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Abstract The increases in wire resistance and capacitance m
that wire delays are becoming more significant compared
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The demands of System-on-Chip (SoC) interconnect
increasingly cannot be satisfied through the use of a
shared bus. A common alternative, using unidirectional,
point-to-point connections and multiplexers, results in
much greater area requirements and still suffers from some
of the same problems.

This paper introduces a delay-insensitive, asynchro-
nous approach to interconnect over long paths using 1-of-
4 encoded channels switched through multiplexers. A re-
implementation of the MARBLE SoC bus (as used in the
AMULET3H chip) using this technique shows that it can
provide a higher throughput than the simpler tristate bus
while using a narrower datapath.

1. Introduction

The major challenge that faces designers of System-on-
Chip (SoC) integrated circuits is achieving the required
functionality, performance and testability whilst minimis-
ing design cost and time to market. The key to achieving
this goal is a design methodology that allows component
reuse. Such methodologies have been an enabling factor in
the success of the fabless vendors of intellectual property,
such as ARM Ltd, who license designs of the same proces-
sor core macrocells to many competing semiconductor
manufacturers.

These design methodologies rely upon the use of a
standardised interconnection interface (usually some form
of shared bus) for connecting the many component blocks
together to form an on-chip system. This system-level inter-
connect presents increasing difficulties as feature sizes are
reduced for a number of reasons:

• small feature sizes allow larger designs, and so more
functional units can be incorporated into a single chip
placing greater demands on the interconnect;

• wires are taller but narrower and may be placed closer
together, leading to increased coupling (crosstalk) be-
tween wires;

• narrower wires have higher resistance, leading to slower
signal edges and longer interconnect delays.

gate delays as process feature sizes shrink. This means
isochronic fork or equipotential assumptions are no long
valid for long interconnecting wires, further complicating
the design and validation of long, high-performance trista
buses be they synchronous or asynchronous in operatio

Instead, it may be preferable to use a gate multiplex
approximation to a bus as in figure 1, which uses more w
(and control logic) overall, but each wire is shorter an
presents less load to its driver. However, even with th
scheme the wires can still have significant length and th
incur substantial crosstalk and resistance effects.

2. Crosstalk

As an example, minimum width wires at minimum sep
aration on the 0.35µm process used for the AMULET3
chip had a lateral capacitance of 30pF/mm between ad
cent wires on the same layer, an interlayer capacitance
130pF/mm and a resistance of 100ohms/mm in the wo
case. Even with this slightly outdated process technolo
the dimensions and relative positions of long wires can ha
a significant effect on the signals they carry.

The severity of, and theory behind, these effects is d
cussed elsewhere [3,8,12] but a simple SPICE simulation
a group of wires such as was performed during the MAR
BLE bus design [4,5,6] is sufficient to illustrate the prob
lem. Such simulations show that when a wire is surround
in both horizontal and vertical directions by other wires (a
can occur with the most naive wire layout, or with automa
ically routed wiring) the activity on these wires can have
significant effect on the surrounded wire.

Tristate bus Gate multiplexed equivalent

Figure 1: Tristate/multiplexed bus construction
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The three curves in figure 2 show the nominal case delay
when only one wire is switching (middle curve), the worst
case delay experienced when 1 wire switches (at the same
instant in time) in the opposite direction to all of its neigh-
bouring wires (upper curve), and the best case delay expe-
rienced when all of the wires are changing level in the same
direction at the same time (lower curve).

The delay can be reduced by increasing the wire width,
which gives a linear reduction in its resistance, with a less
significant increase in the capacitance [17] since much of
the capacitance in deep submicron processes is due to fring-
ing effects. Increasing the separation of wires on the same
layer and avoiding running wires on adjacent layers in close
proximity allows the capacitance between wires to be
reduced.

In AMULET3H [2,9] the processor memory bus (9mm
in length) used only one metal layer with wires twice the
minimum width and separation, and the MARBLE system
bus (5mm in length) used only two of the metal layers,
again with a wider spacing. However, layout modifications
to reduce wire delay consume considerable silicon area and
are only feasible up to a point.

Possible variations in delays in long wires, as illustrated
in figure 2, caused by crosstalk make bundled data systems
difficult to design, requiring the inclusion of large margins
which seriously affect the performance of the system. More
than 1ns of the 12ns MARBLE cycle time is the delay ele-
ment to allow for crosstalk variations. Synchronous design
approaches face a similar timing closure problem since the
clock frequency must be chosen such that the receiver is
told that data is stable at the correct moment.

3. Improving Interconnect Performance

Techniques applicable to increasing the performance
the interconnect include: inserting repeaters/pipelin
latches into the datapath; splitting the datapath into
number of independent, narrower datapaths; using a del
insensitive signalling scheme to avoid incurring the wors
case delay; and using transition signalling to avoid the pe
alty of a return-to-zero phase. These issues are discusse
the following subsections.

3.1. Repeaters and pipeline latches

Building the fabric of a shared bus using multiplexer
means that all signals are unidirectional allowing caref
management of their delay through the insertion of repea
amplifiers (buffers) at regular intervals along their pat
[3,8]. As an example, (from figure 2), a 10mm wire has
nominal delay of 1.6ns whilst a 2mm wire has a delay o
0.2ns. An inverter with a fan-out of three has a delay
0.15ns in this technology. Inserting four inverters into th
path to amplify the signal every 2mm gives a total nomin
end-to-end delay of about 1.6ns.

Amplifying the signal at intervals along the line also ha
a beneficial effect on the variation in the delay between t
slowest case and fastest case, reducing the±1ns variation
to ±0.75ns. This variation in the delay for the whole pat
must still be allowed for in the choice of clock frequency o
delay-margin.

A higher thoughput can be obtained by using a pipelin
latch instead of the amplifier/inverter to both amplify th
signal and spread the link delay over multiple pipelin
stages. Splitting the 1mm wire into five pipeline stages th
gives a 5X improvement in throughput with minima
latency penalty, since we are replacing a forward goin
amplifier with a latch.

3.2. Data-path width

Unfortunately, adding latches into a wide single-ra
datapath causes problems because of the high load on
latch-enable signal. This means that either the circuit ru
at low power and low speed, or, to operate at high spee
appreciable power must be consumed to open/close
latch. For a delay-insensitive (DI) encoded datapath, the
is no ‘wide latch enable’ signal, but instead the synchron
sation of the acknowledge signals from the many bits of t
datapath latch introduces considerable delay. Breaking
wide datapath into a group of narrower datapaths as illu
trated in figure 3 (for a 12-bit datapath split into 3 separa
channels), and only synchronising their activity at each e
of the pipeline, thus offers the possibility of operating at
higher frequency.

Figure 2:  Signal propagation delay in 0.35 µm
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Pipelining the datapath and partitioning it into a set of
narrower links which run independently also has a benefi-
cial effect on the peak driver supply current as discussed
elsewhere [7] since all of the drivers of the outputs of dif-
ferent pipeline stages will not, hopefully, switch at exactly
the same time as would occur with a wide datapath. The
magnitude of the peak driver current, and hence the corre-
lation of electromagnetic emissions from switching of the
interconnect, will thus be reduced.

3.3. Delay-Insensitive (DI) interconnect

Delay-insensitive design methods allow the possibility
of exploiting the average case delay rather than the worst
case. This could amount to a significant saving with long
interconnections.

Furthermore, with conventional single-rail design styles
(both synchronous and asynchronous), timing analysis is
required to identify the slowest wire in a group, so that the
receiver can correctly be told when the data is stable (either
using clock or a matched delay path). The use of automated
place and route tools to meet short time-to-market further
exacerbates these problems since automated layout can
lead to a larger distribution of delays in a group of wires car-
rying related signals.

A delay-insensitive design style avoids the need for this
timing analysis, giving designs that operate correctly what-
ever the delay in the interconnecting wires. Such techniques
have previously been used for constructing asynchronous
buses [13] and processor systems [11].

3.4. Transition signalling

Transition signalling, which tends to result in large, slow
circuits may be a good alternative to four-phase return-to-
zero (RTZ) signalling for long interconnects because each
communication across the link only requires two link prop-
agation delays, as opposed to four.

Unfortunately, whilst transition signalling offers signif-
icant power advantages over RTZ signalling, the pari
function required to detect an event is expensive to imp
ment in CMOS technology requiring the use of XOR gate
which result in slow circuits with heavily loaded signals
For this reason, we only consider RTZ encodings from he
on.

4. The 1-of-4 DI Data Encoding

A 1-of-4 data encoding uses a group of four wires t
transmit two bits of information per symbol. A symbol is
one of the two-bit codes 00, 01, 10, or 11 and is transmitt
through activity on just one of the four wires.

Since it is possible to detect the arrival of each symb
at the receiver (with RTZ signalling, the wires are all low
when no symbol is being transmitted) a 1-of-4 encoding
delay insensitive, as are all the other 1-of-N codes [19].

Further advantages of 1-of-4 RTZ signalling are that,
bundles are routed in close proximity:

• the likelihood that two adjacent wires will switch at the
same time is much less;

• any crosstalk that does occur will be between wire
switching their signals in the same direction.

Crosstalk should therefore not be as detrimental to p
formance for a 1-of-4 encoded interconnect as it is for a s
gle-rail implementation.

1-of-4 systems are also attractive from a power co
sumption perspective, as they convey 2 bits of informatio
using only 2 transitions as opposed to the 4 transitions th
would be required if a dual-rail encoding were chose
Given that in a single rail system, assuming random da
an average of 50% of the signals forming a microprocess
data bus change state every time a data value is transmit
then 1-of-4 encoded RTZ has only a factor 2 worse pow
cost. There is also the cost of the protocol conversion
course.

5. 1-of-4 Modules

The key to constructing a high throughput interconne
system is a fast pipeline latch structure. True an
complement forms of a standard-cell 1-of-4 pipeline latc
implementation (without reset inputs) are shown in figu
4. Corresponding STGs describing the behaviour of the
latches are shown in figure 5. In brief, the operation of th
(leftmost in figures 4 and 5) latch is that:

• initially the input group is low;

• an input symbol is presented by raising one of the i
puts, in[1] say;

• since xa is low at reset, in[1] passes to nx[1] causing
acknowledge on nina;

Wide datapath pipeline Equivalent narrow pipelines

Figure 3: Reducing the datapath widths
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• in[1] may then fall at any time, but this will not be
passed to nx[1] until xa has risen, indicating that the
next stage has accepted the value encoded on the nx
lines;

• after nx[1] rises, so does nina, returning the latch to its
original idle state.

A chain of these pipeline latches operates with a cycle
time of about 1.5ns (10 inverter delays) in a 0.35 micron
CMOS technology [20] giving a throughput of just over
1Gb/s using five wires between successive pipeline latches,
or 200Mb/s/wire.

Ignoring the transmitter and receiver encoders/decoders,
two other components (serving similar functions to Suther-
land’s Micropipeline elements[16]) are required for the cre-
ation of a high throughput 1-of-4 transmission system
allowing the connection of more than two devices:

• a channel multiplexer (merge)

• a steering mechanism (select)

Implementations of these modules for a 1-of-4 RTZ
encoded data stream are introduced in the following sec-
tions. These modules all have a 10 inverter delay cycle time
(about 1.5ns), the same as the pipeline latch structure,
although, to achieve this, a separate acknowledge signal is
used for each bit of the datapath in some blocks. These
blocks must be connected to a modified version of the latch
which accepts such ‘single-bit’ acknowledges and ensures
that they are all inactive before allowing new data to pass
through to its output. Forking a data stream into two sepa-
rate streams simply requires a Muller C-element in the
acknowledge path to combine the two acknowledgments
into one.

5.1. Channel multiplexer (merge)

A merge element is used to combine two incoming dat
streams onto one outgoing data stream. The datapath lo
required to perform this function is a set of OR-gates. The
can be seen in figure 6 which shows how pipeline latch
can be wrapped around them so that the merge element
has only 10 logic inversions per cycle.

Figure 4: 1-of-4 Pipeline Latch

C

C

C

C
C

C

C

C

in[0]

in[1]

in[2]

in[3]

nina

out[0]

out[1]

out[2]

out[3]

out_ack

nx[0]

nx[1]

nx[2]

nx[3]

xanxa Figure 5: 1-of-4 Pipeline Latch STGs

Figure 6: Merge element
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The implementation shown in figure 6 has two select
line inputs used to control which input (a[3:0] or b[3:0]) is
passed through to the output. The select line must cycle
once for each handshake on the input port. For correct oper-
ation the select inputs must be mutually exclusive. The
shaded lines represent the internal bit-sliced feedback path.

5.2. Steering mechanism (select)

To control the flow of data to different destinations, an
equivalent of the micropipeline select element [16] is
required. The implementation shown in figure 7 has two
select line inputs used to control which output the input
should be routed to, requiring one cycle on the appropriate
select line for each data symbol passed from input to output.
For correct operation the two select lines must be mutually
exclusive and there should be one handshake on the select
line/input-acknowledge pair for each data symbol passed
from input to output.

A bit-sliced acknowledge is used here because of the
requirement for an OR-function in the acknowledge path.

6. A 1-of-4 Packet Switch

A two-input, two-output switch can be constructed from
the select and multiplex elements described above as shown
in figure 8. For SoC interconnect needs, a higher level
abstraction is required so that the quantities routed are, say
32-bit addresses. Therefore, a format has to be imposed on
the symbols flowing through the system so that, for this
example, a 32-bit packet is correctly routed, intact from one
input to one output, and not split across outputs or inter-

rupted by independent activity on the other switch input

The following subsections discuss:

• a suitable packet format, including a header which ca
be extracted locally at the switch and used to control t
routing of the packet;

• a packet arbiter that allows for independent inpu
streams where the mutual exclusivity of the inputs to th
multiplexers in the switch cannot be guaranteed a
must be enforced locally;

• a counter to keep track of the start/end of a packet, e
suring that whole packets are switched intact.

6.1. Packet format

Here we assume a simple, fixed length format where,
the input to any switch element, the routing header form
the first symbol of the packet and the payload forms th
remainder of the packet.

Each switch node strips off the header symbol that
uses to route the packet to one of its (up to four) outputs.
maintain a constant packet length, the switch node appe
the removed header symbol as the last symbol in the pac
immediately after the final payload symbol. The format o
a packet thus changes after passing through each sw
node. This approach also allows the receiver of the pac
to identify which sender the packet originated from b
inspecting the header.

Figure 9 illustrates the reformatting of the packet in
switch node. The count inputs to the select and mux co
ponents are not identical: for a packet of N symbols, th
select has to direct the first symbol (the header) to its low
port and then send the N-1 payload symbols to its upp
port, whereas the mux requires the opposite count seque
since it must first accept N-1 payload symbols on the upp
port and then take the final symbol (which was the incom
ing header) from the lower port.

A latch stage is required to store the extracted head
symbol whilst the payload bypasses it. During this time, th
header is used to steer the control inputs of the switch, th
routing the packet to one of the (up to four) outputs.

Figure 7: Select block
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6.2. Detecting the start/end of a packet

It is necessary to determine the start and end of each
packet so that the header of a packet can be extracted,
allowing the select and merge elements to be switched at
the appropriate times. It would be possible to use some of
the symbols of the 1-of-4 encoded data stream to signify the
start and end of each packet. However, this reduces the
effective throughput of the system. An alternative (as used
here) is to have packets of a fixed length, using a counter to
indicate the start/end and duration of each packet. Van Ber-
kel’s systolic counters provide the necessary functionality
[18].

6.3. Packet-arbiter

If the inputs to a channel multiplexer are not mutually
exclusive an arbiter is required to ensure correct operation.
This arbiter must take account of the packet based nature of
the transmitted data stream and must ensure that a whole
packet is switched in the same direction, without interrup-
tion by a packet from a different port. A suitable packet-
arbiter is shown in figure 10.

This arbiter takes incoming requests from the input data
streams (possibly generated by a 4-input OR function of the
data stream signals) on the arbreqn inputs. These then have
to compete in a MUTEX [14] to ensure that only one of
them is granted the resource for any given period of time.

The arbitration winner is latched by the cross-coupled
C-elements so that a train of handshakes can be steered
from the count0/count1/countack channel to either the
select0/select_ack pair or the select1/select_ack pair. These
outputs can then be used to steer a select mechanism such
as that in figure 7 above.

The ‘latch’ is reset by a handshake on the count0/
countack port, after that handshake has triggered a hand-
shake on the select output port. The outputs of the MUTEX
are ignored whilst either of the cross-coupled C-element
outputs is asserted (low).

An arbitrated packet multiplexer can thereby be com
posed of a counter, a packet-arbiter and a channel mu
plexer where, for a packet of N symbols, the counter issu
N-1 handshakes on select1/select_ack followed by o
handshake on select0/select_ack.

6.4. Performance

Averaged over a five symbol packet, EPIC TimeMil
simulations of silicon layout show that a 4-input, 4-outpu
packet switch operates at the same 1Gb/s link throughpu
the individual 1-of-4 modules. This is a little faster tha
2ns/symbol for the payload and a little slower than 2n
symbol for the header extraction.

In addition to providing delay-insensitive operation, th
1-of-4 encoded fully connected packet switch allows co
current connections between inputs and outputs when
conflict for an output arises, and so the total throughput
significantly greater than can be obtained with a shared-b
interconnect. However, the switch does use considera
more transistors.

7. Packet switched Chip Area Network

For small, low performance embedded systems the p
formance of a single 1-of-4 bundle may be sufficient for th
interconnect requirements. An interconnection netwo
using such a system will be used in a prototype asynch
nous smartcard system currently under development. H
it will connect a low performance asynchronous process
core to a range of memories and peripherals.

Higher performance systems require greater throughp
This could be provided by chaining a number of these 1-o
4 channels together. For example, four such channels
parallel would require 20 wires, assuming each 1-of
group has its own acknowledge signal. Acknowledgeme

Figure 9: Switch node header extraction
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M
U

T
E

X

r0

r1

go

g1

C

+
+

C

+
+

-C+

C

C

C

C

C

count0

count1

count_ack

arbreq0

arbreq1

select0

select1

select_ack



ad-
a
e
ata

,
t-

ue
a

t
e
e
et-

t-
ut
n
r
in
the

uld
ity

-
e

be
ia-
nt
granularity is an issue that requires further investigation.
Such an arrangement provides an aggregate throughput of
4Gb/s.

This figure compares favourably with conventional bus
based systems: MARBLE gives 80x106 cycles/second
operation with 32-bit datapaths (i.e. 2.5Gb/s) on the same
technology; IBM CoreConnect [10] achieves 100MHz with
a 64-bit gate-multiplexed datapath (i.e. 6.4Gb/s) on a 0.25
micron process; AMBA-AHB [1] is expected to operate at
up to 150MHz with 32-bit datapaths on a 0.25 micron proc-
ess.

Many on-chip embedded systems have more than four
initiators or targets. AMULET3H had 4 initiators with 8
targets all connected through the MARBLE bus. If the
packet switched chip area network approach is applied to
this application then there are many possible network
topologies that could be used to connect the 12 devices.
Three are considered here, although only the last of these
has been constructed to date.

7.1. Ring network

A ring of 12 two-port switches requires 12 header fields
per packet adding a 300% overhead to the 5 symbols per
link required to convey a 40bit (control+address/data) pay-
load. However a ring is simple to connect. For this short
packet length a ring is not really feasible, but with larger
packets (as could be used for, say, a cache line reload) the
overhead would be proportionately less.

Two counterflowing rings could be used, one for address
traffic and one for data traffic with a split transaction
scheme allowing for different ordering of the address and
data packet transmission from two different transactions.

The obvious problem with a ring approach is that of
avoiding deadlock scenarios when a device, such as a
bridge to another network or bus needs to defer a transac-
tion. Conventional buses use a defer mechanism to cause
the initiator to back-off and retry the transfer later. A similar
scheme can be used here by allowing the target to send the
packet around the ring back to the initiator with a comple-
tion/rejection tag added. Clearly this represents a loss of
available bandwidth since every packet has to pass all the
way round the loop, which can interfere with activity from
other initiators.

7.2. Switched hub

A fully connected network built around a switched hub
approach could use a combination of two 4-input, 4-output
switches with two 2-input, 4-output switches connected as
illustrated in figure 11.

This arrangement provides full interconnectivity
between all initiators and targets and thus avoids the de
lock problem discussed above. As with the application of
ring network, two such fully connected networks could b
used, one for the address information and one for the d
transfer.

7.3. Multiplexed bus-type arrangement

For many applications, including the AMULET3H chip
a switched hub as discussed above is overkill. A ring ne
work, whilst much simpler, imposes a greater latency d
to the switching elements if a packet has to travel around
large part of the ring before arriving at its destination.

A multiplex-demultiplex arrangement, similar to tha
used by AMBA-AHB and CoreConnect-PLB, but using th
4-group 1-of-4 link approach, is much simpler than th
switched hub and provides a lower latency than the ring n
work.

A replacement for the MARBLE bus used in the
AMULET3H chip would require three separate such ne
works, (as illustrated in figure 12) where each input/outp
is a 20-wire group of four 1-of-4 channels. The connectio
from the address-multiplexer to the write-data multiplexe
is required to ensure that write traffic arrives at the target
the same order as the addresses are received. Allowing
address and write-data paths to run independently wo
introduce the need for an (expensive) reordering capabil
at each target.

In a similar vein, MARBLE operates with a single-out
standing transaction constraint to avoid introducing th
need for reordering at the initiator. This approach can
applied here also, although the effect this has on an init
tor’s ability to saturate the interconnect is more significa
because of the increased latency.

Figure 11: A 4-input, 8-output switch
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Simulations show that this network runs at the nominal
4Gb/s throughput (hardly surprising since all pipeline
stages have the same number of inversions in them as
before). This is a 30% higher throughput than provided by
MARBLE in the AMULET3H system, although the
latency has increased by about 40% also, primarily because
of the large number of pipeline latches.

8. Conclusions

An approach to SoC interconnect has been introduced
that offers comparable performance to conventional tristate
or multiplexed bus implementations on a 0.35 micron proc-
ess by using a narrower delay insensitive datapath operated
at a higher throughput.

On processes with a smaller feature size it is expected
that the performance of this system should not degrade, and
may even improve since the switching logic will operate
faster, giving a reduced latency. This is in contrast to the
expectations for conventional interconnect approaches
which use long wide buses. A re-implementation using
dynamic gates for the switching units as demonstrated for
a very fine grained pipeline by Singh [15] should give sig-
nificantly smaller circuits and may further improve per-
formance.

Allowing 14 inversions in a pipeline cycle instead of the
10 used here would greatly simplify some of the pipeline
stages, and allow the removal of many of the pipeline

latches that were added to break the switching control in
multiple stages, vastly reducing the latency and allowin
the use of pseudo-static C-elements instead of the fu
static ones used in much of this work. The cost would be
reduction in throughput to around 700Mb/s for a 1-of-
group.

The use of a 1-of-4 encoding provides delay insensiti
signalling, in theory avoiding the need for extensive verifi
cation of the effects of crosstalk on the interconnect wire
Furthermore the use of return-to-zero signalling means th
any crosstalk that does occur between interconnect sign
should never detract from the performance. However, so
timing validation may still be required because of the us
of QDI circuits involving isochronic forks for some of the
contrl logic in the communications network.
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