelize loops and also empirically search for adequate loop tiling sizes in CMP
architectures with acceptable overheads. In this paper we concentrate on multi-
cluster CMPs and whether adequate loop tiling sizes can be found at runtime for
the automatically parallelized loops. As explained in further details in Section 2,
processors are grouped together into clusters and the cache hierarchy is split into
multiple levels which either connect the processors within a cluster or connect
sets of clusters. The JAMAICA multi-cluster CMP [10] (see Figure 1) contains
private L1 and multiple shared L2 caches. The L2 cache is unified containing
both data and instructions, further complicating predictions as to how much
space is available to data alone.For a multi-cluster CMP system which connects
all the clusters by the L2 cache bus, the data locality in each L2 cache determines
significantly the runtime performance. This paper investigates optimizations that
search for multiple tile sizes to best utilize two levels of on-chip caching in a
multi-cluster CMP, using runtime information to drive the search algorithm, in
conjunction with an Online Tuning Framework (OTF) [19]. To exploit the cache
hierarchy and the cluster structure two tile sizes need to be determined. The
runtime tuning mechanism applies loop tiling recursively to target both clusters
and cache levels.

The remainder of the paper is organized as follows. Section 2 gives a brief
overview of the JAMAICA multi-cluster CMP architecture used in this paper.
Section 3 describes the OTF and proposes the runtime tuning mechanism for
optimizing the multiple tile sizes. Section 4 describes the experimental method-
ology. Section 5 presents and discusses the results from experimental evaluation.
Section 6 presents related work, while a summary of the paper is presented in
Section 7.

Fig. 1. JAMAICA: a multi-cluster CMP architecture.

2 JAMAICA Multi-Cluster CMP Architecture

To increase the ability of the JAMAICA architecture [2] to scale with the addi-
tion of more processing cores the single shared bus architecture is replaced by a
scalable multi-level cache hierarchy [10] (shown in Figure 1).
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The multi-level hierarchy is constructed by dividing the total number of cores
into clusters. Each cluster contains a number of processing cores connected to a
shared L2 cache. Each shared L2 cache is connected to a global on-chip memory
network. This hierarchical approach can allow many more cores to be integrated
onto a single chip, whilst maintaining shared memory, limiting the span of each
interconnect to reduce the effects of cross-chip wire-delay, and with minimal
design complexity.

Each intra-cluster network is independently arbitrated and accessed concur-
rently allowing the cores within each cluster to access the larger cluster-shared
cache with less contention. The scalability comes at the expense of maintaining
cache inclusion and the additional latency of sharing data between clusters. Such
a hierarchy may be used to exploit an ever increasing transistor budget and as
such is a feasible approach for future architectures.

3 Online Tuning Framework
The Online Tuning Framework (OTF) infrastructure, initially developed for
CMP loop optimizations [19], performs automatic parallelization and enables
runtime empirical search. It consists of three distinct elements: the Loop Paral-
lelizing Compiler (LPC), the adaptive optimization component (see Section 3.1),
and the runtime profiler (see Section 3.2).

The OTF is embedded within the adaptive optimization system (AOS) of
the Jikes Research Virtual Machine (RVM) [4]. The Jikes RVM captures run-
time information by instrumenting the running code at the method-level. Once
the instrumentation indicates that a given method is hot (i.e. the number of
times the method is executed is above a threshold), the AOS makes a deci-
sion whether to compile it using an optimizing compiler [5]. The OTF hijacks
this decision, so that hot methods are also considered for parallelization by the
LPC. The parallelized loop is reconstructed as a thread body which will be dis-
patched by a thread dispatcher method, as shown in Figure 2 (a). The procedure
loadConfiguration loads the runtime configuration parameters (e.g. the loop
tile size) from an AOS database. The forkThreads and joinThreads method
calls create and synchronize those threads executing in parallel the loop body.

void threadDispatcherWithProfile(... ...) {
    long startCycle = getTimeBase();
    loadConfiguration();
    forkThreads()
     ... ...
    joinThreads()
    long executionCycle = getTimeBase() - startCycle;
    // Searching and Reconfiguration
    aosProcess(executionCycle, numIterations);
}

void threadDispatcher(... ...) {
    loadConfiguration()
    forkThreads()
     ... ...
    joinThreads()
}

(a) (b)

Fig. 2. Runtime profiling mechanism.

3.1 Adaptive Optimization Component
The Adaptive Optimization Component (AOC) applies one or more optimiza-
tions deemed to improve a loop identified by the LPC. Presently, the AOC
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supports several adaptive optimizations for parallelizable code, although only
adaptive tiling is described this paper.

Adaptive tiling is applied when a perfectly nested loop is identified by the
LPC. In the current implementation, 2-dimensional loop traversals of the itera-
tion space are divided into tiles which are then distributed among automatically
generated parallel threads. We extend the basic empirical search algorithm [19]
to vary the number of loop iterations inside each tile for the clusters and lev-
els of the memory hierarchy. These parameters directly impact the balance be-
tween costs associated with thread management, the cache efficiency, and system
load. As illustrated in Figure 3, the runtime reconfigurable parameters L1Tile x,
L1Tile y, L2Tile x and L2Tile y are tuned using runtime empirical search. Note
the parameters cluster x and cluster y in the two most outer loops. These divide
the iteration space among processor clusters. However, these are not part of the
search directly as they are determined indirectly by L2Tile x and L2Tile y. The
JAMAICA multi-cluster CMP architecture provides a cluster affinity mechanism
to create parallel threads either on the local cluster or on remote clusters, which
can be viewed as a potential extension to the pthread affinity in Linux/Unix. By
splitting the loop iteration space, each cluster has its own thread creator that
distributes the tiles to the processors.

for (i = 0; i < N; i ++) {
    for (j = 0; j < M; j ++) {
        loop body ...
    }
}

for (ic = 0; ic < N; ic += cluster_x) {
    for (jc = 0; jc < M; jc += cluster_y) {
        for (iL2 = ic; iL2 < MIN(ic + cluster_x, N); iL2 += L2Tile_x) {
            for (jL2 = jc; jL2 < MIN(jc + cluster_y, M); jL2 += L2Tile_y) {
                for (iL1 = iL2; iL1 < MIN(iL2 + L2Tile_x, N); iL1 += L1Tile_x) {
                    for (jL1 = jL2; jL1 < MIN(jL2 + L2Tile_y, M); jL1 += L1Tile_y) {
                        for (i = iL1; i < MIN(iL1 + L1Tile_x, N); i ++) {
                            for (j = jL1; j < MIN(jL1 + L1Tile_y, M); j ++) {
                                loop body ...
                            }
                         }
                    }
                }
            }
        }
    }
}

distributed on different processors in same cluster

distributed on different clusters

Fig. 3. Tiling transformation for runtime tuning.

Each tile has a corresponding divisor pair. Given a divisor pair (Di, Dj), Di

is the divisor corresponding to the outer loop iterator and Dj corresponds to the
inner loop iterator. Adaptive tiling uses a simple hill-climbing algorithm that
starts from a divisor pair (Di0, Dj0). The initial divisor pair is calculated such
that Di0×Dj0 = Pn, where Pn is the total number of processors. This partition,
hereafter referred to as a näıve scheme, simply distributes the tiles evenly among
the processing cores. Algorithm 2, included as an appendix, further describes how
to calculate Di0 and Dj0.

The adaptive optimization component of the OTF, increases Di and Dj iter-
atively to determine whether smaller tile sizes provide smaller execution times.
When no performance improvement is observed, the OTF stops the search.
Any divisor pair (Di, Dj) calculated during iteration is composed such that
Di × Dj = k × Pn where k is a positive integer value (k > 0) and Pn is the
total number of processors. Algorithm 1, also included as an appendix, presents
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the search algorithm used to determine the divisor pairs. The search space is a
rectangular space which corresponds to the iteration space of a two-level nested
loop. Each searching step shrinks the area of the tile by half or changes the shape
of the tile.

For the specific multi-cluster CMP architecture considered, two tile sizes (for
the L1 and L2 cache) are considered. The adaptive search begins by finding
an optimal tile size for the L1 cache, which is a subset of the data within the
L2 cache. When an optimal L1 tile size is determined, the OTF searches for a
L2 cache tile size using the same searching algorithm but using different initial
divisor pairs. Algorithm 3 describes the combined searching mechanism to op-
timize loop division for a multi-cluster CMP architecture. Recall the example
loop shown in Figure 3, the search process for the L1 cache tile considers any
rectangle which is contained within a rectangle with sides clusterx and clustery.
The search space for the L2 cache tile is based on the L1 tile size. Given the
optimal divisor pair for L1 tile, (Dx, Dy), the search process for the L2 tile is any
rectangle with sides multiples of clusterx

Dx
and clustery

Dy
, respectively, and contained

within the rectangle with sides clusterx and clustery.

3.2 Runtime Profiling and Overhead

To evaluate the performance of the applied optimizations is predicated upon
access to runtime execution profile data. For adaptive tiling, this is achieved
by using a profiling thread dispatcher, shown in Figure 2 (b). Two additional
statements are inserted at the start and end of the parallelized loops. The first
statement extracts from the architecture the cycle count1 prior to the loops
execution and the second statement extracts the cycle count after the loop has
executed. The method aosProcess is responsible for reporting back to the AOS
the total cycle count and the number of loop iterations per thread. The OTF
is then able to calculate the execution time per iteration of each invocation of
the loop and can make decisions about the comparative performance with other
invocations of the same loop under different optimizations and configurations.

How representative are the measured execution times is a major factor for
the success of the runtime empirical search, and there are two issues that affect
it. The first one is that not all loops are of static length or duration. It is
possible that both the number of iterations and the loop contents will vary from
invocation to invocation. The second issue is that the execution timings are
affected by system noise; for example, cold caches and other unrelated thread
activity. To overcome these issues, the execution time for a given optimization on
a parallelized loop is calculated, as an arithmetic mean of the cycles per iteration
for three invocations of that loop. Loops that exhibit large profile deviations,
defined as having a coefficient of variation (CV) 2 greater than a configurable
threshold, for this work set at 0.1, are deemed unstable. When instability is

1 Although this mechanism is machine specific; instructions exist in the main archi-
tectures: RDTSC (x86), mftb (PPC), TICK register (SPARC)

2 Coefficient of variation is the ratio of the standard deviation to the arithmetic mean.
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detected the profiling code is switched off and the current best optimization is
used.

For each run of the parallelized loop, the profiling mechanism records and
evaluates the timing data to progress or stop the search. The average overhead for
each searching step is less than 300 cycles, thus the profiling overhead is nearly
constant, although the accumulated overhead grows linearly with the number of
searching steps. As tile size tuning is based on runtime modification of a set of
parameters, there is no additional overhead for recompilation.
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Fig. 4. Searching profile using DGEMM.

Figure 4 shows the OTF searching for an optimal divisor during the execution
of the DGEMM benchmark. The problem iteration size is 256×256, the hardware
is configured as a 2-cluster CMP architecture with each cluster containing 4
processing cores, from now on we refer to such a configuration using the notation:
2c/4p. The L1 cache size is 16KB, and 128KB for each L2 cache, again we will
use the notation: 16KB/128KB. The searching algorithm starts from a näıve tile
divisor: for the L1 tile (4, 2), and for the L2 tile (2, 1). By the 21th invocation
of the parallelized loop a local optimal L1 tile size has been found, and a local
optimal L2 tile size is found at the 18th invocation. Three invocations of the
loop are used to assess timing stability. In this experiment the deviation did
not exceed the threshold (0.1). The optimal L1 and L2 tile sizes are applied at
the 36th invocation finishing the search phase. Note that by the very nature of
the hill-climbing algorithms used, the adaptive searching finishes after finding
locally-optimal solutions.

JTOC

...

...

method_addr

...

LDL %x0, %x1, 0 

Initialize Input Window 
Registers

JSR %x0

LDA %x1, offset 

LDA %x1, %g0, JTOC

...

code version 1

...code version 2

code version n

code version 2 
is selected as 
current version

Fig. 5. Code version switching.

Once optimal divisors are found for loop tiling, the AOS switches off the
runtime profiler and runs any subsequent executions of the loop using the best
optimization found. The thread dispatcher, is switched to a version that does
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not contain the timing instrumentation, so that future execution of the code
runs without the cost of the profiling phase; see Figure 5. A runtime code patch
mechanism is employed to redirect the execution path to the normal thread
scheduler. A global data structure, JTOC [5], records references to both versions
of the code. Each time the compiled code calls a routine, it is required to first
load the method address from the JTOC (see the instructions LDA and LDL), and
then jump to the loaded method address (see the instruction JSR), making such
code switches possible.

4 Experimental Methodology

The experiments are performed on the multi-cluster CMP JAMAICA architec-
ture [18], using the OTF as part of the adaptive optimization system of the Jikes
RVM. The Jikes RVM has been ported to the JAMAICA architecture and runs
directly on top of the hardware. The JAMAICA architecture is implemented
within a highly configurable cycle-level processor and memory simulation plat-
form. The simulation platform allows the evaluation of the OTF on a wide range
of hardware configurations all using the same instruction set. The caches simu-
lated are 4-way set associative.

for (int i = 0; i < mLength; i ++) {
    for (int j = 0; j < nLength; j ++) {
        double temp = 0.0;
        for (int k = 0; k < nLength; k ++) {
            temp += alpha * matrixA[i][k] * matrixB[k][j] + beta * matrixC[i][j];
        }
        matrixC[i][j] = temp;
    }
}

for (int i = 0; i < length; i ++) {
    for (int j = 0; j < length; j ++) {
        double temp = 0.0;
        for (int k = i; k < length; k ++) {
            temp +=  matrixA[i][k] * matrixB[k][j];
         }
         matrixC[i][j] = temp;
       }
   }

(a) DGEMM (b) DTRMM

Fig. 6. Level 3 BLAS kernels.

Two well known level 3 BLAS [3] kernels (DGEMM and DTRMM) and a
2D Java Lattice-Boltzamann (JLB) simulation (9 variables for each element) [1]
are used in the performance evaluation. The kernels for DGEMM and DTRMM
appear in Figure 6. Each kernel is executed to completion and validation on each
simulated architectural configuration. The configurations assess the performance
of the same optimizations in the presence of varying cache sizes, number of
clusters and number of processors per cluster.

5 Results and Discussion

Different problem sizes (64×64, 128×128, 256×256 and 352×352 matrix) and dif-
ferent hardware configurations (clusters/processors: 2c/4p, 4c/2p and 4c/4p, and
L1/L2 cache sizes: 8KB/128KB, 8KB/256KB, 16KB/128KB and 16KB/256KB)
are used in the each experiment. For example, 4c/2p with 16KB/128KB refers
to a multi-cluster CMP configured with 4 clusters each with 2 processors (total
number of processors 8), and cache of sizes 16KB and 128KB for L1 and L2
cache, respectively.

The graph in Figure 7 presents the speedup attained using the optimal tile
sizes compared with that attained using näıve tile sizes. The näıve tile size is de-
fined as the square root of the number of processors. For example, a system with
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16 processors has näıve L1 cache tile divisors (4, 4). The divisors are restricted
to integer values, thus in a system with 8 processors, the L1 cache tile could
either be (4, 2) or (2, 4) (see Algorithm 2). The näıve scheme is in used by static
optimizers as it achieves reasonable load balance and data locality. The results
of this paper show that the performance can be further improved by performing
a runtime empirical search.
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Fig. 7. The speedup compared with a näıve tiling scheme.

Figure 8 shows the resulting optimal divisors for all of the evaluated bench-
marks. The näıve divisors for DGEMM are: 2c/4p and 4c/2p with L1 tile divisor
(4, 2) and L2 tile divisor (2, 1), 4c/4p with L1 tile divisor (4, 4) and L2 divisor
(2, 2). The speedup for DGEMM is shown in Figure 7(a). For small problem
sizes (e.g. 64 × 64 matrix), there is no obvious benefit for those configuratins
with larger L1 cache sizes when compared to the näıve scheme. For larger prob-
lem sizes, however, larger divisors produce performance increases. The optimal
L2 tile sizes are related to the number of clusters. For example, the best L2 tile
divisors for 64×64 matrix are (2, 1) for the 2c/4p configuration and (2, 2) for the
4c/2p and 4c/4p configurations. By increasing the L2 cache size, the L2 cache
tile has less effect and its value is near the näıve configuration. This is why the
256KB L2 cache configurations used have lower speedup than the 128KB L2
cache configurations for the same problem size and L1 cache size.



9

The DTRMM nested loop is intrinsically load imbalanced, because the num-
ber of iterations in the inner most loop (k-loop) depends on the iteration of the
i-loop, refer to Figure 6 (b). The optimal divisors are shown in Figure 8(b). For
configurations 2c/4p and 4c/2p, most of the best divisors for the j-loop L1 tile
sizes are 8, which is an even distribution of 8 parallel tasks to the 8 processing
cores. Similarly, most of the best divisors for the j-loop L1 tile sizes are 16 for
4c/4p. By increasing the problem size, both the L1 and L2 divisors are increased
to gain additional benefits from data locality. The speedups, shown in Figure
7(b), are more pronounced than for DGEMM, however, most of the benefit is
attained through better load balancing.

(c) Lattice-Boltzmann (LB)

(b) DTRMM

(a) DGEMM

2c/4p 4c/2p

64*64
128*128
256*256
352*352
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(4,2) (2,1) (4,2) (2,1) (4,2) (2,1) (4,2) (2,1) (4,2) (2,2) (4,2) (2,2) (4,2) (2,2) (4,2) (2,2) (4,4) (2,2) (4,4) (2,2) (4,4) (2,2) (4,4) (2,2)
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4c/4p

L1/L2 Cache Size
Naïve Divisor (4,2) (2,1) (4,2) (2,2) (4,4) (2,2)

8KB, 128KB 16KB, 128KB 8KB, 256KB 16KB, 256KB 8KB, 128KB 16KB, 128KB 8KB, 256KB 16KB, 256KB 8KB, 128KB 16KB, 128KB 8KB, 256KB 16KB, 256KB
(1,8) (1,2) (1,8) (1,2) (1,8) (1,2) (1,8) (1,2) (1,8) (1,4) (1,8) (1,4) (1,8) (1,4) (1,8) (1,4)
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Fig. 8. Optimal divisor pairs for different problem sizes and hardware configurations.

Finally the optimal divisors for JLB, which uses a stencil computation model,
are compared to the näıve tile sizes, which are the same as for DGEMM. The
speedups are shown in Figure 7(c). Compared with DGEMM, JLB has less
cache cross-interference and as a consequence the optimization produces smaller
speedups.

6 Related Work

Kisuki, O’Boyle and Knijnebury [11] investigated iterative compilation for loop
tiling and loop unrolling. Their proposed compilation system achieved high
speedups, outperforming static techniques. The system shows that high levels
of optimization can be achieved in a limited number of iterations by applying a
hill-climbing like searching algorithm.

The ATLAS project [16, 15] applies an automatic tuning mechanism to the
BLAS (basic linear algebra software library). Given a BLAS operation, AT-
LAS uses empirical off-line searches relying on actual execution times to choose
the best implementation on a specific architecture. ATLAS typically uses code
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generators which generate multiple code versions, and has sophisticated search
scripts to find the best choice. Despite being an off-line system, ATLAS guides
the search using runtime profiling information.

Voss and Eigenmann [14] established an adaptive optimization framework
named ADAPT which performs dynamic optimization on hot spots through
empirical search. ADAPT uses dynamic recompilation to evaluate different opti-
mizations and a domain-specific language to drive a search on the optimization
space for a specific optimization. For example in loop unrolling, each level of un-
rolling is compiled, executed and timed, and the fastest version is kept and used
for subsequent executions of the hot spot. The compiler used for recompilation
is run on a separate parallel processor which reduces the recompilation overhead
at runtime.

Fursin et al. [8] explored online empirical searches for scientific benchmarks.
To reduce runtime code generation overheads, a set of optimized versions of
code are created prior to the execution of a program. These versions are then
evaluated at runtime with the best performing version chosen for subsequent
execution. They employ predictive phase detection to identify the periods of
stable repetitive behavior of a program and use these phases to improve the
evaluation of alternative optimized versions.

In contrast with the above work, this paper combines a loop-level parallelizing
compiler and an adaptive optimization framework, within a virtual machine, that
targets a chip multi-cluster CMP architecture which has a multiple level cache
hierarchy. The runtime optimization can leverage some strengths of iterative
optimization to make JIT more suitable for CMP architectures.

7 Conclusion

Loop tiling is a fundamental optimization for improving data locality. As the use
of CMPs increases, selecting the right tile size combined with the parallelization
of loops within a virtual machine may be one way of increasing performance.
This paper presents a runtime optimization mechanism which automatically par-
allelizes loops and tunes them for the best tile sizes on a scalable multi-cluster
CMP, a feasible next generation multi/many core architecture.

By optimizing the tile sizes for both L1 and L2 caches, a memory intensive
application can increase performance. The system is built on top of a virtual ma-
chine and targets the runtime parallelization and optimization of Java programs.
Experimental results show performance speedups, up to 14.1% for two level 3
BLAS kernels (rectangular and triangular iteration spaces) and a 2D Lattice-
Boltzmann simulation (stencil computation with 9 variables per grid point). The
speedup is over a traditional parallelization and tiling scheme and also includes
the initial overheads involved with profiling.
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Algorithm 1 tile search rect (search tile size for rectangle iteration space).
Input: Num, number of processors or clusters
Output: optimal divisor pair
Implementation:
step 1: (Di0, Dj0) ⇐ init tile rect(Pn);
Evaluate the runtime performance by initial tile size (Di0, Dj0), get execution cycles E0
step 2: (Di, Dj) ⇐ (Di0, Dj0)
step 3: (Dil, Djl) ⇐ (Di × 2, Dj); (Dir, Djr) ⇐ (Di, Dj × 2);
Evaluate the runtime performance by two tile sizes: (Dil, Djl) and (Dir, Djr), get execution cycles El and Er

if E0 ≤ El and E0 ≤ Er then
goto step 4

end if
if Er ≤ El then

(Di, Dj) ⇐ (Dir, Djr)
else

(Di, Dj) ⇐ (Dil, Djl)
end if
goto step 3
step 4:
if (Di, Dj) = (Di0, Dj0) then

goto step 5
else

return (Di, Dj)
end if
step 5: (Di, Dj) ⇐ (Di0, Dj0); i ⇐ 2

step 6: (Dil, Djl) ⇐ (b
Di
i
c, Dj × i); (Dir, Djr) ⇐ (Di × i, b

Dj
i
c);

Evaluate the runtime performance by two tile sizes: (Dil, Djl) and (Dir, Djr), get execution cycles El and Er

if E0 ≤ El and E0 ≤ Er then
return (Di, Dj)

end if
if Er ≤ El then

(Di, Dj) ⇐ (Dir, Djr); E0 ⇐ Er ;
else

(Di, Dj) ⇐ (Dil, Djl); E0 ⇐ El;
end if
i ⇐ i + 1
goto step 6

Algorithm 2 init tile rect (initialize tile size for rectangle iteration space).
Input: Num, number of processors (or clusters).
Output: a initial divisor pair
Implementation:
step 1: t ⇐ bsqrt(t)c;
step 2:
while (Num%t)! = 0 do

t ⇐ t − 1
end while
step 3: return ( Num

t
, t)

Algorithm 3 Multiple levels search.
Input: Pn, number of processors; Cn number of clusters.
Output: optimal divisor pairs for L1 and L2 tile
Implementation:
step1: Search for L1 cache tile size
L1T ile ⇐ tile search rect(Pn), L1T ile is the optimal divisor pair for L1 tile
step2: Search for L2 cache tile size
L2T ile ⇐ tile search rect(Cn), L2T ile is the optimal divisor pair for L2 tile


