
AMULET3i Cache Architecture

D. Hormdee, J. D. Garside
AMULET Group, Department of Computer Science,

University of Manchestel; Odord Road
Manchester M13 9PL, UK

{hormdeed, jgarside] @cs.man.ac.uk

Abstract

This paper presents an evaluation of a range of cache
features applied to an asynchronous, dual-ported copy-
back cache. The design has been optimised for the
AMULET3 asynchronous microprocessor core, but the
techniques developed are much more widely applicable. It
is shown that using a copy-back cache with a victim cache
would gives a noticeable performance improvement on the
existing fabrication technology and that the benejts will
increase with increasing cache/memory speed disparity.
The design presented provides the processor with a uni-
fied, dual-ported view of its memory subsystem using mul-
tiple interleaved blocks each with separate line-bufers.

1. Introduction

The performance of modem microprocessors is typically
limited by their memory systems and it is usual to improve
this by providing a memory hierarchy which includes some
form of high-speed cache memory. There are many com-
mercial and academic examples of synchronous cache
architectures which range from low power caches, suitable
for use in embedded systems (e.g. -940" and MIPS-
X), to larger caches in high performance systems e.g. Intel
x86.

Asynchronous microprocessors can offer lower power
consumption and better electromagnetic emission profiles
[13 than their synchronous equivalents. A number of asyn-
chronous microprocessors have been constructed by vari-
ous organisations around the world: these include the
University of Manchester [23, the University of Tokyo [3]
and the California Institute of Technology (Caltech) [4];
however there are relatively few. The primary interest in
this work is in cache architecture for embedded processors,
but many of the techniques developed should be applicable
to larger, high-performance asynchronous caches.

This paper addresses the added complexity of supporting

a Harvard-like processor architecture with a unified cache,
requiring dual-ported memories capable of handling con-
tention between the two independent asynchronous ports.
In addition the implications of fetching and returning cache
lines in an asynchronous environment are discussed.

2. Cache Fundamentals and 'reminology

Cache principles are the same no matter whether the
design is synchronous or a$ynchronous. The following
decisions have to be made when beginning the construc-
tion:

Write-Through vs. Copy-Back
There are two basic cache variants determining how

processor write operations are handled by a cache. In a
write-through cacbe all write traffic is sent to the memory,
to maintain coherency; since memory accesses are slow,
writes are often buffered (see Section 4.1 - write buffer) to
avoid slowing the processor down to the memory speed.

Copy-back caches take advantage of the temporal and
spatial locality of writes (and reads) to reduce the write traf-
fic leaving the cache; writes are suppressed if the data is
cached. 'Dirty' data is written back into main memory only
when it is replaced; a clean line may be discarded on
replacement [5].

Write-Around vs. Write-Allocate
There are two common options on a write miss: with a

write-allocate policy, when a write miss occurs, the target
line is fetched into the cache; with a wide-aroundpolicy the
line is modified only in the memory when a write miss
occurs and there is no change to the cache 151.

Degree of Associativity
Since a cache entry represents a fragment of a larger

store, each cache line has an address (or tag) associated
with it, indicating which portion of main memory is stored
into that cache line at that time [5] . If a block of main mem-
ory can appear only in one place (line) in the cache, the
cache is known as direct mapped; if a block from main

152
1522-8681/01 $10.00 0 2001 IEEE

mailto:cs.man.ac.uk

memory can appear anywhere in the cache, that cache is
known asfilly associative. When a block from main mem-
ory can appear in a limited (n) set of places in the cache,
then it is known as n-way set associative; a set is a collec-
tion of cache-lines whose tags are checked in parallel [5].

Line Replacement Strategy
For associative caches, when a miss occurs, a decision

must be taken as to which cache line to place the fetched
data in. This can be an important choice because - except
at start-up - this involves overwritingheplacing an existing
cache line. The three most common strategies are cyclic,
Least Recently Used (MU) and random [SI.

Line Size and Fetch Size
Although often these two sizes are the same they have

different meanings. The line size is the amount of data
memory in the cache associated with a single tag whilst the
fetch size is the amount of data retrieved from main memory
at one time. The ideal line size depends on the spatial local-
ity of the application, whilst the fetch size depends on the
efficiency of memory accesses. Typically, the fetch size is
constrained by the number of extemal pins available. The
relationship between line size and the performance is com-
plex with no definitive optimum value [6,7].

Cache Size
The benefit of having larger caches is that more accesses

can be satisfied from the cache. On the other hand larger
caches tend to be (slightly) slower than small ones even
when built with the same technology since there is a larger
number of gates involved in addressing the cache - this is a
reason for multiple levels of cache. Cache size is also lim-
ited by the available chip and board space. The performance
of the cache is very sensitive to the nature of the workload,
so it is impossible to arrive at the ‘best’ cache size [6].
Unified vs. Split Cache
In a unijied cache data and instructions are located in a

single cache. Accesses must be arbitrated in time unless a
dual port cache is used. In a split cache separate caches
allow data and instructions to be fetched simultaneously.
This increases the potential memory bandwidth but risks
introducing coherence problems between the caches. It also
introduces a fixed limit on the apportioning of cache
resources; a unified cache will adjust the proportion of
cache used for code/data dynamically, yielding better occu-
pancy and better hit rates.

An example of an embedded controller cache is the
ARM94OT cache system [SI. This comprises four l-kilo-
byte instruction cache segments, four 1-kilobyte data cache
segments and an 8-word write buffer. Each cache segment
is fully-associative and consists of 64 CAM-RAM lines. It
supports both write-through and copy-back modes.
Although most copy-back caches allocate on write-misses,
this particular example does not.

3. Previous Asynchronous Memory Systems

For an a5ynchronous microprocessor it is logical that the
cache should be asynchronous as well; a large degree of the
flexibility of an asynchronous microprocessor would be
lost if it were to use a standard synchronous memory inter-
face. Although synchronous caches are well understood,
and comparison techniques to aid their development are
well known, much less work has been done on asynchro-
nous caches. Whilst asynchronous processor design has
advanced rapidly in the past ten years, only limited attempts
have been made to provide the necessary memory support
for these processors. Below are some notable works in this
area.

3.1. Asynchronous Caches

The TITAC-2 cache system 193: The on-chip instruc-
tion cache is 8-kilobyte, direct-mapped with eight-words
per line. It is non-blocking with streaming, (i.e. when the
required word has been fetched the processor proceeds in
parallel with any remainder of the fetch). No data cache is
included.

The Caltech asynchronous MIPS WOO0 cache sys-
tem [101: The cache system comprises a 4-kilobyte instruc-
tion cache with provision for branch prediction and
prefetch and a 4-kilobyte write-through data cache with a
write buffer. Both use 4-word cache lines.

The AMULET2e cache system [111: Like many ARM
caches this is built from (in this ca5e four) independent 1-
kilobyte CAM-RAM blocks with 64 cache lines of four
words per line. Each block (set) is fully associative, the
whole cache system being 64-way associative. Its write pol-
icy is write-through and write-around and it uses random
replacement.

It incorporates arbitration free streaming, is non-block-
ing, and implements ‘hit-under-miss’ meaning that cache
hits can be serviced even if a line fetch is still in progress.
To implement this without introducing synchronisation
hazards a buffer called the Line Fetch Latch (LFL) (placed
between the cache RAM and the main memory) was intro-
duced [12].

n o common features of all these caches are that they
are single-ported and use a write-through strategy.

3.2. AMULET3i Memory

Although not strictly speaking a cache, the RAM subsys-
tem in AMULET3i [13, 141 is also worthy of note, particu-
larly because it implements a unified memory model
although the processor has separate instruction and data
buses. As shown in Figure 1 (after [14]) it is an 8-kilobyte
static RAM, divided into eight 1-kilobyte blocks; each
block contains 64 lines of 4 w&rds (one word is 4 bytes).

153

AMULET3
micropromasor

v
MARBLE bus

v
MARBLE t u p

Figure 1. AMULET3i RAM System

Separate buses allow concurrent access to different RAM
blocks. In a caqe of contention for the same RAM block
each block has an internal arbiter. The block addresses are
interleaved to spread loading and reduce contention.

To reduce contention further each RAM block retains the
last line read on each port in a Line-Buffer [13]. Thus there
are limited split caches each being 128 bytes, direct mapped
and write through, although these only cache data already
in the internal RAM. When using the internal memory
many sequential reads can be served by the line-buffer
without access to the RAM.

To maintain coherency the contents of the line-buffer are
invalidated once there is a write hit in that line and they are
replaced when a read hit in the RAM occurs. The line-
buffer could be considered aq limited ‘level 0’ cache.

Provision of separate line-buffers for instructions and
data avoids interrupting the sequentiality of fetches, espe-
cially in the instruction stream. These latches lie after the
sense amplifiers and, in fact, are necessary as part of the
power-reduction strategy to allow the sense amplifiers to be
switched off by a local, self-timed mechanism a$ soon a$
the read is resolved. Data is read from the RAM a whole
line at a time and latched here. Future accesses may then be
able to read data from these (faster) latches without cycling
the RAM (and dissipating power). This decreases the aver-
age RAM cycle time, a fact exploited by the aqynchronous
nature of the processor.

4. An AMULET3 Cache Architecture

4.1. Environment

The’first AMULET3 system [131 contained eight kilo-
bytes of RAM (a5 discussed above) but this waq memory
mapped and not configurable a$ a cache. This system does,
however, dictate the environment for the cache under devel-

opment as shown in Figure 2. The major units in this figure
perform the following functions:

Instruction Pori

fii
4 MARBLE

Figure 2. AMULET3 Caclhe System

AMULET3 core: the microprocesqor in this system is
code compatible with synchronous ARM implementations
[l5]. It has two 32-bit memory ports: the instruction port -
which is read-only - and the full-function data port.

MMUs (Memory Management Units): located by each
of the instruction and data ports, check whether a memory
location is cacheable. If it is uncacheable, the memory
access bypasses the cache. They also detect memory access
permission violation and page faults, riignalling these to the
microprocessor. (MMUs were not included in the initial
AMULET3i system).

Coprocessors: are used in the ARM architecture for sys-
tem management tasks such as programming the MMUs,
enabling cache features, locking dourn cache regions and
flushing the cache and write buffer. Many of these opera-
tions are not supported here at present.

MARBLE an on-chip asynchronous system bus [16]
connecting the MMUs and cache to the other system com-
ponent$ and the off-chip memory interface.

Write Buffer [SI: A significant write penalty is associated
with the write-through and even copy-back strategies which
slow the processor down to memory speed. A write buffer,
which can accept the write information at a higher speed
than the main memory speed, allows the processor to con-
tinue to the next ta$k whilst the infcrmation in the write
buffer is written into main memory.

154

4.2. Basic Architecture

Some constraints are placed on the cache model by the
processor architecture and its usage. The cache is to be uni-
fied but dual-ported to accommodate the AMULET3 Har-
vard style memory interface. A number of features from
earlier designs can be adopted.

The cache is to be divided into sub-block.., like the
AMuLET3i RAM [131, to gain the advantages of modular-
ity and dual-port access; the power consumption is also
reduced. Arbitration will be performed only when both
cache ports require access to the same block. This (typi-
cally) gives split cache performance but guarantees cache
coherence. The line-buffer is also considered which yields
a two-level cache structure.

Some AMULET2e [ll] techniques are also adopted,
notably the line fetch latch (LFL) mechanism 1121. To allow
high degrees of aqsociativity combined with adequate
speed the AMULET2e pipelined CAM-RAM structure ha.
been used (Figure 3) which allows tag look-up and data
access processes to proceed in parallel.

pi+wluu latches
I

Figure 3. Dual-Ported Asynchronous
Cache Block

In addition to combining these elements some new fea-
tures have been developed. The most significant is the
design of an asynchronous copy-back mechanism.

Applying the techniques discussed above to a dual-
ported copy-back cache results in considerably more com-
plexity. This arises because in a copy-back cache, data writ-
ten to cached memory locations are retained locally by the
cache which has to remember that the affected cache line is
dnty. This dirty data then has to be written back to the mem-
ory when that line is about to be reallocated. The advantage
that this provides is that memory bandwidth requirement.
are reduced. Extending the write buffer to support forward-
ing (i.e. it becomes a victim cache) further improves the
perfomance and reduces memory bandwidth require-
ments.

Cache operation is discussed in the following sections.

*for v,ile-thm,gh &o vrif. lo MEM

Figure 4. Cache Operations

43. Cache Operations

Figure 4 shows some of the possible activities that may
occur for any cache access. The possibilities are:

A read hit in the line-buffer. This can be satisfied quick-
ly from the appropriate instruction or data line-buffer.
A write hit on the instruction or data line buffer. This re-
quires the contents of one or both line buffers to be in-
validated and the written data stored into the cache
RAM (for copy-back operation) or sent to the write
buffer (for write-through operation).
A read or write hit in the cache RAM or LFL. This can
be satisfied quickly from the cache. The writes also have
to proceed to the main memory in the caqe of a write-
through cache. Reads also cause a line buffer replace-
ment.
A cache miss. This causes a line fetch and so stalls the
processor whilst a memory access is performed by the
line fetch process. Once the addressed word is fetched it
is returned to the processor immediately and the remain-
der of the line is fetched concurrently with other cache
accesses performed by the processor. Further activity
may be necessary in a copyback cache if the line fetch
engine has to return a ‘dirty’ line to memory.
An uncacheable instruction or data access; passed on di-
rectly to the system bus. (Not shown in figure.)
Cache flush on copy-back cache. The line-fetch engine
scours the cache for dirty lines and copies them back to
memory via the line fetch port onto the bus.
(Not shown in figure.)
Each of these operations ha3 a different characteristic

speed. The aqynchronous implementation allows each stage
to operate to the best of its abilities at its ‘natural’ speed.

155

4.4. Line Fetch and Allocation

Figure 5. Dataflow in Line Allocation

The line fetch mechanism is similar to that used in
AMULET2e although the complexity is increaqed some-
what when a copy-back cache is employed. The key activ-
ities of the line fetch, which run partially in parallel with the
memory access (aq shown in Figure 3, are:

Activity 0: Select and reject a victim line from the RAM
to the write buffer - regardless of whether that line is dirty
or not.

Activity 1: Copy the old contents of the LFL into RAM.
Activity 2: Stream the fetched data into the LFL. Send

the requested word (the first word fetched in a non-blocking
scheme) to the processor.

Activity 3: Check if the victim line in the write buffer is
dirty. If so, write it out to the memory when the bus
becomes available.

The write-through cache (e.g. AMULET%) performed
only steps 1 and 2 aq it is known that the RAM contents are
'clean' and can be overwritten. In this case the write buffer
(Figure 5) is unnecessary.

These activities have dependency and resource con-
straints and thus cannot be performed concurrently. How-
ever some overlapping is possible, subject to the
restrictions that: both activities 0 and 1 must not occur at the
same time a5 they both use the cache RAM. Similarly, both
read process 2 and write process 3 cannot be performed at
the same time as they both require memory access,
although a clean line does not need to be written out and can
purge itself from the write buffer during the line fetch. The
operations required for line rejection and reallocation are

WRITE process

Figure 6. Line Allocatiori Activities

summarised in Figure 6.
The two subprocesses for fetching a line from memory

and emptying a line from the victim cache into the memory
are shown on a grey background. The remainder of this fig-
UR is the main control thread of the cache. It also shows the
contention between the line fetch and the writeout of dirty
data for the use of the main memory bus.

4.5. Write Buffering

The mechanism described above: introduced a write
buffer. This is necessary as a place to iswap out a potentially
dirty line to leave space for newly fetched data. Although it
would be possible to do without this it would require that
the write operation, if needed, preceded the line fetch.
Because the processor is waiting for data fmm the line fetch
delaying this process would have a severe performance
impact. The read therefore precedes tlhe write to reduce the
fetch latency. Both actions are perfonned every time a new
line is fetched, so only one slot in the write buffer is
required.

In general reordering state-changing operations is liable
to cause hazards. In this case a read ils sequenced before a
write which potentially risks fetching data before it is mod-
ified by the write operation. However in this case this is not
possible because the line being fetched caused a cache miss
and so cannot be aliased to the rejected line.

With a single line write buffer, the evicted line can be
side-lined allowing the read to be performed first. If a sec-
ond line fetch is required then it must wait until the write

156

buffer is empty before it can begin, giving the ordering as
R1 W1 R2 W2. This delays the performance critical R2
operation. In order to reduce processor stalls when two or
more line fetches are required in close succession, memory
accesses could be reordered so that all outstanding reads are
performed before the writes begin (read-overrake-write).
For the above example - two line fetches which both cause
write operations - the memory accesses could be performed
in the order R1 R2 W1 W2 (assuming the R2 request pre-
cedes the end of Rl), resulting in a significant reduction in
latency for R2. Clearly this requires more than one slot in
the write buffer.

Whilst fairly straightforward in the synchronous
domain, this can cause problems in an asynchronous imple-
mentation because of the lack of synchronisation between
the input and output units of the write buffer. It is necessary
to determine $a read operation is pending before a write
burst begins. Because the write and a subsequently
requested read are asynchronous, arbitration is required to
make the decision between the line fetch process and the
write buffer writeout.

Allowing a read to overtake any write other than the one
for its corresponding evicted line introduces potential
memory coherency hazards since the only write in the
buffer that is certain not to conflict with the read is the line
it evicted. Thus with a write buffer with more than one entry
R2 could clash with W1. Solutions to this problem include:

Do not reorder. The write buffer must be drained before
the read is performed. This would not take advantage of
read-overtake- write.
Forward the required data to the processor directly from
the write buffer if it is fetched again.
Clearly the second option is preferable if some mecha-

nism of forwarding can be provided without introducing
hazards in the asynchronous environment.

4.6. FonvardingNictim Cache

Forwarding in an asynchronous system is more difficult
than in a synchronous one because the data that is to be for-
warded is flowing in an unsynchronised manner to the proc-
ess which requires it. A possible solution to this was
introduced in the reorder buffer in AMULET3 [17] which
forwards register values, and a similar technique can be
used here. This allows memory writeback to proceed unim-
peded but leaves valid data in the write buffer until it is
overwritten. Addresses must also be held in the write
buffer; before reading external memory a line fetch can be
compared with these address tags and, if a match occurs,
the data can be ‘forwarded‘ instead of fetching the line from
the memory. This does not interfere with the (asynchro-
nous) process of writing to the memory which may not have
started, may be in progress or may have completed at this

time. The cache line is therefore ‘cleaned’ in the process.
This not only solves the coherency problem, it can

reduce the number of memory cycles by intercepting line
fetches of recently rejected addresses - for example due to
bad luck with a random replacement algorithm - as lines
which are still required will get back into the main cache
before they are lost from the processor. The write buffer is
now performing the function of a victim cuche[5].

In this model the line fetch process is ‘short circuited‘
and can occur in a single, on-chip cycle rather than four,
slow bus cycles. This leads to an asynchronous process with
a highly variable delay!

The line which is being updated in the victim cache need
not be considered for the address comparison for forward-
ing purposes since it will never contain the required line.
More seriously it must be excluded because the fetch (and,
possibly, forward) and the write buffer insertion processes
are asynchronous (Figure 6) so the contents of this location
may be changing during the comparison process. Therefore
the victim cache holds one fewer line than it has storage
locations.

Avoiding Deadlock
When reads are allowed to overtake writes, there is a

potential deadlock on cache line allocation in a copy-back
cache because the write buffer (or victim cache) can start to
fill up. When the line fetch engine asks for data from the
memory, the memory tries to send the data to the LFL.
However, the LFC must be emptied before it can store the
newly fetched line. To empty the Lm, requires allocation of
a line in the RAM which must then be emptied into the vic-
tim cache before the LFL can be read.

If the victim cache is full, a line must be written from it
into the main memory requiring the memory bus. This
results in deadlock because the memory is busy performing
the read. The solution to this problem is to keep one slot in
the victim cache empty at all times. One way to implement
this solution is to use a token queue as presented in [171
where tokens corresponding to the write buffer locations
are circulated, but - in this caSe - there is one fewer token
than write buffer locations.

5. Simulation and Evaluation

In order to test different caching strategies and designs,
simulation was performed using a functional model written
in LARD (Language for Asynchronous Research and
Development) [181 consisting of channel-communicating
units each modelling separate cache blocks. The cache was
initially built using a write-through strategy with an LFL
and optional line-buffers. The model was used to allow the
evaluation of the modifications to support a copy-back
strategy with the victim cache and forwarding mechanism.

The benchmarks used are the same set that were used to

157

0 lblost 2blosts 4blosh Sblosb 16bMs

Dhrystone

ST-compiler

Figure 7. Distribution of Run Time with/without Line Buffer

14741 1850 1736 18327

236580 51083 51599 339262

evaluate the forwarding mechanism presented in 1171. Usu-
ally the number of cache misses due to writes varies dra-
matically depending on the benchmark used.

programname I instr Idatareadl W r i t e s data I total I
I I I I 1 I Espresso I 156257 I 42774 I 26550 I 225581 I

Instruction fetch

lData read I 18.5% I 0.5% I
lData write I 11.4% I 0.4% I

Table 2: Memory Access Types

(These particular figures are taken from Espresso.)

Table 1:Benchmark detail
5.1. Copy-Back vs. Write-Through

Table 1 contains the details of benchmarks used in this
simulation. Both ST-compiler and Espresso have some
uncacheable accesses (12652 and 4138 respectively) due to
file U 0 which have been excluded from these results.

The cache parameters held constant during these simu-
lations were:

the cache line size (4 worddl28 bits)
memory access time (6Ons as per SRAM data sheet[191)
cache-RAM access time (Sns, same as AMULET3i
s-1
latch delay (1 Sns as per cycle time of single-rail long-
hold data-path latch controller used in AMuLET3i)
random replacement strategy
To check the expected results a rough calculation was

performed to estimate the expected difference between
write-through and copy-back caches. The difference
between the cache and external memory speeds here is a
factor of 7.5; the proportions of different types of memory
access is shown in Table 2.

For a copy-back cache, and assuming a large write
buffer, it would be expected that only cache misses (3.7%
of cycles) would be slowed to memory speeds. On the other
hand a write-through cache will suffer this penalty on all
write operations, a total of 15.1% of cycles. With the exter-
nal memory being 7.5 times slower than the processor
‘cycle’ it would be expected that the copy-back cache
would be limited by the processor alone (3.7% x 7.5
~100%) whereas the write-through cache should be limited
by the memory bandwidth (15.1% x 7.5 = 113%).

This is a rough calculation but suggests a benefit of
-10% for the copy-back cache. This figure would be
expected to increase rapidly a5 the disparity between the
internal and external cycle increases, as will be the case in
future microprocessor implementations.

Figure 7 shows the results of some ILARD simulations to
compare the (normalised) run times of the chosen bench-
marks and contrast some of the cache parameters. The
major effect which can be seen is the impact of the line-

158

buffer (which acts both as a fast ‘level 0’ cache and helps
alleviate the problems of data and instruction fetch colli-
sions. It also shows a small difference (about lW!) in the
performance of the write-through and copy-back caches.

Not having a line-buffer means there will be a full CAM
look-up for every cycle (high power consumption) and also
more arbitrations due to the two separate ports trying to
access to the same cache block (low performance).

Not having separate line-buffers for the ports also means
increaqing arbitrations for instruction and data accesses to
the same block for CAM look-up and the line-buffer con-
tents may well get changed when a data access comes in
between instruction accesses (or vice versa). This would
then give fewer line-buffer hits and more line-buffer updat-
ing.

Simulations suggest that dual line-buffers should reduce
the accesses to the cache RAM and LFL by -40% with a
resulting decrease in power -- since this also prevents full
CAM look-up - when compared to not having line-buffers.

Figure 7 also shows how varying the number of blocks
affects the distribution of hits among the different units in
the cache for a range of caches of the same size. The three
columns for each group present run time with (from left to
right): the write-through cache without line-buffer, the
write-though with dual line-buffers and the copy-back with
dual line buffers. The most significant impact comes from
the introduction of any form of line-buffer, but as the
number of blocks is increased the total level 0 cache size
also increass with noticeable effect.

The effect of ‘dual-porting’ the cache can be seen in the
step in performance in the leftmost columns.

5.2. SequentiaVParallel Line-Buffer Tag Look-Up

The line-buffer tag comparison and the CAM look-up
could be performed either sequentially - as assumed previ-
ously (Figure4)- or in parallel. Doing them in parallel
would appear to provide higher performance; however the
CAM look-up process follows the arbitration of the two
cache buses. As the hit rates on the line-buffers are rela-
tively high (e.g. -40% of instruction fetches) the arbitration
and CAM look-up is frequently unnecessary. Omitting
these operations can therefore enhance performance - and
save considerable power.

Therefore whilst parallelising these operations would
make sense in a single-port cache, in this ‘dual-ported‘
architecture checking the line-buffer tags before activating
the CAM is noticeably beneficial.

This leads to a very variable association time for the
cache. In an asynchronous implementation this does not
impose much performance penalty; in a synchronous
implementation it could impose a clock cycle overhead.

53. Cache Structure

A cache hit could occur in the line-buffer, the main cache
RAM or the LFL. Since these all have different speeds, the
unit in which the hit occurs affects the access time. This can
be seen quite clearly in Figure 7.

Enlarging the cache - by adding more blocks of the same
size - also has this effect although, interestingly, can be
counterproductive in the current model. Figure 8 illustrates
this with the (small) Dhrystone program which soon fits
entirely in the cache; when line fetches effectively cease the
last data fetched is left in the LFLs which require a full
CAM access. Because this follows the arbiter it results in
an increased access time.

I HiWC

L m EUUV

RAM Hn

LFL HI

Hit

chcBbcb

0

Figure 8. Distribution of Cache Hits Locations

It is known that Dhrystone, while quick to run, is a fairly
poor benchmark for cache performance. Although this sit-
uation could arise for any program small enough to fit in the
cache it is a fortunately small effect.

5.4. Allocation Strategies

A write allocation strategy assumes that in the near
future the processor will access a line that has been recently
written; normally a reasonable assumption. Applying write
allocation in a copy-back cache also makes the forwarding
mechanism from the victim cache easier since there is less
control to check whether the write in the victim cache con-
tains a whole valid line (clearly the write from the processor
would not be a complete line of data).

From the simulation -12% of (subsequent) hits occur in
the lines allocated according to the write allocation. b o k -
ing at the data port alone, -30% of all data hits are on lines
allocated due to write allocation.

159

Figure 9 shows the decrease in write traffic with increas-
ing cache size; if a write impacts an already dirty line this
means that a write operation has been averted. Espresso
experiences 86% or greater reduction in write traiiic by the
use of the copy-back cache.

Cache S i u

Figure 9. Proportion of writes to ‘ditty’ lines

5.5. Write Buffer and Victim Cache

Another issue in the comparison of copy-back and write-
through caching is the size of the write buffers. Statistically
a copy-back cache will produce less clustered write opera-
tions than a write-through cache, so it should not need a$
large a write buffer.

Both the write-through and copy-back caches require at
least a single line write buffer for adequate performance
and a copy-back cache needs one buffer entry to hold an
evicted line.

The required depth of a write buffer is related directly to
the number of pending writes which depends on the clus-
tering of write operations as well as the ratio of processor
speed to memory speed. It is likely to be fairly small. In a
study of a (synchronous) write-through cache 2-4 envies in
the write buffer were suggested [20].

The simulation shows that, to avoid pending writes
delaying line fetches, Dhrystone requires two lines of write
buffer with the copy-back cache, whereas Espresso and
ST-Compiler require four lines.

Only where multiple misses with dirty victim lines occur
in series would a write buffer with more than one entry be
useful with a copy-back cache. However with forwarding
the grite buffer also acts as a victim cache and increasing
the size of this cache is likely to be beneficial. There is a
trade-off (hardware resource vs. performance) here since
more lines in the victim cache allows more data to be for-
warded back to the cache, the main cost being in silicon
area.

In terms of victim cache, for Espresso 10% of the line
fetches can be forwarded with a five entry cache. 30% of the
subsequent cache hits are on this returned information. This
obviously reduces memory usage with consequent speed

and power benefits.
However, the benefits of forwardling depend on many

parameters, including the size of the victim cache, number
of cache blocks, block size, replacement strategy, program
used to run etc. For example when running the
ST-Compiler less than 5% of the misses can be forwarded
from the victim cache and only a few percent of subsequent
hits are on the returned data.

5.6. One or More Dirty Bits Per Line

A dirty bit is used to indicate whether the data is clean (it
has not been modified) or dirty (it has been modified). The
number of dirty bits per cache line determines the granular-
ity of the interleaving of memory read accesses (to satisfy
cache misses) with memory writes from the victim cache
(assuming that a read is not allowed t l ~ interrupt the writing
of a line). Using only one dirty bit per line means that the
entire line must be written to memory (even if only one
word is actually dirty) whereas the other extreme of using
one dirty bit for each word means tha.t only the dirty words
will be written (i.e. lower bandwidth), and the latency
incurred by stalled reads is lower. The latter approach is
obviously more expensive to implement.

Table 3:Dirtiness of Evicted Lines

Table3 shows the proportion of word$ dirtied in the
cache. Since, in this simulation, the line size is fixed to 4
words, having a dirty bit per line would take nearly as twice
the memory bandwidth as having ;I dirty bit per word.
Although writing back the dirty data to the memory has to
be done a word at a time due to the size of the bus, having
to write a whole line (four words consecutively) might still
be fa$ter than writing four different words according to the
sequential writing process in the memory. Further study is
required to determine which scheme is more suitable for
use with the AMULET3 core.

6. Conclusions

An asynchronous, dual-ported, copy-back cache archi-
tecture has been presented. It provides a unified view of
memory for the Harvard-like AMULET3 core. The cache
integrates a number of features used in earlier designs, such
as a blocked memory structure, separate instruction and
data line-buffers, a non-blocking line fetch mechanism with
LFL, and hit-under-miss. In addition new features provide
for a copy-back mechanism with write buffering without

160

imposing undue synchronisation in an asynchronous envi-
ronment. The mechanism for ensuring memory coherency
with the write buffer automatically introduces the facility
for including a victim cache.

Although these features have been tailored for a particu-
lar processor they are all quite general in application. The
case for copy-back caches has already been well demon-
strated in the synchronous world; in this model the benefits
have proved quite small (-10%) but this is because the
speed differential between the cache and external memory
is less than a factor of ten; the difference between copy-
back and write-through caches is emphasised as this differ-
ential increases, as is currently happening. We believe this
is the first solution to the problems of a copy-back cache in
a totally asynchronous environment.

The need for a write-buffer to equalise bus loads - and
allow writes to be deferred in favour of more urgent reads
- is also demonstrated. The need to ensure memory coher-
ency has forced the adoption of forwarding from this buffer.
In order to forward asynchronously the data in the write
buffer cannot be removed by the write process without
introducing hazards. This means the last few rejected lines
are retained indefinitely and therefore become a victim
cache.

The line-buffers act as an extra level of cache and there-
fore deliver added performance; however in this implemen-
tation their most important role is to allow the separate
instruction and data buses the maximum freedom of access
to the memory. This has influenced their tags insofar as they
are checked before beginning a main cache access. Line
buffers would also give a benefit in a single bus cache,
although in this case it could be better to run them in paral-
lel with the tag look-up. As was demonstrated in the previ-
ous AMULET3 system the line-buffer yields slightly faster
memory cycles than the cache, a feature which can be
uniquely exploited in an asynchronous system.

Other features - notably as the LFL from AMULET2e
and the blocked cache from ARM3 - have also been
retained; these give, respectively, a fast forwarding and hit-
under-miss capability and significant power reductions.

Although studies are continuing, it is already clear that
these designs will be used in any future AMULET3 cache
designs and, we hope, in other asynchronous processors.
We believe that this is yet another step in bringing asyn-
chronous processing into parity with the synchronous
world.

7. References

[I] S.B. Furber, J.D. Garside, P. Riocreux and S. Tem-
ple,“AMULET2e: An Asynchronous Embedded Controller”,
Proceedings of the IEEE, February, 1999

[2] AMULET Group, URL http:// www.cs.man.ac.uk/amulet/

[3] Nanya-Nakamura Laboratory, URL http://www.hal.rcast.u-
tokyo.ac.jpltitacU

[4] Caltech Group, URL http://www.async.caltech.edu/

[5] J.L. Hennessy and D.A. Patterson, “Computer Architecture:
A Quantitative Approach”, Morgan Kaufmann, 1996

[6] W. Stallings, “Computer Organization and Architecture:
Design for Performance”, Prentice-Hall International, Fourth
Edition, 1996

[7] A. Smith, “Cache Memories”, ACM Computing Surveys,
September, 1982

[8] ARM940T Technical Reference Manual, Technical Report
No. ARMDD10144A, February 1999, Advanced RISC
Machines Ltd. (ARM)

[9] A. Takamura et al., “TITAC-2: A 32-bit Asynchronous
Microprocessor based on Scalable-Delay-Insensitive Model”,
Proceedings of ICCD’97, pp. 288-294, October, 1999

[lo] A.J. Martin et al., ‘The Design of an Asynchronous MIPS
R3000 Microprocessor”, Advanced Research in VLSI, pp. 164-
181, September, 1997

[I 13 J.D. Garside, S. Temple and R. Mehra, “The AMULET2e
Cache System”, Proceedings of Async’96 Aim-Wakamatsu,
Japan, March, 1996

[121 R. Mehra and J.D. Garside, “A Cache Line Fill Circuit for a
Micropipelined Asynchronous Microprocessor”, IEEE Technical
Committee on Computer Architecture Newsletter, October, 1995

[13]J.D. Garside, W.J. Bainbridge, A. Bardsley, D.M. Clark,
D.A. Edwards, S.B. Furber, J. Liu, D.W. Lloyd, S. Mohammadi,
J.S. Pepper, 0. Petlin, S. Temple and J.V. Woods, “AMULET3i -
an Asynchronous System-on-Chip” Proceedings Async 2000 pp.
162-175 IEEE Computer Society Press April, 2000 (ISSN 1522-
8681 ISBN 0-7695-05864)

[14] “AMULET3H - 32-bit Integrated Asynchronous Microproc-
essor Subsystem”, AMULET Group, University of Manchester,
UK, version 1 .O, 2000 URL www.cs.man.ac.uWamulet/

[I51 ARM Ltd., “ARM Architecture Reference Manual” ARM
DDI OlOOD 2000

[161 W.J.Bainbridge, “Asynchronous System-on-Chip Intercon-
nect”, PhD. thesis, Department of Computer Science, The Uni-
versity of Manchester, 2000

[171 D.A. Gilbert and J.D. Garside “A Result Forwarding Mecha-
nism for Asynchronous Pipelined Systems”, Proceedings of
Async’97 Eindhoven, The Netherlands, April, 1997

[18] P.B. Endecott, “LARD Documentation Home Page”, URL
http:// www.cs.man.ac.uk/amulet/projects/lard/index.html

[19] Hitachi HM514100 Series Datasheet

r20lA.J. Smith, “Characterising the Storage Process and Its
Effects on the Update of Main Memory by Write-Through”,
Joumal of the ACM 26(1) pp. 6-27, January,l979

16 1

http://www.hal.rcast.u
http://www.async.caltech.edu

