Adding Testability to an Asynchronous Interconnect for GALS SoC

Aristides Efthymiou
a.efthymiou@cs.man.ac.uk

John Bainbridge
jbainbridge @ieee.org

Douglas A. Edwards
d.edwards@cs.man.ac.uk

Department of Computer Science,
University of Manchester,
Oxford Road M13 9PL, UK

Abstract

Asynchronous circuits offer great potential for solving
the interconnect problems faced by system-on-chip design-
ers, but their adoption has been held back by a lack of
methodology and support for fabrication testing of such
circuits. This paper addresses this problem using a par-
tial scan approach which achieves a test coverage of 99.5%
on the CHAIN network-on-chip interconnect fabric which is
used as an example. Test patterns are generated by a custom
program automatically, given the topology of the intercon-
nect. In comparison to standard, asynchronous, full-scan
LSSD methods, area savings in the order of 50% are noted.

1 Introduction

The design of asynchronous circuits has been attracting
more interest recently, as clock distribution on a large die
becomes increasingly diffcult. The ITRS road-map pre-
dicts that, as a solution to the clock distribution problem,
Globally-asynchronous, Locally-synchronous (GALS) sys-
tems will become mainstream in the near future. In a GALS
system, a number of synchronous islands of logic commu-
nicate asynchronously using a suitable interconnect. Unfor-
tunately, the testability of asynchronous systems is consid-
ered one of their major drawbacks. This is a vital issue in
enabling industrial adoption of this technology.

This paper describes novel design-for-testability and
test-pattern generation techniques developed to produce a
fully-testable version of CHAIN, an asynchronous SoC in-
terconnect fabric [1]. The standard single stuck-at fault
model is used and our method has been implemented in
a computer program that, given the topology of a CHAIN
interconnect, produces a sequence of test patterns that
achieves nearly 100% fault coverage.

As asynchronous circuits resemble combinational cir-
cuits with feedback loops, previously developed techniques
[2] insert scan-latches to break the feedback loops when

Proceedings of the 13th Asian Test Symposium (ATS 2004)
0-7695-2235-1/04 $20.00 © 2004 1IEEE

the circuit is under test, as shown in £gure 1. Level sen-
sitive scan design (LSSD) is used so that the asynchronous
mode of operation is retained when both master and slave
latches are transparent. Using this DfT logic, the circuit
may be tested using conventional ATPG practices, as, for
testing purposes, it possesses synchronous operation. Al-
though this method does work, inserting scan latches at ev-
ery feedback path present in the circuit incurs a signi£cant
area overhead.

In this paper we exploit the regular topology of CHAIN
interconnect circuits and a useful property of the C gate test
patterns to produce an elegant solution to test pattern gener-
ation while using an area-saving, partial-scan method.

2 The CHAIN asynchronous interconnection

CHAIN is an architecture for system-on-chip intercon-
nect using delay insensitive signalling and a message pass-
ing protocol. Connections are built from gangs of narrow
signalling channels, each with its own acknowledge. Since
completion detection over these narrow channels only re-
quires the use of simple circuits and avoids the large trees
of C gates found in conventional, wide datapaths, the links
can operate at much higher speeds than the equivalent wide-
datapath would be capable of.

The £rst CHAIN implementation uses a simple 1-hot
code for the data encoding, with 5 forward going signals in
each channel allowing either two-bits of data or an end-of-

Combinational circuit

Combinational circuit

scan latcl

(a) Asynchronous circuit (b) ‘Scanned’ equivalent

Figure 1. Scan latch insertion.

Co

MPUTER

SOCIETY

pipe-latch

router

SX

eop_

Multiplexer

Router

Arbiter

Figure 2. The CHAIN interconnect.

packet marker to be transmitted per communication hand-
shake. Two such channels were used for each of the forward
(command) and reverse (response) directions such that mes-
sages were transmitted over the CHAIN network serially,
4-bits at a time.

Fig. 2 shows the main elements of the CHAIN fabric:
the router, arbiter, and multiplexer. All these blocks contain
variations of the same circuit, a delay-insensitive pipeline
latch, which stores and forwards the transmitted data.

Apart from the ‘local’ feedback loops inside the C gates,
other feedback loops are also found in asynchronous cir-
cuits. Such a global loop, spanning two pipeline latches, is
illustrated in Fig. 2. The blocks called SL indicate where
scan latches are inserted to break these loops when the cir-
cuit is tested.

As a partial-scan strategy is employed (i.e. the C gates
are not scanned), the state of the circuit has to be main-
tained from the application of one pattern to the next. Thus
a second, parallel, slave latch is added to keep the state of
the asynchronous circuit unchanged while patterns are be-
ing scanned in. Compared to standard scan latches used
in asynchronous circuits [2], these are approximately 50%
larger. This is the price paid for using a partial scan ap-
proach, but it is justifed by the lower total number of scan-
latches required, which is approximately N times lower than
in a full-scan approach for a CHAIN M-of-N pipeline latch.

During testing, routes from all transmitters to all re-
ceivers are set up by scanning in appropriate values to the
scan-latches in the router and arbiter blocks; then patterns
are transmitted from the source interconnection ports, while
the output ports and the scanned acknowledge signals are
observed. Depending on the interconnection topology, it is
desirable to test as many routes as possible in parallel to
minimize the testing time. Moreover, since some parts of
the interconnection are shared among different routes, not

Proceedings of the 13th Asian Test Symposium (ATS 2004)
0-7695-2235-1/04 $20.00 © 2004 1IEEE

all route combinations between transmitters-receivers need
to be tested, as long as every pipeline latch is tested.

For each route, the interconnection is £rst tested by ap-
plying patterns aimed to expose stuck-at faults in the C gates
of the pipeline latches, including those inside routers and
arbiters. The second phase targets faults in the completion
detection blocks of the pipeline latches. Finally, the control
parts of the routing components are tested.

3 Testing the C-gate network

Achieving high test coverage requires generating se-
quential test patterns for asynchronous logic gates. In our
experience conventional ATPG tools are unable to generate
patterns with a high coverage for these circuits. We have de-
veloped a general method for generating patterns that yields
100% fault coverage for all types of C gates which is also
applicable to other sequential gates.

All the parallel C gates inside the pipeline latches exhibit
the same connectivity: an ‘independent’ input (a) coming
from the upstream pipeline latch, one or two ‘common’ in-
puts from the scan-latches (b for the acknowledge signal, ¢
for route select: sx or sy) and their outputs become the ‘a-
inputs’ of the next stage. The intention is to use the same
patterns for all parallel C gates in a pipeline latch, thus test-
ing the same faults in all C gates simultaneously. This will
also help to keep the number of patterns and the test time to
a minimum.

Only three types of C gates can be found in a CHAIN
interconnection: 2-input C gates (CM2), 3-input C gates
(CM3), and 3-input asymmetric C gates (CM21) of which
one input (marked with a ‘+’) is active only for rising (out-
put) transitions. Since all the C gates in a pipeline latch are
intended to be tested in parallel using the same patterns, it
is essential that the same patterns can be used for the CM3

Co

MPUTER

SOCIETY

Table 1. C-gate patterns.

CM2 CM3 (CM21)
a blgla b c q
1 1{1]1 1 1 1
1 0o|1|1 0O O 1
0O 0{0O|O0 O O 0
0 1]|ofo 1 1| o |&obd
1 1(1]1 1 1 1
O 1/1]0 1 O 1
0O 0{0O|O0 O O 0
1 001 0O 1 0
0O 0 O 0 local
1 1 0 0
1 1 1 1
0 0 1] 10

and CM21 gates, which are simultaneously present in the
same pipeline latches.

Our experiments showed that the faults in CM21 are cov-
ered by patterns generated for CM3, i.e. the patterns for
CM3 are a superset of those for CM21. As can be seen
in table 1, their only difference is that the pattern {a,b,c} =
{0,0,1} with a previous output of 1 generates a 0 for CM21
(c is the ‘+ input’) while it remains 1 for CM3. This dif-
ference complicates pattern generation slightly, as an ‘all-
clear’ pattern needs to be added to reset all the C gate out-
puts to the same value. Although this feature was not ex-
ploited here, it is interesting to notice that ignoring the third
input (c), the test patterns for 2-input C gates are also in-
cluded in those for the 3-input C gates.

3.1 Test patterns for the C-gate network

The sequences of patterns for the C gates are shown in
table 1. Many of the patterns common to all three types
of C gates have the property that the produced gate out-
put value is the same as that of their ‘independent’ input a.
These are the top £ve patterns in table 1. The importance
of these patterns is that they can be used to exercise all the
pipeline latches along a link route (from an initiator to a tar-
get) simultaneously, since the same values are generated at
the a-inputs of all the C gates in all the latches in the link
route. This saves a signifcant amount of test time. As they
are used for the whole link route, these patterns are called
‘global patterns’ in this paper. Out of the many possible
ways to order the test patterns of a C gate in a sequence,
we intentionally selected the sequence of table 1 so that as
many ‘global patterns’ as possible are placed consecutively
in order to take full advantage of the above property.

For the remaining C gate patterns, called ‘local’ here,
each pipeline latch must be tested independently. To apply
the local patterns to a specifc latch, the upstream latches

Proceedings of the 13th Asian Test Symposium (ATS 2004)
0-7695-2235-1/04 $20.00 © 2004 1IEEE

in the link route must be made to generate the appropriate
values, while the ones downstream must be set to propagate
the results to the end of the link route.

Generating the needed a-input values for the pipeline
latch under test is simple: If a value o must be produced
at the a inputs of a pipeline latch, all the upstream latches
should have value « scanned-in to their b and ¢ inputs and
the initiator at the source of the link route should also drive
its ports to the same value «.. This will cause each C gate to
change its output to « in a ripple fashion.

3.2 Fault propagation through C gates

Propagating values down a route involves propagation
through a number of consecutive C gates, which is not a
trivial issue since C gates are sequential circuits.

In the 2-input C gate of Fig. 3, for example, assume that
a fault upstream sets A = « and this value must be propa-
gated through the gate for the fault to be detected. To prop-
agate o from A to the output (), the other input (B) should
also be set to . But if the fault is not present and the in-
verse value actually appears at A, it will not be propagated
because it is blocked by the value of the other input. Then
the output will remain at whatever value was stored in the C
gate previously which could be wrongly detected as a fault.

Thus in order to effectively propagate a fault, the previ-
ous value of the C gate output must be taken into considera-
tion. If the previous C gate output () and the good machine
value expected at A are equal, then B should be set to the in-
verse value; in case there is a fault, it will propagate through
the C gate, change the output and thus will be detected. If
@ is the inverse of the expected value at A, then B should
be set to the expected value; if there is a fault, there will not
be a change in the output value and thus the fault will be
detected.

The above method is directly generalisable to 3-input C
gates and asymmetric C gates. In a link where a value must
be propagated through multiple C gates the above is simply
applied to each gate down to a primary output.

3.3 Testing of completion detection circuits

The test process described so far covers all the faults in
the pipeline-latch C gates but not the faults at the comple-
tion detection blocks, which generate the interconnect ac-
knowledgment signals.

Figure 3. Fault propagation through C gates.

Co

MPUTER

SOCIETY

Table 2. Area overhead comparison

1-of-4 3-of-6
partial full fip partial full f/p
scan cells 35 99 2.8 67 147 2.2
Total area (um?) 17225 30755 1.8 | 28316 45228 1.6
DFT area (um?) 7399 (43%) 20929 (69%) 2.8 12814 (45%) 29726 (66%) 2.3
Boundary area (um?) +9403 (63%) 49403 (76%) 1.0 | +10940 (61%) +10940 (72%) 1.0

In case of a 1-of-N data encoding implementation, the
completion detection block is just an (N+1)-input OR gate,
probably built out of low fan-in gates, if N is large. The test
patterns applied for the C-gate part of the pipeline latches
cover all faults in the OR gate except for the stuck-at-0
faults at the individual inputs of the OR gate. To test these
faults, a series of pattern pairs is required in which, £rst,
only one of the N+1 wires is driven high at any time, fol-
lowed by a pattern where all wires are cleared. As these
patterns are ‘global’, all such faults in an end-to-end route
are tested with one set of 2(N+1) patterns.

When M-of-N encoding is used, completion detection
logic is more complicated and uses C elements, some of
which may have to be scanned. For example for a 3-of-6
completion detection block 21 patterns are required in com-
parison to 10 for 1-of-4 encoding.

4 Evaluation

We have examined two interconnections with 1-of-4 and
3-of-6 encoding. Both are implemented in structural Ver-
ilog mapped for the UMC 0.18um process using the VST
standard-cell library, which does not contain any special,
asynchronous gates. Since the added DfT circuits are placed
locally and the only global wiring they require is a single
scan-chain, the impact of routing is ignored in this evalua-
tion. We believe this is the worst case comparison, as the
area overhead of the DfT circuits will not be amortised over
the total (cells and routing) area of the interconnection.

For the 1-of-4 implementation, a total of 35 scan latches
are required; this number rises to 89 when the “boundary”
scan-latches at the input and output ports are included. This
represents a DfT area which is 43% of the total (63% in-
cluding the boundary latches). In comparison, a full-scan
approach [2] would require 99 scan latches (69% of the total
area), or 153, incl. boundary scan (76% of total). For 3-of-6
encoding the absolute number of scan latches is higher and
similar percentages were measured. Table 3.2, summarises
these results.

Proceedings of the 13th Asian Test Symposium (ATS 2004)
0-7695-2235-1/04 $20.00 © 2004 1IEEE

5 Conclusions

Full-scan, LSSD is a viable approach for testing asyn-
chronous systems and test patterns can be produced using
conventional ATPG tools. Unfortunately the test structures
that need to be added have a very large area overhead in
a typical asynchronous system. Partial-scan testing can be
employed to reduce this overhead, but there is no automatic
way to decide where scan latches should be inserted.

In this paper scan-latches are inserted only to break
global feedback loops, thus reducing the area overhead. The
application of the method and the pattern generation process
is shown in detail for an asynchronous interconnect fabric.
Such interconnections are very likely to be used in the near
future to build globally-asynchronous, locally-synchronous
systems-on-chip.

Nearly 100% fault test coverage is achieved with a rel-
atively moderate increase in area, for an asynchronous cir-
cuit. In comparison full-scan LSSD produces a circuit oc-
cupying about 50% more area for the same interconnect,
while there is no noticeable difference in the delay overhead
caused by the two methods.

Acknowledgements

This work was partially funded by the EU through the
IST-2002-37796 ASPIDA project. CHAIN was created
with funding from EPSRC and Theseus Logic Inc. The au-
thors are grateful for this support.

References

[1] W. J. Bainbridge and S. B. Furber, “CHAIN: A de-
lay insensitive CHip Area INterconnect,” IEEE Micro,
vol. 22, no. 5, pp. 16-23, Sept/Oct 2002.

[2] K. van Berkel, A. Peeters, and F. te Beest, “Adding
synchronous and LSSD modes to asynchronous cir-
cuits,” in Proceedings of the International Symposium
on Asynchronous Circuits and Systems, Apr. 2002, pp.
146-155.

Co

MPUTER

SOCIETY

