Pure Method Analysis within Jikes RVM

Jisheng Zhao, Ian Rogers, Chris Kirkham, and Ian Watson

The University of Manchester,
Oxford Road, Manchester,
M13 9PL, United Kingdom
{jisheng.zhao, ian.rogers,
christopher.kirkham, ian.watson}@manchester.ac.uk

Abstract. Not all compiler analysis can determine a method call will
have no side effects, for example if the method called is performing mem-
oization of common results. Having a pure attribute allows such methods
to be flagged to the compiler and their values evaluated at compile time.
This allows a greater amount of partial evaluation with little compile
time overhead. The lack of overhead to the compiler motivates us to
look for other instances of pure methods, where rather than spend time
trying to inline and reduce code, we merely evaluate a call at run time.
This paper presents a study of different methods of inferring pure meth-
ods in the dynamic compilation environment of a Java Virtual Machine
(JVM). We look at programmer specified annotations, determining pure
method information from naive bytecode analysis and more sophisticated
analysis in an optimizing compiler. The optimizing compiler analysis is
able to speed up the run time environment by an average of 1.29% on a
range of DaCapo and SpecJVM benchmarks.

Keywords: Java Virtual Machine, Dynamic Compilation, Program Analysis

1 Introduction

Method inlining is a widely used approach for eliminating run time overhead of
method calls. JIT compilers employ method inlining to improve the compiled
program’s performance but inlining has a compilation cost when simplifying the
code is not trivial.

Pure annotations and compiler pragmas exist for two reasons. A pure method
may not have side effects, and a compiler may verify this [4]. A pure method
may have optimizations performed upon it, such as compile time evaluation [2].
In functional languages all functions are implicitly pure. In our system pure is a
guarantee that a method cannot have: memory load/store operations, synchro-
nization operations in more than one thread, throw exceptions, allocate memory,
perform method calls to non-pure methods, and perform run time services that
have side effects.

By looking for pure methods the optimizing compiler can reduce method
calls and perform other optimizations that wouldn’t be safe in the presence of a

x =y + 1 x =y + 1
foo (...); foo (...);
z =y + 1 z = Xj
(a) (b)
x = bar(const_0, const_1); x = val; // wal is calculated by

// compiler evaluation of
// bar(const_1, const_2)

() (d)

Fig. 1. Example of Pure Method Simplification

method call. For example, Figure 1 (a) lists a small segment of code: foo is a pure
method, so foo it will not affect the values of the fields x and y, thus the compiler
can perform common sub-expression elimination on the third statement making
it assign x to z directly (see Figure 1). Figure 1 (c) gives another simple example,
bar is a pure method and has two constant input parameters, so the compiler
can evaluate method bar(const-0, const_1) at compile time, get the return value
val and assign it to x directly.

A pure method can also be utilised to guarantee that arguments won’t escape
a thread. If an object doesn’t escape a thread then synchronization operations
on it may be removed. Note that such optimizations are only possible when
the pure method is only precisely reachable, that is if the method requires dy-
namic dispatch we don’t consider it for optimization. Dynamic dispatch may be
eliminated by guarded method inlining.

Although the program languages or compilers (e.g. Java, gec) provide pure
method annotations, the application programmers may not annotate all of the
pure methods in the application code. There are also potentially pure methods in
libraries (e.g. Java’s classpath) that were not annotated by the developers. The
compile time simplicity of evaluating a pure method and the extra optimization
opportunities it brings, make it attractive to automatically enable the compiler
to determine pure methods. This analysis can be viewed as a form of inter-
procedural analysis, but without any dependency tracking. In this paper, we
investigate how and what are the advantages of a dynamic compiler performing
automatic pure method analysis and annotation. The annotation provides more
opportunities for partial evaluation whilst reducing compile time costs.

2 Automatic Pure Method Analysis and Annotation

Automatic analysis means that the compiler needs to recoup the analysis work-
load. This is a common trade-off for compiler optimizations in a run time com-
piler. The automatic pure method analysis and annotation needs to balance the
optimization benefit and compilation overhead. Fortunately, the constraints for
a pure method are simple (as mentioned in Section 1). In this work we consider
two run time approaches to performing pure method analysis:

— Simple Pure Method Analysis: the compiler performs a simple constant time
analysis to check if a method is pure method. Using a summary of bytecodes,
held for each method within the run time, a simple mask can determine that a
bytecode containing method can be considered pure (see Figure 2 (a)). When
the class is loaded the loader scans the bytecodes and records information
on what operations the method can perform. Combining this with a check
that the method obeys the pure method constraints (described in Section
1), a simple pure method analysis is possible.

— Optimizing Compiler Analysis: this analysis is performed after the optimiz-
ing compiler has performed a number of optimizations. In this study, we
employ constant propagation, copy propagation, type propagation, and lo-
cal sub-expression elimination prior to the analysis (see Figure 2 (b)). By
creating a pure method the analysis will enable further optimizations when
the method is considered during the compilation of other methods.

Java _)Computg Method Pure Analysis|—> w -
Bytecode| |Information

(@)
Java Const/Copy | _ [Type/Array -
Bytecode BCto IR —> Propagation > Propagation —>|Loca| CSE|—>|Pure Analys:s|—>

(b)

Fig. 2. The Location of Purity Analysis in Optimizing Compiler.

In our analysis the following compilers phases use pure method information:
simplification (evaluating a method call with all constant arguments), common
sub-expression elimination, escape analysis and dead code elimination. We con-
sider two further configurations when evaluating pure methods. We look at just
the pure annotations provided by the programmer, and whether pure annota-
tions are optimized by the compiler or not.

3 Evaluation and Discussion

We use the Jikes Research Virtual Machine (RVM) [1], an open source Java Vir-
tual Machine (JVM) written in Java. Jikes RVM performs a quick compilation
on a method upon its first execution; hot methods are recompiled by an opti-
mizing compiler which has three optimization levels: 0, 1 and 2. To evaluate the
methodologies proposed in the previous section, we chose DaCapo benchmarks
[5] and SpecJVM98 1.04 [8]. All of these programs are run on a Intel P4 3.0 GHz
processor, 1GB memory and OpenSUSE 10.3 operating system. Each benchmark
was run 60 times and the mean and 95% confidence intervals calculated.

Table 1 lists the analysis result gained from the two approaches (simple/com-
plex pure method analysis) by applying dynamic compilation. As the analysis
is only utilised in the JikesRVM’s optimizing compiler it will only be applied to
frequently executed methods. This limits the number of annotated pure methods
that can be determined at run time. In all of these benchmark programs, there
are no pure methods annotated by the application programmer.

[Analysis Approach [antlr [bloat[pmd [fop[hsqldb[jython[xalan[mpegaudio[javac[compress[raytrace]

Simple Pure Method| 1 0 2 0 0 5 0 2 0 0 0
Analysis

Complex Pureflor2| 1 [20r3|0 1 6 0 2o0r3 10 Oor1 1
Method Analysis

Table 1. Number of Pure Methods Determined Dynamically.

For some benchmark programs, the number of pure methods determined
at run time is not a static value (e.g. antlr, pmd) when they are evaluated
in multiple times. Because JikesRVM’s adaptive recompilation system is not
precise for identifying all of the hot methods in each run (i.e. it may lost some
hot method in some run).

On top of the methods determined dynamically in the different benchmarks
the Jikes RVM boot image is compiled and analysed before run time. Originally,
there are 282 pure methods in JikesRVM boot image. Using simple analysis 1,469
additional methods were found to be pure in the boot image.

In Figure 3 we have four configurations:

— No Pure: there are no pure method related optimizations in compiler.
Programmer Provided: the pure methods are annotated by the application’s
programmer or have been added to the class library during the Jikes RVM
build using bytecode engineering. There is no compiler analysis for pure
annotations. 236 methods are annotated through bytecode engineering of
the class library and 155 methods are directly annotated within Jikes RVM
and the class library support code.

— Simple Pure Method Analysis: use simple flags to determine pure methods
as introduced in Section 2. This analysis may be used in building the boot
image.

— Optimizing Compiler Analysis: use the optimizing compiler to determine
pure methods as introduced in Section 2. This technique may also be applied
to the boot image of the Jikes RVM, but isn’t in this work.

We use the No Pure scheme to compare the performance with other three
schemes. Figure 4 shows the speedup of the schemes: Programmer Provided,
Simple Pure Method Analysis, and Optimizing Compiler Analysis.

On average with optimizing compiler analysis a speed up of 1.29% was
achieved over not using pure annotations. The simple analysis for hsqldb gave a
small -0.13% slow down, but this was the only noticeable slow down due to the

Time (Milliseconds)

30000

25000

20000

15000

10000

5000

antlr bloat pmd fop hsqldb jython xalan mpegaudio javac compress raytrace

ONoPure BP Provided DSimple Analysis ~ EOpt Compiler Analysis

Fig. 3. Mean and 95% Confidence Interval for Overall Times

4

3.5 —

3

2
S 25
a
o
z —
g
3 2
] r
>
°
8
2 15
n
-
@
e
o 1
-8

0.5

0
antir bloat pmd fop hsqldb jython xalan mpegaudio javac compress raytrace
-0.5
D Programmer Provided B Simple Analysis O Opt Compiler Analysis

Fig. 4. Speedup Over No Pure Annotations.

extra analysis and optimization. The optimizing compiler analysis more than
recouped this slowdown.

For Programmer Provided configuration, the speedup is mainly gained from
the programmer providing pure methods that benefit code within the boot im-
age. The difference of speedup between Simple Pure Method Analysis and Opti-
mizing Compiler Analysis is caused by the dynamically determined pure meth-
ods in the benchmark programs.

4 Related Work

Xu et al. [10] explored both static and dynamic purity analysis for Java byte-
code. The static analysis is implemented in the Soot compiler [9], which analyses
and then generates Java class files with additional purity information. The dy-
namic analysis is implemented in an extended component of SableVM [6]: a Java
bytecode interpreter. The purity analysis is evaluated by different levels of con-
straints (strong purity, moderate purity, weak purity and once-impure purity).
They measure the performance improvement of a memoization optimization, in
SableVM, and show sizeable run time overhead to their system.

Salicanu and Rinard [7] introduced a purity analysis approach in a static
Java bytecode compiler: Flex [3]. Their approach is built on top of a combined
pointer and escape analysis for Java programs and is capable of determining that
methods are pure even when the methods do heap mutation, provided that the
mutation affects only objects created after the beginning of the method.

In contrast with the above work, the method presented in this paper imple-
ments purity analysis in a JIT optimizing compiler that needs to achieve a good
balance between analysis overhead and benefit. Our results have shown that em-
ploying light weight purity analysis in JIT compilation has benefitted the run
time performance.

5 Conclusion and Future Work

We have shown that determining pure methods at run time is advantageous to
the dynamic compilation environment, it can lower the overhead of compilation
and lead to an overall speedup. On average we achieved a 1.29% speed up on a
range DaCapo and SpecJVM benchmarks. We hope to further utilise approaches
such as annotations to perform efficient optimizations. We are particularly inter-
ested in the area of value specialisation. There are other compiler optimizations
that could use the pure method information, for example memoization could be
added onto methods to cache common results.

References

1. JikesT™Research Virtual Machine(RVM). http://jikesrvm.sourceforge.net, 2005.

Gcce online documents. http://gcc.gnu.org/onlinedocs/, 2007.

3. C. Scott Ananian. Mit flex compiler infrastructure for Java. http://www.flex-
compiler.lcs.mit.edu, 1998-2004.

4. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The spec# programming
system: An overview. In CASSIS’0/4: Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices. Springer, January 2005.

5. S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks: Java benchmarking
development and analysis. In OOPSLA ’06: Proceedings of the 21st annual ACM
SIGPLAN conference on Object-Oriented Programing, Systems, Languages, and
Applications, New York, NY, USA, October 2006. ACM Press.

6. Etienne Gagnon. A portable research framework for the execution of Java bytecode.
PhD thesis, Montreal, Que., Canada, Canada, 2003. Adviser-Laurie J. Hendren.

7. A. Salcianu and M. Rinard. A combined pointer and purity analysis for Java
programs. Technical Report MIT-CSAILTR-949, MIT, May 2004.

8. SPEC JVM98 benchmarks. http://www.spec.org/osg/jvm98/, 1998.

9. R. Vall, e Phong, C. Etienne, G. Laurie, H. Patrick, and L. Vijay. Soot - a java
bytecode optimization framework, 1999.

10. Haiying Xu, Christopher J. F. Pickett, and Clark Verbrugge. Dynamic purity
analysis for java programs. In PASTE ’07: Proceedings of the 7th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineering, pages
75-82, New York, NY, USA, 2007. ACM.

o

