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Abstract 

This paper presents an evaluation of a range of cache 
features applied to an asynchronous, dual-ported copy- 
back cache. The design has been optimised for the 
AMULET3 asynchronous microprocessor core, but the 
techniques developed are much more widely applicable. It 
is shown that using a copy-back cache with a victim cache 
would gives a noticeable performance improvement on the 
existing fabrication technology and that the benejts will 
increase with increasing cache/memory speed disparity. 
The design presented provides the processor with a uni- 
fied, dual-ported view of its memory subsystem using mul- 
tiple interleaved blocks each with separate line-bufers. 

1. Introduction 

The performance of modem microprocessors is typically 
limited by their memory systems and it is usual to improve 
this by providing a memory hierarchy which includes some 
form of high-speed cache memory. There are many com- 
mercial and academic examples of synchronous cache 
architectures which range from low power caches, suitable 
for use in embedded systems (e.g. -940" and MIPS- 
X), to larger caches in high performance systems e.g. Intel 
x86. 

Asynchronous microprocessors can offer lower power 
consumption and better electromagnetic emission profiles 
[ 13 than their synchronous equivalents. A number of asyn- 
chronous microprocessors have been constructed by vari- 
ous organisations around the world: these include the 
University of Manchester [23, the University of Tokyo [3] 
and the California Institute of Technology (Caltech) [4]; 
however there are relatively few. The primary interest in 
this work is in cache architecture for embedded processors, 
but many of the techniques developed should be applicable 
to larger, high-performance asynchronous caches. 

This paper addresses the added complexity of supporting 

a Harvard-like processor architecture with a unified cache, 
requiring dual-ported memories capable of handling con- 
tention between the two independent asynchronous ports. 
In addition the implications of fetching and returning cache 
lines in an asynchronous environment are discussed. 

2. Cache Fundamentals and 'reminology 

Cache principles are the same no matter whether the 
design is synchronous or a$ynchronous. The following 
decisions have to be made when beginning the construc- 
tion: 

Write-Through vs. Copy-Back 
There are two basic cache variants determining how 

processor write operations are handled by a cache. In a 
write-through cacbe all write traffic is sent to the memory, 
to maintain coherency; since memory accesses are slow, 
writes are often buffered (see Section 4.1 - write buffer) to 
avoid slowing the processor down to the memory speed. 

Copy-back caches take advantage of the temporal and 
spatial locality of writes (and reads) to reduce the write traf- 
fic leaving the cache; writes are suppressed if the data is 
cached. 'Dirty' data is written back into main memory only 
when it is replaced; a clean line may be discarded on 
replacement [5].  

Write-Around vs. Write-Allocate 
There are two common options on a write miss: with a 

write-allocate policy, when a write miss occurs, the target 
line is fetched into the cache; with a wide-aroundpolicy the 
line is modified only in the memory when a write miss 
occurs and there is no change to the cache 151. 

Degree of Associativity 
Since a cache entry represents a fragment of a larger 

store, each cache line has an address (or tag) associated 
with it, indicating which portion of main memory is stored 
into that cache line at that time [5] .  If a block of main mem- 
ory can appear only in one place (line) in the cache, the 
cache is known as direct mapped; if a block from main 
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memory can appear anywhere in the cache, that cache is 
known asfilly associative. When a block from main mem- 
ory can appear in a limited (n) set of places in the cache, 
then it is known as n-way set associative; a set is a collec- 
tion of cache-lines whose tags are checked in parallel [5]. 

Line Replacement Strategy 
For associative caches, when a miss occurs, a decision 

must be taken as to which cache line to place the fetched 
data in. This can be an important choice because - except 
at start-up - this involves overwritingheplacing an existing 
cache line. The three most common strategies are cyclic, 
Least Recently Used (MU) and random [SI. 

Line Size and Fetch Size 
Although often these two sizes are the same they have 

different meanings. The line size is the amount of data 
memory in the cache associated with a single tag whilst the 
fetch size is the amount of data retrieved from main memory 
at one time. The ideal line size depends on the spatial local- 
ity of the application, whilst the fetch size depends on the 
efficiency of memory accesses. Typically, the fetch size is 
constrained by the number of extemal pins available. The 
relationship between line size and the performance is com- 
plex with no definitive optimum value [6,7]. 

Cache Size 
The benefit of having larger caches is that more accesses 

can be satisfied from the cache. On the other hand larger 
caches tend to be (slightly) slower than small ones even 
when built with the same technology since there is a larger 
number of gates involved in addressing the cache - this is a 
reason for multiple levels of cache. Cache size is also lim- 
ited by the available chip and board space. The performance 
of the cache is very sensitive to the nature of the workload, 
so it is impossible to arrive at the ‘best’ cache size [6]. 
Unified vs. Split Cache 
In a unijied cache data and instructions are located in a 

single cache. Accesses must be arbitrated in time unless a 
dual port cache is used. In a split cache separate caches 
allow data and instructions to be fetched simultaneously. 
This increases the potential memory bandwidth but risks 
introducing coherence problems between the caches. It also 
introduces a fixed limit on the apportioning of cache 
resources; a unified cache will adjust the proportion of 
cache used for code/data dynamically, yielding better occu- 
pancy and better hit rates. 

An example of an embedded controller cache is the 
ARM94OT cache system [SI. This comprises four l-kilo- 
byte instruction cache segments, four 1-kilobyte data cache 
segments and an 8-word write buffer. Each cache segment 
is fully-associative and consists of 64 CAM-RAM lines. It 
supports both write-through and copy-back modes. 
Although most copy-back caches allocate on write-misses, 
this particular example does not. 

3. Previous Asynchronous Memory Systems 

For an a5ynchronous microprocessor it is logical that the 
cache should be asynchronous as well; a large degree of the 
flexibility of an asynchronous microprocessor would be 
lost if it were to use a standard synchronous memory inter- 
face. Although synchronous caches are well understood, 
and comparison techniques to aid their development are 
well known, much less work has been done on asynchro- 
nous caches. Whilst asynchronous processor design has 
advanced rapidly in the past ten years, only limited attempts 
have been made to provide the necessary memory support 
for these processors. Below are some notable works in this 
area. 

3.1. Asynchronous Caches 

The TITAC-2 cache system 193: The on-chip instruc- 
tion cache is 8-kilobyte, direct-mapped with eight-words 
per line. It is non-blocking with streaming, (i.e. when the 
required word has been fetched the processor proceeds in 
parallel with any remainder of the fetch). No data cache is 
included. 

The Caltech asynchronous MIPS WOO0 cache sys- 
tem [ 101: The cache system comprises a 4-kilobyte instruc- 
tion cache with provision for branch prediction and 
prefetch and a 4-kilobyte write-through data cache with a 
write buffer. Both use 4-word cache lines. 

The AMULET2e cache system [ 111: Like many ARM 
caches this is built from (in this ca5e four) independent 1- 
kilobyte CAM-RAM blocks with 64 cache lines of four 
words per line. Each block (set) is fully associative, the 
whole cache system being 64-way associative. Its write pol- 
icy is write-through and write-around and it uses random 
replacement. 

It incorporates arbitration free streaming, is non-block- 
ing, and implements ‘hit-under-miss’ meaning that cache 
hits can be serviced even if a line fetch is still in progress. 
To implement this without introducing synchronisation 
hazards a buffer called the Line Fetch Latch (LFL) (placed 
between the cache RAM and the main memory) was intro- 
duced [12]. 

n o  common features of all these caches are that they 
are single-ported and use a write-through strategy. 

3.2. AMULET3i Memory 

Although not strictly speaking a cache, the RAM subsys- 
tem in AMULET3i [ 13, 141 is also worthy of note, particu- 
larly because it implements a unified memory model 
although the processor has separate instruction and data 
buses. As shown in Figure 1 (after [14]) it is an 8-kilobyte 
static RAM, divided into eight 1-kilobyte blocks; each 
block contains 64 lines of 4 w&rds (one word is 4 bytes). 
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Figure 1. AMULET3i RAM System 

Separate buses allow concurrent access to different RAM 
blocks. In a caqe of contention for the same RAM block 
each block has an internal arbiter. The block addresses are 
interleaved to spread loading and reduce contention. 

To reduce contention further each RAM block retains the 
last line read on each port in a Line-Buffer [13]. Thus there 
are limited split caches each being 128 bytes, direct mapped 
and write through, although these only cache data already 
in the internal RAM. When using the internal memory 
many sequential reads can be served by the line-buffer 
without access to the RAM. 

To maintain coherency the contents of the line-buffer are 
invalidated once there is a write hit in that line and they are 
replaced when a read hit in the RAM occurs. The line- 
buffer could be considered aq limited ‘level 0’ cache. 

Provision of separate line-buffers for instructions and 
data avoids interrupting the sequentiality of fetches, espe- 
cially in the instruction stream. These latches lie after the 
sense amplifiers and, in fact, are necessary as part of the 
power-reduction strategy to allow the sense amplifiers to be 
switched off by a local, self-timed mechanism a$ soon a$ 
the read is resolved. Data is read from the RAM a whole 
line at a time and latched here. Future accesses may then be 
able to read data from these (faster) latches without cycling 
the RAM (and dissipating power). This decreases the aver- 
age RAM cycle time, a fact exploited by the aqynchronous 
nature of the processor. 

4. An AMULET3 Cache Architecture 

4.1. Environment 

The’first AMULET3 system [ 131 contained eight kilo- 
bytes of RAM (a5 discussed above) but this waq memory 
mapped and not configurable a$ a cache. This system does, 
however, dictate the environment for the cache under devel- 

opment as shown in Figure 2. The major units in this figure 
perform the following functions: 

Instruction Pori 

fii 
4 MARBLE 

Figure 2. AMULET3 Caclhe System 

AMULET3 core: the microprocesqor in this system is 
code compatible with synchronous ARM implementations 
[l5]. It has two 32-bit memory ports: the instruction port - 
which is read-only - and the full-function data port. 

MMUs (Memory Management Units): located by each 
of the instruction and data ports, check whether a memory 
location is cacheable. If it is uncacheable, the memory 
access bypasses the cache. They also detect memory access 
permission violation and page faults, riignalling these to the 
microprocessor. (MMUs were not included in the initial 
AMULET3i system). 

Coprocessors: are used in the ARM architecture for sys- 
tem management tasks such as programming the MMUs, 
enabling cache features, locking dourn cache regions and 
flushing the cache and write buffer. Many of these opera- 
tions are not supported here at present. 

MARBLE an on-chip asynchronous system bus [16] 
connecting the MMUs and cache to the other system com- 
ponent$ and the off-chip memory interface. 

Write Buffer [SI: A significant write penalty is associated 
with the write-through and even copy-back strategies which 
slow the processor down to memory speed. A write buffer, 
which can accept the write information at a higher speed 
than the main memory speed, allows the processor to con- 
tinue to the next ta$k whilst the infcrmation in the write 
buffer is written into main memory. 
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4.2. Basic Architecture 

Some constraints are placed on the cache model by the 
processor architecture and its usage. The cache is to be uni- 
fied but dual-ported to accommodate the AMULET3 Har- 
vard style memory interface. A number of features from 
earlier designs can be adopted. 

The cache is to be divided into sub-block.., like the 
AMuLET3i RAM [ 131, to gain the advantages of modular- 
ity and dual-port access; the power consumption is also 
reduced. Arbitration will be performed only when both 
cache ports require access to the same block. This (typi- 
cally) gives split cache performance but guarantees cache 
coherence. The line-buffer is also considered which yields 
a two-level cache structure. 

Some AMULET2e [ll] techniques are also adopted, 
notably the line fetch latch (LFL) mechanism 1121. To allow 
high degrees of aqsociativity combined with adequate 
speed the AMULET2e pipelined CAM-RAM structure ha. 
been used (Figure 3) which allows tag look-up and data 
access processes to proceed in parallel. 

pi+wluu latches 
I 

Figure 3. Dual-Ported Asynchronous 
Cache Block 

In addition to combining these elements some new fea- 
tures have been developed. The most significant is the 
design of an asynchronous copy-back mechanism. 

Applying the techniques discussed above to a dual- 
ported copy-back cache results in considerably more com- 
plexity. This arises because in a copy-back cache, data writ- 
ten to cached memory locations are retained locally by the 
cache which has to remember that the affected cache line is 
dnty. This dirty data then has to be written back to the mem- 
ory when that line is about to be reallocated. The advantage 
that this provides is that memory bandwidth requirement. 
are reduced. Extending the write buffer to support forward- 
ing (i.e. it becomes a victim cache) further improves the 
perfomance and reduces memory bandwidth require- 
ments. 

Cache operation is discussed in the following sections. 

*for v,ile-thm,gh &o vrif. lo MEM 

Figure 4. Cache Operations 

43. Cache Operations 

Figure 4 shows some of the possible activities that may 
occur for any cache access. The possibilities are: 

A read hit in the line-buffer. This can be satisfied quick- 
ly from the appropriate instruction or data line-buffer. 
A write hit on the instruction or data line buffer. This re- 
quires the contents of one or both line buffers to be in- 
validated and the written data stored into the cache 
RAM (for copy-back operation) or sent to the write 
buffer (for write-through operation). 
A read or write hit in the cache RAM or LFL. This can 
be satisfied quickly from the cache. The writes also have 
to proceed to the main memory in the caqe of a write- 
through cache. Reads also cause a line buffer replace- 
ment. 
A cache miss. This causes a line fetch and so stalls the 
processor whilst a memory access is performed by the 
line fetch process. Once the addressed word is fetched it 
is returned to the processor immediately and the remain- 
der of the line is fetched concurrently with other cache 
accesses performed by the processor. Further activity 
may be necessary in a copyback cache if the line fetch 
engine has to return a ‘dirty’ line to memory. 
An uncacheable instruction or data access; passed on di- 
rectly to the system bus. (Not shown in figure.) 
Cache flush on copy-back cache. The line-fetch engine 
scours the cache for dirty lines and copies them back to 
memory via the line fetch port onto the bus. 
(Not shown in figure.) 
Each of these operations ha3 a different characteristic 

speed. The aqynchronous implementation allows each stage 
to operate to the best of its abilities at its ‘natural’ speed. 
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4.4. Line Fetch and Allocation 

Figure 5. Dataflow in Line Allocation 

The line fetch mechanism is similar to that used in 
AMULET2e although the complexity is increaqed some- 
what when a copy-back cache is employed. The key activ- 
ities of the line fetch, which run partially in parallel with the 
memory access (aq shown in Figure 3, are: 

Activity 0: Select and reject a victim line from the RAM 
to the write buffer - regardless of whether that line is dirty 
or not. 

Activity 1: Copy the old contents of the LFL into RAM. 
Activity 2: Stream the fetched data into the LFL. Send 

the requested word (the first word fetched in a non-blocking 
scheme) to the processor. 

Activity 3: Check if the victim line in the write buffer is 
dirty. If so, write it out to the memory when the bus 
becomes available. 

The write-through cache (e.g. AMULET%) performed 
only steps 1 and 2 aq it is known that the RAM contents are 
'clean' and can be overwritten. In this case the write buffer 
(Figure 5) is unnecessary. 

These activities have dependency and resource con- 
straints and thus cannot be performed concurrently. How- 
ever some overlapping is possible, subject to the 
restrictions that: both activities 0 and 1 must not occur at the 
same time a5 they both use the cache RAM. Similarly, both 
read process 2 and write process 3 cannot be performed at 
the same time as they both require memory access, 
although a clean line does not need to be written out and can 
purge itself from the write buffer during the line fetch. The 
operations required for line rejection and reallocation are 

WRITE process 

Figure 6. Line Allocatiori Activities 

summarised in Figure 6. 
The two subprocesses for fetching a line from memory 

and emptying a line from the victim cache into the memory 
are shown on a grey background. The remainder of this fig- 
UR is the main control thread of the cache. It also shows the 
contention between the line fetch and the writeout of dirty 
data for the use of the main memory bus. 

4.5. Write Buffering 

The mechanism described above: introduced a write 
buffer. This is necessary as a place to iswap out a potentially 
dirty line to leave space for newly fetched data. Although it 
would be possible to do without this it would require that 
the write operation, if needed, preceded the line fetch. 
Because the processor is waiting for data fmm the line fetch 
delaying this process would have a severe performance 
impact. The read therefore precedes tlhe write to reduce the 
fetch latency. Both actions are perfonned every time a new 
line is fetched, so only one slot in the write buffer is 
required. 

In general reordering state-changing operations is liable 
to cause hazards. In this case a read ils sequenced before a 
write which potentially risks fetching data before it is mod- 
ified by the write operation. However in this case this is not 
possible because the line being fetched caused a cache miss 
and so cannot be aliased to the rejected line. 

With a single line write buffer, the evicted line can be 
side-lined allowing the read to be performed first. If a sec- 
ond line fetch is required then it must wait until the write 
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buffer is empty before it can begin, giving the ordering as 
R1 W1 R2 W2. This delays the performance critical R2 
operation. In order to reduce processor stalls when two or 
more line fetches are required in close succession, memory 
accesses could be reordered so that all outstanding reads are 
performed before the writes begin (read-overrake-write). 
For the above example - two line fetches which both cause 
write operations - the memory accesses could be performed 
in the order R1 R2 W1 W2 (assuming the R2 request pre- 
cedes the end of Rl), resulting in a significant reduction in 
latency for R2. Clearly this requires more than one slot in 
the write buffer. 

Whilst fairly straightforward in the synchronous 
domain, this can cause problems in an asynchronous imple- 
mentation because of the lack of synchronisation between 
the input and output units of the write buffer. It is necessary 
to determine $a read operation is pending before a write 
burst begins. Because the write and a subsequently 
requested read are asynchronous, arbitration is required to 
make the decision between the line fetch process and the 
write buffer writeout. 

Allowing a read to overtake any write other than the one 
for its corresponding evicted line introduces potential 
memory coherency hazards since the only write in the 
buffer that is certain not to conflict with the read is the line 
it evicted. Thus with a write buffer with more than one entry 
R2 could clash with W1. Solutions to this problem include: 

Do not reorder. The write buffer must be drained before 
the read is performed. This would not take advantage of 
read-overtake- write. 
Forward the required data to the processor directly from 
the write buffer if it is fetched again. 
Clearly the second option is preferable if some mecha- 

nism of forwarding can be provided without introducing 
hazards in the asynchronous environment. 

4.6. FonvardingNictim Cache 

Forwarding in an asynchronous system is more difficult 
than in a synchronous one because the data that is to be for- 
warded is flowing in an unsynchronised manner to the proc- 
ess which requires it. A possible solution to this was 
introduced in the reorder buffer in AMULET3 [17] which 
forwards register values, and a similar technique can be 
used here. This allows memory writeback to proceed unim- 
peded but leaves valid data in the write buffer until it is 
overwritten. Addresses must also be held in the write 
buffer; before reading external memory a line fetch can be 
compared with these address tags and, if a match occurs, 
the data can be ‘forwarded‘ instead of fetching the line from 
the memory. This does not interfere with the (asynchro- 
nous) process of writing to the memory which may not have 
started, may be in progress or may have completed at this 

time. The cache line is therefore ‘cleaned’ in the process. 
This not only solves the coherency problem, it can 

reduce the number of memory cycles by intercepting line 
fetches of recently rejected addresses - for example due to 
bad luck with a random replacement algorithm - as lines 
which are still required will get back into the main cache 
before they are lost from the processor. The write buffer is 
now performing the function of a victim cuche[5]. 

In this model the line fetch process is ‘short circuited‘ 
and can occur in a single, on-chip cycle rather than four, 
slow bus cycles. This leads to an asynchronous process with 
a highly variable delay! 

The line which is being updated in the victim cache need 
not be considered for the address comparison for forward- 
ing purposes since it will never contain the required line. 
More seriously it must be excluded because the fetch (and, 
possibly, forward) and the write buffer insertion processes 
are asynchronous (Figure 6) so the contents of this location 
may be changing during the comparison process. Therefore 
the victim cache holds one fewer line than it has storage 
locations. 

Avoiding Deadlock 
When reads are allowed to overtake writes, there is a 

potential deadlock on cache line allocation in a copy-back 
cache because the write buffer (or victim cache) can start to 
fill up. When the line fetch engine asks for data from the 
memory, the memory tries to send the data to the LFL. 
However, the LFC must be emptied before it can store the 
newly fetched line. To empty the Lm, requires allocation of 
a line in the RAM which must then be emptied into the vic- 
tim cache before the LFL can be read. 

If the victim cache is full, a line must be written from it 
into the main memory requiring the memory bus. This 
results in deadlock because the memory is busy performing 
the read. The solution to this problem is to keep one slot in 
the victim cache empty at all times. One way to implement 
this solution is to use a token queue as presented in [171 
where tokens corresponding to the write buffer locations 
are circulated, but - in this caSe - there is one fewer token 
than write buffer locations. 

5. Simulation and Evaluation 

In order to test different caching strategies and designs, 
simulation was performed using a functional model written 
in LARD (Language for Asynchronous Research and 
Development) [ 181 consisting of channel-communicating 
units each modelling separate cache blocks. The cache was 
initially built using a write-through strategy with an LFL 
and optional line-buffers. The model was used to allow the 
evaluation of the modifications to support a copy-back 
strategy with the victim cache and forwarding mechanism. 

The benchmarks used are the same set that were used to 
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evaluate the forwarding mechanism presented in 1171. Usu- 
ally the number of cache misses due to writes varies dra- 
matically depending on the benchmark used. 

programname I instr Idatareadl W r i t e s  data I total I 
I I I I 1 I Espresso I 156257 I 42774 I 26550 I 225581 I 

Instruction fetch 

lData read I 18.5% I 0.5% I 
lData write I 11.4% I 0.4% I 

Table 2: Memory Access Types 

(These particular figures are taken from Espresso.) 

Table 1:Benchmark detail 
5.1. Copy-Back vs. Write-Through 

Table 1 contains the details of benchmarks used in this 
simulation. Both ST-compiler and Espresso have some 
uncacheable accesses (12652 and 4138 respectively) due to 
file U 0  which have been excluded from these results. 

The cache parameters held constant during these simu- 
lations were: 

the cache line size (4 worddl28 bits) 
memory access time (6Ons as per SRAM data sheet[ 191) 
cache-RAM access time (Sns, same as AMULET3i 
s-1 
latch delay (1 Sns as per cycle time of single-rail long- 
hold data-path latch controller used in AMuLET3i) 
random replacement strategy 
To check the expected results a rough calculation was 

performed to estimate the expected difference between 
write-through and copy-back caches. The difference 
between the cache and external memory speeds here is a 
factor of 7.5; the proportions of different types of memory 
access is shown in Table 2. 

For a copy-back cache, and assuming a large write 
buffer, it would be expected that only cache misses (3.7% 
of cycles) would be slowed to memory speeds. On the other 
hand a write-through cache will suffer this penalty on all 
write operations, a total of 15.1% of cycles. With the exter- 
nal memory being 7.5 times slower than the processor 
‘cycle’ it would be expected that the copy-back cache 
would be limited by the processor alone (3.7% x 7.5 
~100%) whereas the write-through cache should be limited 
by the memory bandwidth (15.1% x 7.5 = 113%). 

This is a rough calculation but suggests a benefit of 
-10% for the copy-back cache. This figure would be 
expected to increase rapidly a5 the disparity between the 
internal and external cycle increases, as will be the case in 
future microprocessor implementations. 

Figure 7 shows the results of some ILARD simulations to 
compare the (normalised) run times of the chosen bench- 
marks and contrast some of the cache parameters. The 
major effect which can be seen is the impact of the line- 
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buffer (which acts both as a fast ‘level 0’ cache and helps 
alleviate the problems of data and instruction fetch colli- 
sions. It also shows a small difference (about lW!) in the 
performance of the write-through and copy-back caches. 

Not having a line-buffer means there will be a full CAM 
look-up for every cycle (high power consumption) and also 
more arbitrations due to the two separate ports trying to 
access to the same cache block (low performance). 

Not having separate line-buffers for the ports also means 
increaqing arbitrations for instruction and data accesses to 
the same block for CAM look-up and the line-buffer con- 
tents may well get changed when a data access comes in 
between instruction accesses (or vice versa). This would 
then give fewer line-buffer hits and more line-buffer updat- 
ing. 

Simulations suggest that dual line-buffers should reduce 
the accesses to the cache RAM and LFL by -40% with a 
resulting decrease in power -- since this also prevents full 
CAM look-up - when compared to not having line-buffers. 

Figure 7 also shows how varying the number of blocks 
affects the distribution of hits among the different units in 
the cache for a range of caches of the same size. The three 
columns for each group present run time with (from left to 
right): the write-through cache without line-buffer, the 
write-though with dual line-buffers and the copy-back with 
dual line buffers. The most significant impact comes from 
the introduction of any form of line-buffer, but as the 
number of blocks is increased the total level 0 cache size 
also increass with noticeable effect. 

The effect of ‘dual-porting’ the cache can be seen in the 
step in performance in the leftmost columns. 

5.2. SequentiaVParallel Line-Buffer Tag Look-Up 

The line-buffer tag comparison and the CAM look-up 
could be performed either sequentially - as assumed previ- 
ously (Figure4)- or in parallel. Doing them in parallel 
would appear to provide higher performance; however the 
CAM look-up process follows the arbitration of the two 
cache buses. As the hit rates on the line-buffers are rela- 
tively high (e.g. -40% of instruction fetches) the arbitration 
and CAM look-up is frequently unnecessary. Omitting 
these operations can therefore enhance performance - and 
save considerable power. 

Therefore whilst parallelising these operations would 
make sense in a single-port cache, in this ‘dual-ported‘ 
architecture checking the line-buffer tags before activating 
the CAM is noticeably beneficial. 

This leads to a very variable association time for the 
cache. In an asynchronous implementation this does not 
impose much performance penalty; in a synchronous 
implementation it could impose a clock cycle overhead. 

53. Cache Structure 

A cache hit could occur in the line-buffer, the main cache 
RAM or the LFL. Since these all have different speeds, the 
unit in which the hit occurs affects the access time. This can 
be seen quite clearly in Figure 7. 

Enlarging the cache - by adding more blocks of the same 
size - also has this effect although, interestingly, can be 
counterproductive in the current model. Figure 8 illustrates 
this with the (small) Dhrystone program which soon fits 
entirely in the cache; when line fetches effectively cease the 
last data fetched is left in the LFLs which require a full 
CAM access. Because this follows the arbiter it results in 
an increased access time. 

I HiWC 

L m  EUUV 

RAM Hn 

LFL HI 

Hit 

chcBbcb 

0 

Figure 8. Distribution of Cache Hits Locations 

It is known that Dhrystone, while quick to run, is a fairly 
poor benchmark for cache performance. Although this sit- 
uation could arise for any program small enough to fit in the 
cache it is a fortunately small effect. 

5.4. Allocation Strategies 

A write allocation strategy assumes that in the near 
future the processor will access a line that has been recently 
written; normally a reasonable assumption. Applying write 
allocation in a copy-back cache also makes the forwarding 
mechanism from the victim cache easier since there is less 
control to check whether the write in the victim cache con- 
tains a whole valid line (clearly the write from the processor 
would not be a complete line of data). 

From the simulation -12% of (subsequent) hits occur in 
the lines allocated according to the write allocation. b o k -  
ing at the data port alone, -30% of all data hits are on lines 
allocated due to write allocation. 
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Figure 9 shows the decrease in write traffic with increas- 
ing cache size; if a write impacts an already dirty line this 
means that a write operation has been averted. Espresso 
experiences 86% or greater reduction in write traiiic by the 
use of the copy-back cache. 

Cache S i u  

Figure 9. Proportion of writes to ‘ditty’ lines 

5.5. Write Buffer and Victim Cache 

Another issue in the comparison of copy-back and write- 
through caching is the size of the write buffers. Statistically 
a copy-back cache will produce less clustered write opera- 
tions than a write-through cache, so it should not need a$ 
large a write buffer. 

Both the write-through and copy-back caches require at 
least a single line write buffer for adequate performance 
and a copy-back cache needs one buffer entry to hold an 
evicted line. 

The required depth of a write buffer is related directly to 
the number of pending writes which depends on the clus- 
tering of write operations as well as the ratio of processor 
speed to memory speed. It is likely to be fairly small. In a 
study of a (synchronous) write-through cache 2-4 envies in 
the write buffer were suggested [20]. 

The simulation shows that, to avoid pending writes 
delaying line fetches, Dhrystone requires two lines of write 
buffer with the copy-back cache, whereas Espresso and 
ST-Compiler require four lines. 

Only where multiple misses with dirty victim lines occur 
in series would a write buffer with more than one entry be 
useful with a copy-back cache. However with forwarding 
the grite buffer also acts as a victim cache and increasing 
the size of this cache is likely to be beneficial. There is a 
trade-off (hardware resource vs. performance) here since 
more lines in the victim cache allows more data to be for- 
warded back to the cache, the main cost being in silicon 
area. 

In terms of victim cache, for Espresso 10% of the line 
fetches can be forwarded with a five entry cache. 30% of the 
subsequent cache hits are on this returned information. This 
obviously reduces memory usage with consequent speed 

and power benefits. 
However, the benefits of forwardling depend on many 

parameters, including the size of the victim cache, number 
of cache blocks, block size, replacement strategy, program 
used to run etc. For example when running the 
ST-Compiler less than 5% of the misses can be forwarded 
from the victim cache and only a few percent of subsequent 
hits are on the returned data. 

5.6. One or More Dirty Bits Per Line 

A dirty bit is used to indicate whether the data is clean (it 
has not been modified) or dirty (it has been modified). The 
number of dirty bits per cache line determines the granular- 
ity of the interleaving of memory read accesses (to satisfy 
cache misses) with memory writes from the victim cache 
(assuming that a read is not allowed t l ~  interrupt the writing 
of a line). Using only one dirty bit per line means that the 
entire line must be written to memory (even if only one 
word is actually dirty) whereas the other extreme of using 
one dirty bit for each word means tha.t only the dirty words 
will be written (i.e. lower bandwidth), and the latency 
incurred by stalled reads is lower. The latter approach is 
obviously more expensive to implement. 

Table 3:Dirtiness of Evicted Lines 

Table3 shows the proportion of word$ dirtied in the 
cache. Since, in this simulation, the line size is fixed to 4 
words, having a dirty bit per line would take nearly as twice 
the memory bandwidth as having ;I dirty bit per word. 
Although writing back the dirty data to the memory has to 
be done a word at a time due to the size of the bus, having 
to write a whole line (four words consecutively) might still 
be fa$ter than writing four different words according to the 
sequential writing process in the memory. Further study is 
required to determine which scheme is more suitable for 
use with the AMULET3 core. 

6. Conclusions 

An asynchronous, dual-ported, copy-back cache archi- 
tecture has been presented. It provides a unified view of 
memory for the Harvard-like AMULET3 core. The cache 
integrates a number of features used in earlier designs, such 
as a blocked memory structure, separate instruction and 
data line-buffers, a non-blocking line fetch mechanism with 
LFL, and hit-under-miss. In addition new features provide 
for a copy-back mechanism with write buffering without 
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imposing undue synchronisation in an asynchronous envi- 
ronment. The mechanism for ensuring memory coherency 
with the write buffer automatically introduces the facility 
for including a victim cache. 

Although these features have been tailored for a particu- 
lar processor they are all quite general in application. The 
case for copy-back caches has already been well demon- 
strated in the synchronous world; in this model the benefits 
have proved quite small (-10%) but this is because the 
speed differential between the cache and external memory 
is less than a factor of ten; the difference between copy- 
back and write-through caches is emphasised as this differ- 
ential increases, as is currently happening. We believe this 
is the first solution to the problems of a copy-back cache in 
a totally asynchronous environment. 

The need for a write-buffer to equalise bus loads - and 
allow writes to be deferred in favour of more urgent reads 
- is also demonstrated. The need to ensure memory coher- 
ency has forced the adoption of forwarding from this buffer. 
In order to forward asynchronously the data in the write 
buffer cannot be removed by the write process without 
introducing hazards. This means the last few rejected lines 
are retained indefinitely and therefore become a victim 
cache. 

The line-buffers act as an extra level of cache and there- 
fore deliver added performance; however in this implemen- 
tation their most important role is to allow the separate 
instruction and data buses the maximum freedom of access 
to the memory. This has influenced their tags insofar as they 
are checked before beginning a main cache access. Line 
buffers would also give a benefit in a single bus cache, 
although in this case it could be better to run them in paral- 
lel with the tag look-up. As was demonstrated in the previ- 
ous AMULET3 system the line-buffer yields slightly faster 
memory cycles than the cache, a feature which can be 
uniquely exploited in an asynchronous system. 

Other features - notably as the LFL from AMULET2e 
and the blocked cache from ARM3 - have also been 
retained; these give, respectively, a fast forwarding and hit- 
under-miss capability and significant power reductions. 

Although studies are continuing, it is already clear that 
these designs will be used in any future AMULET3 cache 
designs and, we hope, in other asynchronous processors. 
We believe that this is yet another step in bringing asyn- 
chronous processing into parity with the synchronous 
world. 
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