
Lazy Interprocedural Analysis for Dynamic Loop
Parallelization

Jisheng Zhao, Christopher Kirkham, and Ian Rogers

The University of Manchester, School of Computer Science,
Oxford Road, Manchester, UK

{jisheng.zhao,christopher.kirkham,

ian.rogers}@manchester.ac.uk

http://www.cs.manchester.ac.uk/apt

Abstract. Dynamic compilation is becoming a dominant compilation
technique. Runtime compilation has to avoid slow compile times by tar-
geting optimizations to areas where it has a performance impact. For
parallelization optimizations this can lead to not exposing opportuni-
ties for parallelization. To enable fuller optimization we present a sim-
ple interprocedural analysis. Our analysis and parallelization phases are
performed as part of the Jikes RVM. Our approach succeeds in finding
coarser grain loops and increased performance in a number of benchmark
kernels on a research chip multi-processor architecture.

1 Introduction

Parallel computers are now becoming ubiquitous. The JAMAICA Chip Multi-
Processor (CMP) architecture [1] exposes a large number of contexts capable
of running fine-grained threads, threads created, scheduled and deleted with
a low cost. In order to expose these threads parallel languages, libraries and
parallelizing compilers exist. The approach we present concentrates on exposing
fine-grain threads through automatic parallelizing compilation focused on loops.

Dynamic compilation is a technique widely used for Java and C# applica-
tions. In this work we look at modifying the Jikes RVM [2], a Java Virtual
Machine (JVM) responsible for managing the runtime, garbage collection and
compilation environment. In such a dynamic compilation environment, heavily
executed code is optimized using an optimizing compiler. In our environment
we’ve extended the optimizing compiler to also perform dynamic parallelization.
In general, the cost for the analysis and performing the parallelization optimiza-
tion is high. A balance is required, bringing about the need for safe parallelization
whilst avoiding the cost of a full optimizing compile.

Increasing the granularity of parallel tasks can reduce the overhead of parallel
thread creation and, hence, benefit performance. It is important to parallelize
outer loops that expose the largest granularity parallel tasks. Such loops often
contain method calls, especially in scientific computing codes. If the parallel
compiler can optimize loops in the presence of method calls coarser-grain loops

2 Jisheng Zhao, Christopher Kirkham, Ian Rogers, et al.

can be created whilst avoiding expensive analysis of the program as a larger hot
region.

In this paper, we present an approach for runtime interprocedural analysis
used in the Jikes RVM’s dynamic compilation system to enhance automatic
loop level parallelization. We present an analysis of the resultant system on the
JAMAICA architecture using a modified version of the Jikes RVM called the
JaVM. This system has a modified compiler and runtime system that support
the JAMAICA architecture and its fine-grain threading mechanisms.

The rest of the paper is organised as follows: in section 2, we present more
background material about the requirements for our adaptive parallelization and
interprocedural analysis system. In section 3, we present the interprocedural
analysis mechanism. In section 4, we discuss some issues in implementing inter-
procedural analysis in the JaVM dynamic compilation system. We analyse the
performance of our approach in section 5. We conclude this paper in section 6.

2 Dynamic Parallelization in the JaVM

2.1 The JAMAICA CMP

The JAMAICA CMP [1] is an architectural development platform, being built
around a configurable simulator. JAMAICA has similarities to other CMP ar-
chitectures, such as Stanford’s multi-core Hydra [3] or the multi-core and multi-
threaded Sun Niagara architecture[4]. The JAMAICA architecture differs by
having light-weight hardware support for thread creation, scheduling and dis-
tribution [5]. A processor signals to a thread distribution network that it has a
context available, another processor can request this context and ship work to it
by a thread shipping procedure call. The same mechanism is used to distribute
loop iterations among different processors.

2.2 JaVM and Dynamic Parallelization

The JaVM is a port to the JAMAICA architecture of the Jikes RVM. It con-
tains a runtime service system (thread scheduling, memory management) that
utilises the JAMAICA CMP architecture, a dynamic compiler and an adaptive
recompilation system.

There are two compilers in the Jikes RVM: a baseline compiler that maps
Java bytecode to JAMAICA machine code directly and a optimizing compiler
[6] that translates to machine code via an intermediate representation (IR) and
a number of compiler optimization phases. The automatically parallelizing com-
piler has been built on this optimizing compiler; it performs dependence analysis
on high level IR (HIR) code, and adds thread shipping and scheduling code to
the machine level IR (MIR) code [7].

Lazy Interprocedural Analysis for Dynamic Loop Parallelization 3

Executing Code

 Compilers

Dynamic Linker

Class Loader

Profiling Data

Resolved
ReferenceResolution

Lazy
Compilation
Stub Invoked

Install code
to System

Compile Class Unit

(Re)Compilation Plan

Dynamic Linker

(Re)Compilation Plan
Adaptive Optimization

System [Base, Opt0, Opt1]

Prologue

:

loop header

loop exiter

Epilogue

:

:

Enter Method

Exit Method

sample current method’s
caller’s ID

sample current method’s ID

sample current method’s ID

(a) (b)

Fig. 1. Sampling mechanism and Jikes RVM adaptive optimization system

2.3 Adaptive Parallelization System

The adaptive optimization system [8] shown in figure 1(b) uses a runtime pro-
filing mechanism to find hot methods that are either called frequently or have
heavily executed loops. The compiler inserts yield points into the Java meth-
ods1. Each yield point checks whether the current thread needs to yield2, and
performs runtime sampling for the adaptive system when it does. It captures
the relevant method’s ID3 and records it in a sampling array. Those methods
whose IDs exist in the sampling array with high frequency are hot. There are
three positions where the yield points are inserted (shown in figure 1(a)):

– Method Prologue: executed on entry to a method.
– Loop Backedge: executed when following the backedge of a loop.
– Method Epilogue: executed upon leaving a method.

Hot methods are recompiled with more optimizations to improve their per-
formance. In JaVM all of the application methods would be compiled initially
by the baseline compiler. The adaptive system performs a cost benefit analysis
of how and whether to recompile hot methods, at which point parallelization
can also occur. The adaptive parallelization system (APS) is therefore a combi-
nation of two major components: a parallel compiler working dynamically, used
to create parallel code within methods, and the adaptive optimization system,
used to drive the adaptive recompilation process tailored toward parallelization.

2.4 Parallelizing Compiler Architecture

The parallel compiler is embedded into JaVM’s optimizing compiler. Shown
in figure 2, the optimizing compiler comprises a series of compilation phases.
1 The compiler does not insert any yield points into native methods or mission critical

methods, i.e. those methods used for runtime scheduling and memory management.
2 There’s an internal counter; the count value will be incremented every time the yield

point function is called. If the count value exceeds a predefined value, the current
thread should yield and the count value should be set back to 0. Based on this
mechanism, the Java thread could yield after an imprecise time interval.

3 The method ID is an integer value assigned to a method when it is compiled.

4 Jisheng Zhao, Christopher Kirkham, Ian Rogers, et al.

The parallel compiler comprises several compilation phases that perform the
data dependence test[9], parallel loop annotation at HIR level and parallel code
generation at MIR level.

Translation from Bytecode to HIRTranslation from Bytecode to HIR

Optimization of HIR

Translation from HIR to LIR

Optimization of LIROptimization of LIR

Translation from LIR to MIR

Optimization of MIROptimization of MIR

Machine Code

HIR

Optimized HIR

LIR

Optimized LIR

Optimized MIR

MIR

Data Dependence Analysis

Query Free Thread Context

Data Dependence Analysis

Parallel OptimizationParallel Optimization

Add Pseudo-Code

Query Free Thread Context

Create Parallel ThreadCreate Parallel Thread

Allocate Memory, Registers

Ship New Thread (THB, THJ)

Fig. 2. JaVM parallel compiler
Figure 3 shows an example simple Doall loop and its HIR code before being

annotated by the parallel compiler, it is then passed by through the analysis
and annotation phase. Figure 4 shows the annotated HIR code (pseudo-codes are
added to annotate the parallel loop and its loop invariants, and a loop versioning
optimization is performed here to eliminate runtime exceptions [7, 10]). Figure 5
shows the MIR code, when the annotated loop passes the parallel code expanding
phase at MIR level, part (a) is the code for parallel thread creation and part (b)
is the code run by each parallel thread.

for (int i = 0; i < LEN; i ++) {
 darray[i] ++;
}

[...]
10 LABEL2 Frequency: 8.999998
-9 phi t42pi(I) = t47i(Z), BB6, t43pi(I), BB2
17 EG bounds_check t34v(GUARD) = t48i([D,p), t42pi(I), t2pv(GUARD)
17 guard_combine t35v(GUARD) = t2pv(GUARD), t34v(GUARD)
17 double_aload t36d(D,d) = t48i([D,p), t42pi(I), <mem loc: array < SystemCL, D >[]>, t35v(GUARD)
19 double_add t37d(D) = t36d(D,d), 1.0D
20 EG bounds_check t38v(GUARD) = t48i([D,p), t42pi(I), t2pv(GUARD)
20 guard_combine t39v(GUARD) = t2pv(GUARD), t38v(GUARD)
20 double_astore t37d(D), t48i([D,p), t42pi(I), <mem loc: array < SystemCL, D >[]>, t39v(GUARD)
21 int_add t43pi(I) = t42pi(I), t45i(I)
26 int_ifcmp t44v(GUARD) = t43pi(I), t49i(I,d), <, LABEL2, Probability: 0.9
-1 goto LABEL7
-1 bbend BB2
[...]

Fig. 3. HIR prior to parallelization

2.5 Interprocedural Analysis

The automatic parallelizing compiler has to process method calls within loops
and determine whether they can be allowed or not. To avoid this problem,
method inlining is used to substitute a call with the body of the method it
would call [6]. Because of the adaptive optimization system’s analysis, not all
methods will be inlined. Typical methods that aren’t inlined are methods that
contain too many instructions or complex control flow.

In general a loop body that contains a method call cannot be parallelized
because the method may have a hazard inducing side effect. There are three
major types of side effect inside methods:

Lazy Interprocedural Analysis for Dynamic Loop Parallelization 5

[...]
-16 LABEL12 Frequency: 8.999998
-1 arraylength t50(I) = l4psi([D,p), t2pv(GUARD)
-1 int_ifcmp t56(GUARD) = l0pi(I), t50(I), >U, LABEL2,
 Probability: 0.009999999
-1 bbend BB12

0 LABEL11 Frequency: 0.9
-1 jam_fork t65i(I) = <unused>, <unused>, 0, l0pi(I,d), 1, 0
-1 jam_loopinvariant_load t69i(I) = <unused>, <unused>, l0pi(I), t65i(I)
-1 jam_loopinvariant_load t68i([D) = <unused>, <unused>, l4pi([D), t65i(I)
-1 jam_collect_loopinvaria t67i(Z) = <unused>, <unused>, t66i(Z), t65i(I)
-1 goto LABEL10
-1 bbend BB6

10 LABEL10 Frequency: 8.999998
-9 phi t62pi(I) = t67i(Z), BB6, t63pi(I), BB2
17 guard_combine t75v(GUARD) = t2pv(GUARD), t56v(GUARD)
17 double_aload t76d(D,d) = t68i([D,p), t62pi(I), <mem loc: array < SystemCL, D >[]>, t75v(GUARD)
19 double_add t77d(D) = t76d(D,d), 1.0D
20 guard_combine t79v(GUARD) = t2pv(GUARD), t56v(GUARD)
20 double_astore t77d(D), t68i([D,p), t62pi(I), <mem loc: array < SystemCL, D >[]>, t79v(GUARD)
21 int_add t63pi(I) = t62pi(I), t65i(I)
26 int_ifcmp t64v(GUARD) = t63pi(I), t69i(I,d), <, LABEL2, Probability: 0.9
-1 goto LABEL7
-1 bbend BB10

0 LABEL7 Frequency: 1.0
-1 jam_join <unused>, <unused>, t65i(I), t67i(Z)
-1 goto LABEL4
-1 bbend BB7

10 LABEL2 Frequency: 8.999998
-9 phi t42pi(I) = t47i(Z), BB12, t43pi(I), BB2
17 EG bounds_check t34v(GUARD) = t48i([D,p), t42pi(I), t2pv(GUARD)
17 guard_combine t35v(GUARD) = t2pv(GUARD), t34v(GUARD)
17 double_aload t36d(D,d) = t48i([D,p), t42pi(I), <mem loc: array < SystemCL, D >[]>, t35v(GUARD)
19 double_add t37d(D) = t36d(D,d), 1.0D
20 EG bounds_check t38v(GUARD) = t48i([D,p), t42pi(I), t2pv(GUARD)
20 guard_combine t39v(GUARD) = t2pv(GUARD), t38v(GUARD)
20 double_astore t37d(D), t48i([D,p), t42pi(I), <mem loc: array < SystemCL, D >[]>, t39v(GUARD)
21 int_add t43pi(I) = t42pi(I), t45i(I)
26 int_ifcmp t44v(GUARD) = t43pi(I), t49i(I,d), <, LABEL2, Probability: 0.9
-1 goto LABEL4
-1 bbend BB2

19 LABEL4 Frequency: 8.999998
-1 phi t80pi(I) = t43i(I), BB2, t63i(I), BB10
-1 phi t81v(GUARD) = t34v(GUARD), BB2, t50v(GUARD), BB12
-1 phi t82v(GUARD) = t35v(GUARD), BB2, t75v(GUARD), BB12
-1 phi t84v(GUARD) = t38v(GUARD), BB2, t50v(GUARD), BB12
-1 phi t85v(GUARD) = t39v(GUARD), BB2, t79v(GUARD), BB12
-1 phi t87v(GUARD) = t44v(GUARD), BB2, t64v(GUARD), BB12
-1 bbend BB4
[...]

Fig. 4. HIR following parallelization

[...]
10 LABEL4 Frequency: 0.9
-1 jam_mov t65psi(I) = 1
-1 jam_mov t194i(Z) = 0
17 jam_ldl t165psi(I) = t130psi([D), -12
-1 jam_br %g0(I), LABEL11
-1 bbend BB4
0 LABEL11 Frequency: 0.9
-1 jam_bis t204i(I) = %g0(I), 2
-1 jam_getsp t212i(I) =
-1 jam_setmem <unused>, <unused>, t165psi(I), 1
-1 jam_setmem <unused>, <unused>, l0psi(I), 2
-1 jam_setmem <unused>, <unused>, t130psi([D), 3
-1 jam_br %g0(I), LABEL14
-1 bbend BB11
0 LABEL14 Frequency: 0.9
-1 jam_bcc EQ, t204i(I), LABEL5, Probability: 0.5
-1 bbend BB14
0 LABEL15 Frequency: 0.9
-1 jam_add t205i(I) = t194i(Z), t65psi(I)
-1 jam_cmplt t206i(I) = t205i(I), l0psi(I)
-1 jam_bcc EQ, t206i(I), LABEL5, Probability: 0.5
-1 bbend BB15
0 LABEL12 Frequency: 0.9
-1 jam_bis t207i(I) = %g0(I), 4
-1 jam_trq t207i(I) = %g0(I), %g0(I)
-1 jam_bcc EQ, t207i(I), LABEL5, Probability: 0.5
-1 bbend BB12
0 LABEL13 Frequency: 0.9
-1 jam_ldl t208i(Lcom/ibm/JikesRVM/VM_Thread;) = PR(I), -84
-1 jam_ldl t209i([I) = t208i(Lcom/ibm/JikesRVM/VM_Thread;), -68
-1 jam_s4add t210i(I) = t207i(I), t209i([I)
-1 jam_lda t211i(I) = %g0(I), 1
-1 jam_stl t211i(I) <-- t210i(I), 0
-1 jam_sll t65psi(I) = t65psi(I), 1
-1 jam_srl t204i(I) = t204i(I), 1
-1 jam_mov %o0(I) = t212i(I)
-1 jam_mov %o1(I) = t205i(I)
-1 jam_mov %o2(I) = t65psi(I)
-1 jam_mov %o3(I) = t204i(I)
-1 jam_mov %o4(I) = t209i([I)
-1 jam_thb LABEL17, <unused>
-1 jam_br %g0(I), LABEL14
-1 bbend BB13

[...]
0 LABEL17 Frequency: 0.9
-1 jam_mov %i6(I) = <[PR(I)]+-96>DW
-1 jam_add %i6(I) = %i6(I), -4
-1 jam_mov %o6(I) = %i6(I)
-1 jam_push <[PR(I)]+-96>DW
-1 jam_mov <[PR(I)]+-96>DW = %o6(I)
-1 jam_push 96
-1 advise_esp -1
-1 bbend BB17
0 LABEL18 Frequency: 0.9
-1 jam_mov t213i(I) = %i0(I
-1 jam_mov t175pi(I) = %i1(I)
-1 jam_mov t193i(I) = %i2(I)
-1 jam_mov t214i(I) = %i3(I)
-1 jam_mov t215i([I) = %i4(I)
-1 jam_loadmem t195i(I) = <unused>, <unused>, t213i(I), -4
-1 jam_loadmem t69psi(I) = <unused>, <unused>, t213i(I), -8
-1 jam_loadmem t68psi([D) = <unused>, <unused>, t213i(I), -12
-1 bbend BB18
0 LABEL19 Frequency: 0.9
-1 jam_bcc EQ, t214i(I), LABEL25, Probability: 0.5
-1 bbend BB19
0 LABEL21 Frequency: 0.9
-1 jam_add t216i(I) = t175pi(I), t193i(I)
-1 jam_cmplt t217i(I) = t216i(I), t69psi(I)
-1 jam_bcc EQ, t217i(I), LABEL25, Probability: 0.5
-1 bbend BB21
0 LABEL20 Frequency: 0.9
-1 jam_bis t218i(I) = %g0(I), 4
-1 jam_trq t218i(I) = %g0(I), %g0(I)
-1 jam_bcc EQ, t218i(I), LABEL25, Probability: 0.5
-1 bbend BB20
0 LABEL22 Frequency: 0.9
-1 jam_ldl t219i(Lcom/ibm/JikesRVM/VM_Thread;) = PR(I), -84
-1 jam_ldl t220i([I) = t219i(Lcom/ibm/JikesRVM/VM_Thread;), -68
-1 jam_s4add t221i(I) = t218i(I), t220i([I)
-1 jam_lda t222i(I) = %g0(I), 1
-1 jam_stl t222i(I) <-- t221i(I), 0
-1 jam_sll t193i(I) = t193i(I), 1
-1 jam_srl t214i(I) = t214i(I), 1
-1 jam_mov %o0(I) = t213i(I)
-1 jam_mov %o1(I) = t216i(I)
-1 jam_mov %o2(I) = t193i(I)
-1 jam_mov %o3(I) = t214i(I)
-1 jam_mov %o4(I) = t220i([I)

10 LABEL5 Frequency: 8.999998
-1 jam_s8add t76sd(D,d) = t194i(Z), t130psi([D)
-1 jam_ldl t187sd(I) = t76sd(D,d), 4
17 jam_ldl t76sd(D,d) = t76sd(D,d), 0
-1 jam_lda t181d(D) = %g1(I), 5808
-1 jam_ldah t181d(D) = t181d(D), 5808
-1 jam_ldl t188d(I) = t181d(D), 4
19 jam_ldl t181d(D) = t181d(D), 0
19 jam_bis %o0(I) = t76sd(I), 0
-1 jam_bis %o1(I) = t187sd(I), 0
-1 jam_bis %o2(I) = t181d(I), 0
-1 jam_bis %o3(I) = t188d(I), 0
-1 jam_lda %x7(I) = %g0(I), -65440
-1 jam_ldah %x7(I) = %x7(I), -65440
-1 jam_bltincall %x7(I), <unused>
-1 jam_bis t77sd(I) = %o0(I), 0
-1 jam_bis t189sd(I) = %o1(I), 0
-1 jam_s8add t190i(I) = t194i(Z), t130psi([D)
-1 jam_stl t77sd(D) <-- t190i(I), 0
20 jam_stl t189sd(I) <-- t190i(I), 4
21 jam_add t194i(Z) = t194i(Z), t65psi(I)
26 jam_cmplt t191i(I) = t194i(Z), l0psi(I)
26 jam_bcc NE, t191i(I), LABEL5, Probability: 0.9
-1 jam_br %g0(I), LABEL16
-1 bbend BB5
0 LABEL16 Frequency: 0.90000004
-1 jam_presistinvars <unused>, <unused>
-1 bbend BB16
[...]

-1 jam_thb LABEL17, <unused>
-1 jam_br %g0(I), LABEL19
-1 bbend BB22
10 LABEL25 Frequency: 8.999998
-1 jam_s8add t196d(D) = t175pi(I), t68psi([D,p)
-1 jam_ldl t197i(I) = t196d(D), 4
17 jam_ldl t196d(D) = t196d(D), 0
-1 jam_lda t198d(D) = %g1(I), 5808
-1 jam_ldah t198d(D) = t198d(D), 5808
-1 jam_ldl t199i(I) = t198d(D), 4
19 jam_ldl t198d(D) = t198d(D), 0
19 jam_bis %o0(I) = t196d(D), 0
-1 jam_bis %o1(I) = t197i(I), 0
-1 jam_bis %o2(I) = t198d(D), 0
-1 jam_bis %o3(I) = t199i(I), 0
-1 jam_lda %x7(I) = %g0(I), -65440
-1 jam_ldah %x7(I) = %x7(I), -65440
-1 jam_bltincall %x7(I), <unused>
-1 jam_bis t200i(I) = %o0(I), 0
-1 jam_bis t201i(I) = %o1(I), 0
-1 jam_s8add t202i(I) = t175pi(I), t68psi([D,p)
-1 jam_stl t200i(I) <-- t202i(I), 0
20 jam_stl t201i(I) <-- t202i(I), 4
21 jam_add t175pi(I) = t175pi(I), t193i(I)
26 jam_cmplt t203i(I) = t175pi(I), t69psi(I,d)
26 jam_bcc NE, t203i(I), LABEL25, Probability: 0.9
-1 jam_br %g0(I), LABEL23
-1 bbend BB25
0 LABEL23 Frequency: 0.90000004
-1 jam_presistinvars <unused>, <unused>
-1 bbend BB23
0 LABEL24 Frequency: 0.90000004
-1 jam_rcr t223i(I) = %g0(I), -1
-1 jam_s4add t224i(I) = t223i(I), t215i([I)
-1 jam_stl %g0(I) <-- t224i(I), 0
-1 jam_ldl t225i(I) = %g1(I), 8996
-1 require_esp 0
-1 require_esp 0
-1 EG jam_call t225i(I), <unused>
-1 advise_esp 0
-1 jam_mov %x0(I) = %g0(I)
-1 jam_mov %x1(I) = %g0(I)
-1 jam_lda %i6(I) = %i6(I), 4
-1 jam_ret %x0(I), %x1(I), 0
-1 bbend BB24
[...]

(a) (b)

Fig. 5. After expansion of parallel instructions in MIR

– Data Dependency:

• If methods called within a loop body contain write operations to the
same address a write after write (WAW) or output data dependency will
exist and means the loop bodies can’t be executed out-of-order.

• Similarly if the method called contains a read from a memory address
written during the loop body a write after read (WAR) or anti data
dependency will exist.

• Finally, if the method called writes data to a memory address and that
address will be read by a following loop iteration, a read after write
(RAW) or true/flow data dependency exists.

– Exceptions: the Java language uses the exception mechanism to handle ex-
ceptional situations at runtime. These include Java runtime exceptions and
user defined exceptions. An exception can break the program’s normal con-
trol flow and trap to special exception handlers. Potentially all methods
called within a loop can throw an exception, and this may make the loop
terminate early.

6 Jisheng Zhao, Christopher Kirkham, Ian Rogers, et al.

– Synchronization: if there’s a use of locks in the code considered for paral-
lelization, parallelizing a loop that calls code with locks in it can result in
the order the locks are acquired changing. This raises the potential of dead-
locking the loop, by a later loop iteration acquiring a lock required by an
earlier loop. We avoid parallelizing code that contains locks.

For those loops which don’t fail dependence analysis but contain loop method
calls, we need to perform interprocedural analysis to determine whether or not
the loop could be parallelized. For this reason we need a low cost and efficient
interprocedural analysis mechanism.

3 Parallelization with Lazy Interprocedural Analysis

The adaptive system described in section 2.3 focuses effort on hot methods in a
way that’s suitable for recompilation of hot spots. For interprocedural analysis,
again the expense is only justified for hot methods, however, interprocedural
analysis may expose loop level parallelism in loops surrounding hot methods
that aren’t themselves as hot. Parallelism exposed in this way will be of a coarser
granularity compared to loops within the hot method. Due to the way sampling
occurs in the Jikes RVM, we found inner methods were commonly recompiled
before outer methods. Our approach tackles this problem in two phases:

– firstly, we produce guarded parallel and non-parallel outer loops in all meth-
ods compiled by the optimizing compiler containing calls that could be po-
tentially run in parallel.

– secondly, we perform interprocedural and class hierarchy analysis when classes
are loaded, and when optimizing classes, to determine when it is safe to use
parallel outer loops containing method calls.

Here’s a simple example, func A contains a potentially parallel loop that
contains no loop carried data dependencies, except two loop method calls: func B
and func C. The adaptive system captures func A as a hot method. The parallel
compiler performs the data dependence analysis on this method’s loop and finds
its suitable to be executed in parallel if the method calls don’t expose data
dependencies. The compiler checks whether the two method calls within the loop
are known not to contain any side effects. Because there’s not enough information
currently the parallel compiler compiles func A with two loop versions, and uses
the non-parallelized loop as the initial version. Later, when the two callees are
chosen for compilation and analysis by the adaptive system, they are annotated
to contain information regarding what data hazards they potentially expose.
Once this information is known, the parallelization system determines whether
the loop in func A can be run in parallel, and if it can, the loop version is
switched. Because of later dynamic class loading, and virtual method dispatch,
we may need to switch the loop version back to the non-parallel version. However,
again we may prove later, following analysis, that the loop in func A is safe to
execute in parallel and we switch the loop to the parallel version.

Lazy Interprocedural Analysis for Dynamic Loop Parallelization 7

To aid this mechanism it is useful to maintain a partial call-graph, which
is complicated by dynamic class loading. A limitation of our current call-graph
analysis is that it only considers static methods, or virtual methods of classes
that can’t have sub-classes (either through use of the final keyword, or by making
their constructors private). Whilst this has been suitable in benchmark code,
greater performance may be achievable in general purpose code by maintaining
more accurate call-graph information in the face of dynamic class loading. Such
analysis is performed in [11].

On stack replacement[12] provides a means to replace running code, for ex-
ample if method inlining proved unsafe following a new class being loaded. Our
approach differs, as when we need to replace code we don’t first recompile it.
In general more speculative optimizations are only applied to hot methods com-
piled at higher compilation levels. As we are creating parallel code early, at lower
compilation levels, we believe our technique more closely suits our requirement
to produce greater parallelism.

3.1 Method Selection

The JVM provides 4 mechanisms for method call, in general method calls are
either to a known location (such as static methods) or to methods determined
by the type of the object the method is called upon (such as virtual or interface
methods) [13]. Our analysis must determine whether a method called is safe for
parallelization, for this we must ensure the following constraints:

For virtual methods:

– It should only have load operations on initialised final fields and static fields
whose data type is primitive, e.g. int, long, double.

– The input parameters should not be object references.
– There are no instructions that might throw a Java runtime exception.
– There are no monitor instructions for synchronization.
– For the callees of this method:

• If the callee is a virtual method and its object reference is same as the
caller, it should have the same constraints as the caller.

• If the callee is a static method, the callee should not have any put-
static operation and its getstatic operations should only work on primi-
tive types.

For static methods:

– The static method can not perform any putstatic operations.
– All of the getstatic operations only work on primitive types.
– The input parameters should not be object references.
– There are no instructions that might throw a Java runtime exception.
– There are no monitor instructions for synchronization.
– If this method contains static method calls, the callees should not have put-

static operations and their getstatic operations should only work on primitive
types.

8 Jisheng Zhao, Christopher Kirkham, Ian Rogers, et al.

These constraints prohibit methods called from the loop from performing
any memory load/store operations on the class fields within the same class as its
caller method; the VM can make sure that there’s no data dependency related
to the method called in the loop. As initialised static final fields whose types are
primitive can be treated as constant values, we allow for load operation on such
fields.

The putstatic instruction stores a value to a static class field, so if the loop
contains putstatic operations, that will generate output dependencies. The get-
static instruction loads a value from a static class field; if the loop contains any
getstatic operations, that may imply that the loop may do some load operation
on the class object and generate a flow or anti dependencies.

3.2 Call Graph Analysis

Method calls and the runtime call-graph are used to determine the relation-
ship among the hot methods. There are three hash tables used to maintain this
relationship and method states.

– Callees map: the keys of the table are method object references4 and the
values are the set of methods called by the key method.

– Callers map: the keys of the table are method object references and the
values are the set of methods that call the key method.

– Loop Callees map: the keys of the table are method object references and
the values are the set of methods called by the loop in the key method. If
there are more loops than one, we should allocate more than one method set
to correspond to the different loops.

We extend the information known about a method by introducing new sum-
mary information for each method:

– hasPSOperation: the method contains a putstatic operation or a putfield
operation to a field visible outside of the class.

– hasGSOperation: the method contains a getstatic operation that works on
an object reference or a getfield operation that works on an object reference
visible outside of the class.

– hasLSOperation: the method contains memory load/store operations to fields
within the class that aren’t exposed outside of the class. The method is
virtual.

– hasException: the method contains instructions which might throw a Java
runtime exception.

– hasSynchronization: the method contains synchronized (monitor) segments.
– hasObjParam: the method’s input parameters contain an object reference.
– unclear: the method has not been analysed currently, or there are some

callees of this method which have not been analysed.

An example of the data organisation is shown in figure 6 and 7. The Loop
Callees Map is a subset of Callees Map, it records all the loop method calls
related to the loop.
4 In JaVM, the method object reference is an object reference to a VM Method object.

Lazy Interprocedural Analysis for Dynamic Loop Parallelization 9

func_A {

 func_B(x, y);

 For i = 1 .. N {

 func_C(i);

 func_D(x, i);
 }
}

func_C(int i) {

 func_E(m);

 func_F();
}
func_B(int x, int y) {

 func_F();

}

(a)

func_A

func_B func_C

func_F

func_D

func_E

(b)

Fig. 6. Example of runtime call graph

func_A

func_C

func_B func_F

func_Efunc_Efunc_Efunc_E

func_F func_Cfunc_Cfunc_Cfunc_C

func_D
func_A

func_Bfunc_Bfunc_Bfunc_B

func_Cfunc_Cfunc_Cfunc_C

func_D

func_B

func_D

func_Bfunc_B

func_D

func_C

func_E

func_F

func_A

func_A

func_A

func_C

func_Bfunc_Bfunc_Bfunc_B

func_C

(a) callees map (b) callers map (c) loop callees map

Fig. 7. Example showing runtime call graph maps

Every method’s summary should be a combination of the state shown above.
The caller method should check its callee methods’ states and update its own
states, or when a callee method finishes its analysis, it should notify its caller
method and make its caller method update states. The rules for updating states
are listed here:

– If the callee has state hasPSOperation, the caller should get hasPSOperation
state.

– If the callee has state hasGSOperation, the caller should get hasGSOperation
state.

– If the callee has state hasException, the caller should get hasException state.
– If the callee has state hasSynchronization, the caller should get hasSynchro-

nization state.
– If the callee has state hasLSOperation and the callee and caller are within

same class, the caller should get hasLSOperation state.

3.3 Implementation Detail

A detailed explanation of the interprocedural analysis for a hot method event is
described below. A similar process is performed when a class is loaded.

1. Check each instruction, and set the method’s state as listed in section 3.2.
2. For each call instruction:

– set the current method and the call target method in the callee map.
– set the current method and the call target method in the caller map.
– if the call target method (callee) has been analysed (it does not have unclear

state), collect its states and update the current method states based on the
rules listed in section 3.2, and if not, set the unclear state to current method.

10 Jisheng Zhao, Christopher Kirkham, Ian Rogers, et al.

3. When the instruction is finished, and it does not contains any states listed in
section 3.2. That means that this method could be part of a parallel loop. Then
do following steps:

(a) get the callers of this method from the callers map.

(b) for each caller, check the loop callees map to find out whether this method has
been called in a caller’s loop that might be parallelized but which depends on
some loop method calls.

(c) remove this method’s reference from the loop method call set corresponding
to the caller’s loop, which means that the caller’s loop doesn’t depend on this
method.

(d) of the loop method call set is empty, that means that the corresponding loop
can be parallelized. Switch the caller method’s execution path to the parallel
version of loop.

4. If the current method contains some loops, the parallel compiler should perform
data dependence test on those loops.

5. If one loop could be parallelized but contains method calls check the loop method
calls’ states:

– If all of the loop method calls don’t contain any states listed in section 3.2,
then the loop should be compiled as a parallel loop.

– If some of the loop method calls’ states contain unclear, the compiler can
not make decision at the current time. The loop has to be compiled with
two versions and the execution path should be set to the non-parallel version
initially.

– If any of the loop method calls’ states contain the state listed in section 3.2
except unclear, that means there are potential side effects in the loop and the
loop should not be parallelized.

4 Implementation Considerations and Extension

4.1 Data Dependence Test

With dynamic compilation the trade-off between compilation time and improved
performance is important. For this reason we use the GCD test [14] to determine
whether parallelization is safe. However, this test is simple and may be overly
conservative [15].

JikseRVM provides an extended Array-SSA[16] form that can be used to
analyse the data dependence between the load/store operations on array ele-
ments. An important property of this form is that it uses Java’s strong typing
information to remove many potential false dependencies.

Data dependency testing starts from the outer-most loop and proceeds to
the inner-most one; if a loop passes the test, then it should be annotated as a
potentially parallel loop.

For loop method calls, their input parameters should be treated as memory
load operations and their return values correspond to memory store operations.
Because of the constraints listed in section 3.1, the method should not contain
any potential memory load/store operation related to other memory store/load
operations in the loop body.

Lazy Interprocedural Analysis for Dynamic Loop Parallelization 11

4.2 Library Methods

Library methods differ from methods dynamic loaded in that we can know ahead
of time information about what dependencies exist. This information can be
placed explicitly in the compiler or through annotations to the library. For the
pure mathematical operations of java.lang.Math we therefore avoid any analysis
as we know they contain no side effects.

4.3 Exception Elimination

In section 2.5 we described that loops containing method calls that throw ex-
ceptions couldn’t be parallelized. During compilation exceptions are eliminated
and therefore we can potentially determine that loops can be parallelized. We
classify methods containing exceptions into two categories:

– Explicit Exceptions: this is a method that when called may explicitly throw
an exception.

– Potential Exceptions: these exceptions relate to runtime checking operations.
These are array bound, null object reference, object array store and class cast
checks.

Currently, we just check all such exceptions listed above, but in practice some
of them are redundant. In the example shown in figure 8, the caller func A creates
an array whose length is 10, and passes this array reference to callee func B. In
func B, there are no array element load/store operations which exceed the array
length. So the array bound check should be redundant in this call. To implement
this function, the runtime call graph would need to be extended so it could store
more runtime information for the optimizer.

func_A {
 double[] A = new double[10];

 func_B(A, 5);

}

func_B(double[] A, int index) {
 double value1 = A[8];

 For I = 1 .. 10 {
 ... = A[I];
 }

 double value2 = A[index];

}

the array index doesn’t
exceed the array length

Fig. 8. Interprocedural Array Bound Check Problem

4.4 Switching Loop Versions

In JaVM, each of the Java methods has its own code array holding the compiled
machine code; the code array is referred to by virtual method tables and also

12 Jisheng Zhao, Christopher Kirkham, Ian Rogers, et al.

an index in the JTOC5. A jump controls which version of the loop should be
executed, as shown in figure 9. The jump is overwritten to switch between the
loop versions. As the jump is outside of the loop, a thread that enters the loop
can’t witness a change to the jump. To enable new executions of the code to
witness the alteration to the jump we flush the data and instruction caches at a
point when no thread can be witness a glitch in the jump instruction changing.
To support switching the jump instruction, the compiler records the machine
code offset of the jump during the optimizing compilation.

:
:

0x37850210

JAM_BR 4

parallelized
loop

non-
parallelized
loop

JAM_BR 100
0x3785020C

0x37850208

0x3785030C

:
:

JAM_BR 8

parallelized
loop

non-
parallelized
loop

executing non-parallelized loop executing parallelized loop

JAM_BR 100

Fig. 9. Loop Version Switching

4.5 Reducing the Input Parameter Constraint

Section 3.1 lists all of the constraints for method selection, including that the
loop method call’s input parameters should not be object references. The reason
for adding this constraint is to prohibit potential memory operations on the
input object which may have side effects. If the input object is a simple object
whose data fields are all primitive type, with no static data fields and all of whose
methods obey the constraints in section 3.1, then there should not be any data
hazards. The compiler needs to make sure there are no data hazards related to
the loop method call’s input object6 in the loop body’s scope.

There are two issues that need to be addressed: how to check the object is
suitably simple, and remove the NULL CHECK for the input object reference.
To check the object is simple, we need to check all of its super classes recursively,
to make sure that all of the class fields are primitive. Currently, to avoid problems
caused by dynamic class loading we add a constraint that the input object’s class
should not have any subclasses.

The methods whose input parameters have object reference type must have
NULL CHECK instructions when the object reference is first accessed. We ex-
tended the compiler analysis phase to consider that if the caller method passes
a non-null reference to a callee, then that callee’s NULL CHECK operation for
this object is not necessary. As the callee may be recompiled earlier than its
caller, we have to add a new state for the callee method: hasInObjNullCheck

5 Java Table of Content - a table holding static information from classes.
6 In this scenario, the input object should be treated as both of memory load/store

operation.

Lazy Interprocedural Analysis for Dynamic Loop Parallelization 13

which means that all of the NULL CHECK operations are related to the input
object references, so this callee method could be part of parallel loops when the
compiler can make sure that all of its input objects are non-null.

5 Evaluation

The test result was obtained using an architectural simulator of the JAMAICA
chip multi-processor architecture. The configurations used ranged from having
2 to 16 processors, all having one thread context per processor. Our results are
normalized against the execution time of the serial program, which can exe-
cute on just one processor. Three of the benchmark kernels chosen were taken
from jBYTEMark[17], with the MoldynTest coming from the serial Java Grande
Forum Benchmark Suite[18].

0

50

100

150

200

250

300

350

0

50

100

150

200

250

300

350
16 p

12 p

8 p

4 p

2 p

MoldynTestIDEATestEMFloatTestFourierTest

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

 (
p

er
ce

n
ta

g
e)

Fig. 10. Automatic parallelization with interprocedural analysis on a range of bench-
mark kernels

100

150

200

250

100

150

200

250

normal parallelism
inter-procedural analysis

16 p14 p12 p10 p8 p6 p4 p2 p

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

 (
p

er
ce

n
ta

g
e)

90

120

150

90

120

150

normal parallelism
inter-procedural analysis

16 p14 p12 p10 p8 p6 p4 p2 p

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

 (
p

er
ce

n
ta

g
e)

(a) (b)

Fig. 11. Comparison of automatic parallelization of the MoldynTest

14 Jisheng Zhao, Christopher Kirkham, Ian Rogers, et al.

The results show that JaVM’s parallelization optimization is able to create
parallel code and improve performance. All the results show that performance
increases with a greater number of parallel processors. In figure 10 a maximum
speedup of 3.25 times was achieved. However, the performance improvement
gradually decreases as contention for the memory system becomes a problem.
The performance also didn’t scale fully with the number of processors as the
parallel region was only a small section of the running benchmark kernel and
virtual machine code.

Figure 11(a) shows that the interprocedural analysis is able to get a greater
speedup on the MoldynTest than just regular parallelization. The analysis phases
cause a small increase in compilation cost, which in figure 11(b) can be shown to
cause a slight deterioration in performance for the interprocedural analysis when
compared to just automatic parallelization for 2 and 4 processor configurations.

EMFloatTest.DoIteration

EmFloatPnt.AddSubInternalFPF EmFloatPnt.AddSubInternalFPF EmFloatPnt.MultiplyInternalFPF EmFloatPnt.AddSubInternalFPF EmFloatPnt.DivideInternalFPF

EmFloatPnt.choose_nan EmFloatPnt.RoundInternalFPF

EmFloatPnt.Add32BitsEmFloatPnt.Sub32Bits

Math.pow Math.sin Math.cos

FourierTest.DoIteration

FourierTest.thefunction

FourierTest.Trapidoze

(a) (b)(b)

EmFloatPnt.StickyShiftMantRight EmFloatPnt.denormalize

Fig. 12. Call Graph for FourierTest and EMFloatTest

Figure 12 shows a call graph for two of the benchmarks. The benchmarks
demonstrated the problem for automatic dynamic parallelization of the adaptive
compilation system. For example, FourierTest contained a parallelizable outer
loop in the method DoIteration which was inhibited by method calls to thefunc-
tion and TrapezoidIntegrate. Following analysis of these methods the interpro-
cedural system was able to enable the parallel loop in DoIteration. Similarly for
EMFloatTest, the parallel loop in DoIteration was created during compilation of
the 4th method, with the analysis enabling parallelization during compilation of
the 8th method.

6 Conclusion

This paper addresses problems with dynamic parallelization for CMP environ-
ments. It’s presented efficient and low cost analysis approaches that can gener-
ate parallel regions without the cost of recompilation. The effectiveness of these
approaches was shown by parallelizing previously serial Java programs, in par-
ticular a number of programs containing scientific kernels, and demonstrating a
speedup beyond that achieved by just automatic parallelization.

Currently, this analysis focuses on checking for potential side effects between
the caller and callee methods. With many memory operations this analysis may
be conservative. In future work, we plan to extend the runtime data structure
to store a greater amount of information to yet further expand automatic par-
allelization at runtime.

Lazy Interprocedural Analysis for Dynamic Loop Parallelization 15

References

1. : The Jamaica project. http://www.cs.manchester.ac.uk/apt/projects/

jamaica (2006)
2. IBM: JikesTMResearch Virtual Machine (RVM). http://jikesrvm.sourceforge.

net/ (2006)
3. Hammond, L., Hubbard, B.A., Siu, M., Prabhu, M.K., Chen, M., Olukotun, K.:

The Stanford Hydra CMP. IEEE Micro (2000) 71–84
4. Nagarajayya, N.: Improving application efficiency through chip multi-threading.

Sun developers forum (2005)
5. Wright, G.: A single-chip multiprocessor architecture with hardware thread sup-

port. PhD thesis, The University of Manchester (2001)
6. Burke, M., Choi, J., Fink, S., Grove, D., Hind, M., Sarkar, V., Serrano, M., Sreed-

har, V., Srinivasan, H., Whaley, J.: The Jalapeeño dynamic optimizing compiler
for Java. In: Proceedings ACM 1999 Java Grande Conference, San Francisco, CA,
United States, ACM (1999) 129–141

7. Zhao, J., Rogers, I., Kirkham, C., Watson, I.: Loop parallelisation for the
JikesRVM. In: Sixth International Conference on Parallel and Distributed Com-
puting, Applications and Technologies, PDCAT 2005. (2005)

8. Arnold, M., Fink, S.J., Grove, D., Hind, M., Sweeney, P.F.: Adaptive optimization
in the Jalapeño JVM. In: Conference on Object-Oriented. (2000) 47–65

9. Wolfe, M.J.: High performance compilers for parallel computing. Addison-Wesley,
Redwood City, CA (1996)

10. Zhao, J., Rogers, I., Kirkham, C.: A system for runtime loop optimisation in the
JikesRVM. In: Postgraduate Research in Electronics, Photonics and Communica-
tion (PREP 2005). (2005)

11. Qian, F., Hendren, L.J.: Towards dynamic interprocedural analysis in JVMs. In:
Virtual Machine Research and Technology Symposium. (2004) 139–150

12. Fink, S., Qian, F.: Design, implementation and evaluation of adaptive recompila-
tion with on-stack replacement (2003)

13. Sun Microsystems Inc.: The Java Virtual Machine Specification. 1.0 beta edn.
(1995)

14. Banerjee, U.: Loop Transformations for Restructuring Compilers, The Founda-
tions. Kluwer Academic Publishers, Boston (1994)

15. Petersen, P.M., Padua, D.A.: Static and dynamic evaluation of data dependence
analysis techniques:. IEEE Transactions on Parallel and Distributed Systems 7(11)
(1996) 1121–1132

16. Knobe, K., Sarkar, V.: Array SSA form and its use in parallelization. In: Sympo-
sium on Principles of Programming Languages. (1998) 107–120

17. Byte.com: The jBYTEMark. http://www.byte.com (2006)
18. Bull, J.M., Smith, L.A., Westhead, M.D., Henty, D.S., Davey, R.A.: A methodology

for benchmarking java grande applications. In: JAVA ’99: Proceedings of the ACM
1999 conference on Java Grande, New York, NY, USA, ACM Press (1999) 81–88

