
device must never stall betweenAout+ and Aout-. This
condition is satisfied by the fully-decoupled controller but
not the semi-decoupled controller.

11: Conclusions

A framework has been presented which allows
dynamic logic to be supported within an asynchronous
framework where externally static behaviour is achieved
without recourse to charge-retention circuits by enabling
evaluation to begin only when it is known that the output
latch will shortly become available. This information is
propagated back up the pipeline using a previously redun-
dant transition in the ‘broad’ four-phase protocol to signal
‘nearly ready’.

The dynamic pipeline may be interfaced to ‘early’ pro-
tocol static pipelines using a ‘long-hold’ latch on the input
side and a ‘fully-decoupled’ latch on the output side, and in
particular these interfaces may be used to encapsulate the
dynamic region to ensure its fully pseudo-static external
behaviour.

In addition, a dynamic pipeline controller has been
presented which is designed to operate with edge-triggered
latches that are static only with their clock inputs low. The
controller uses self-timing to ensure that the clock never
stalls high, thereby allowing a simpler latch circuit to be
employed. This controller uses the same handshake proto-
col as the level-sensitive latch controller.

Using dynamic logic in an asynchronous framework
such as the one presented in this paper is more efficient than
in any clocked framework where the clock may be slowed
or stopped in any state for power conservation, since the
locally self-timed evaluate and latch cycle is well matched
to the dynamic storage properties of these circuits.

12: Acknowledgements

This work is the outcome of research prompted by an
off-the-cuff comment made by Peter Beerel during a con-
versation held on a pier in the Sea of Galilee during a work-
shop held in Israel in March 1995. Peter’s seminal
contribution is gratefully acknowledged.

13: References

[1] I. E. Sutherland, “Micropipelines”,Communications of the
ACM, Vol. 32, Number 6, June 1989, pp 720-738.

[2] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V.
Woods, “A Micropipelined ARM”,Proceedings of the IFIP
TC 10/WG 10.5 International Conference on Very Large
Scale Integration (VLSI’93), Grenoble, France, September
1993. Ed. Yanagawa, T. and Ivey, P. A. Pub. North Holland.

[3] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V.
Woods, “AMULET1: A Micropipelined ARM”,Proceed-
ings of the IEEE Computer Conference, March 1994.

[4] N. C. Paver, “The Design and Implementation of an Asyn-
chronous Microprocessor”, PhD Thesis, University of Man-
chester, June 1994.

[5] T.-A. Chu, “Synthesis of Self-Timed VLSI Circuits from
Graph-Theoretic Specifications”, inProceedings of
ICCD’87, IEEE, pp. 220-223, October 1987.

[6] S. B. Furber and P. Day, “Four-Phase Micropipeline Latch
Control Circuits”,IEEE Trans. on VLSI Systems, June 1996.

[7] J. Peterson,Petri Net Theory and Modelling of Systems,
Prentice Hall, 1981.

[8] M. Kishinevsky, A. Kondratyev, A. Taubin and V. Var-
shavsky, Concurrent Hardware - The Theory and Practice of
Self-Timed Circuits, Wiley Series in Parallel Computing,
1994.

[9] L. W. Nagel and D. O. Pederson,Simulation Program with
Integrated Circuit Emphasis (SPICE), University of Califor-
nia, Berkeley, Electronics Research Lab. Report No. ERL-
M383, 12th April 1983.

delay, reflecting the 50% duty-cycle that this circuit can
achieve, whereas the cycle times of the enhanced and edge-
triggered circuits just increase by the evaluation delay. The
response times of the enhanced and edge-triggered circuits
are largely unchanged since all stages begin evaluation at
almost the same time, whereas the simple circuit must wait
for each stage to clear before initiating action in the preced-
ing stage.

9: Comparisons with static pipelines

Earlier work presented three different designs of latch
controller for pipelines incorporating static or pseudo-static
processing logic which were differentiated by the degree of
coupling between the control cycles in adjacent pipeline
stages [6]. These controllers all use the early handshake
protocol, though the ‘long-hold’ controller effectively sup-
ports the broad protocol on its output side.

The reported performance of the older circuits was
based on simulations using parameters based on a different
process technology from that used here, so the figures are
not directly comparable. The fully-decoupled controller
was therefore re-simulated on this process technology,
where it shows a very similar minimum cycle time (8.2nS)
and a considerably longer minimum response time (19.1ns)
compared with the dynamic pipeline circuits. The cycle
times of the fully-decoupled and long-hold controllers
increase in proportion to the processing delay, whereas the
cycle time of the semi-decoupled controller increases by
twice the processing delay as observed before [6].

Parameter

Dynamic Latch Control Circuit

Simple Enhanced
Edge-

Triggered

Rin ↑ to Ain ↑ 0.7nS 0.8nS 0.8nS

Rin ↓ to Ain ↓ 0.6nS 0.8nS 0.8nS

Aout ↑ to Ain ↑ n/a 2.2nS 2.2nS

Aout ↓ to Ain ↓ n/a 4.9nS 3.7nS

Aout ↑ to Rout ↓ 1.0nS 1.0nS 1.7nS

Aout ↓ to Rout ↑ n/a 2.4nS 3.1nS

D ↑ to Rout↑ 0.8nS 1.1nS 2.7nS

D ↓ to Rout↓ 0.8nS 0.8nS 1.4nS

Min. Cycle Time 7.8nS 7.5nS 8.0nS

Min. Response 16.5nS 7.2nS 7.7nS

Proc. Cycle Time 20.1nS 13.6nS 14.3nS

Proc. Response 29.5ns 7.8nS 7.8nS

Table 1: SPICE Analysis Results

The new circuits therefore offer similar performance
to (and better reponse time than) the older circuits whilst
allowing dynamic processing logic to be exploited without
any need for circuitry to enforce pseudo-static behaviour.

10: Interfacing to other protocols

Although the broad protocol may be used throughout a
design, there are occasions where it may be desirable to
interface to alternative protocols such as the early protocol
used in the semi-decoupled, fully-decoupled and long-hold
latch controllers presented elsewhere [6]. In particular, it is
a good idea to ensure that the end conditions of the dynamic
pipeline are satisfied when interfacing to less-well control-
led regions of the design, such as when going off-chip.

To interface from an early protocol into a dynamic
pipeline as presented in this paper, it is necessary only to
hold the input data valid until the output acknowledge falls
(that is, to use the broad protocol on the output side). The
long-hold latch controller has the required characteristics.

To interface a dynamic pipeline into an early protocol
latch would appear to be straightforward, since the broad
protocol is more than sufficient to cover the input specifica-
tion of an early protocol latch. However, the dynamic pipe-
line is not simply using the broad protocol, it is also
signalling additional information. In particular, the output

Figure 12: The pipeline structure used for cycle
time and response measurements

Rin

Register

Dynamic
logicAin

Rout Aout

Lt

E

D

Data out

Data in

Control

Rin

Register

Dynamic
logicAin

Rout Aout

Lt

E

D

Control

Rin

Register

Dynamic
logicAin

Rout Aout

Lt

E

D

Control

Ack

Go

7: Control circuits

The STG specifications may be used to derive a state
graph by following the underlying Petri Net rules [7], and
then an implementation derived from the state graph. Alter-
natively, tools exist which automate this procedure. The
tool used here was FORCAGE [8]. The implementation is
expressed in the form of logic equations which may be con-
verted into R-S flip-flops or Muller C-gates.

The Muller C-gate implementation of the simple latch
controller is shown in figure 8, the enhanced controller in
figure 9 and the edge-triggered latch controller in figure 10.
It is interesting to observe the small but important differ-
ences between figure 8 and figure 9 which lead to signifi-
cantly different behaviour and performance.

The notation used in these figures for asymmetric C-
gates indicates that an input controls both edges of the out-
put when it is connected to the main body of the gate, it
controls only the rising edge when connected to the exten-
sion marked ‘+’, and it controls only the falling edge when
connected to the extension marked ‘-’. This notation is
illustrated in figure 11 which shows a possible transistor-
level implementation of an asymmetric C-gate.

Fig. 8. Simple latch control circuit

Fig. 9. Enhanced latch control circuit

Rin

Aout

Ain

Rout

data in

data out

C
latch

Lt

-

A

C

E D
delay

Rin

Aout

Ain

Rout

data in

data out

C
latch

Lt

-

A

C -

+

E D
delay

8: Performance

The latch control circuits have been laid out using 0.5
micron CMOS design rules and simulated using SPICE [9]
operating at worst-case conditions (Vdd = 3.3V, Vss = 0.1V,
slow-slow process corner, at 100˚C) and driving a 32-bit
latch. The results of this analysis are shown in Table 1.

The most significant results, shown at the bottom of
the table, are the cycle and response times with and without
processing logic. The minimum cycle time indicates how
rapidly a simple FIFO could propagate data. Here there is
no processing logic, so the issue of using dynamic or static
circuit techniques does not arise, but this gives an upper
bound on the potential throughput. The response time is
measured by stalling the output of a 3-stage pipeline until
it is full, and then seeing how long it takes from releasing
the output until the input starts moving (i.e. the delay from
Aout+ to the last stage toAin+ from the first stage). Here
the enhanced circuits move very quickly.

The corresponding results for a processing pipeline are
established by inserting processing logic on the input to
each register in a 3-stage pipeline as illustrated in figure 12.
The logic used here has an evaluation delay of 5.8nS and a
precharge delay of 0.9nS. The cycle time of the simple
pipeline increases by approximately twice the processing

Fig. 10. Edge-triggered latch control circuit

Fig. 11. Asymmetric C-gate notation

Rin

Aout

Ain

Rout

data in

data out

C
latch

Ck
A

C -

+

E D

C +

delay

C

+

A -

B

C

Z Z

A

B

C

=

can be merged intoRout) but it will be used in subsequent
developments of the circuit.

(SinceE andAin are wired together in figure 3 they are
not strictly ordered, so figure 4 is over-constrained. How-
ever, the simple dependence ofAin+ onE+ andAin- onE-
will result in a circuit which is just a wire, as required. We
could simply omitAin or E from the STG, but this makes
the STG less clear as a specification, so we have retained
both.)

The evaluate phase (V) and the precharge phase (P),
together with a few internal control delays, determine the
cycle time of the stage and the throughput of the pipeline.

5: Enhanced latch controller specification

The enhanced controller uses the optimisation men-
tioned earlier to begin evaluation as soon as it is known that
the output latch will become free ‘soon’ rather than waiting
until it is free. A suitable STG is shown in figure 5. The
information about the output latch becoming free is propa-
gated back from the next controller onAout+, and this con-
troller must generate a similar signal onAin+.

The STG incorporates a state variable (A) which is
used to achieve the required operation. In this circuit the
data is latched (Lt+) when the dynamic logic has com-
pleted its evaluation (D+) and held until the next stage has
finished using it (Aout-). Evaluation begins (E+) when the
input data is ready (Rin+) and the previous result has
entered processing in the next stage (Aout+). This condi-
tion guarantees that the output latch will become free
‘soon’.

Here ‘soon’ is interpreted as any period which is not
subject to arbitrary external delay, so it is the result of inter-
nal self-timed delays only. We argue that, if the next stage
is similar to the current one, it can only stall betweenRout+
andAout+ on the arrow markedS in figure 5. If this is true,
this property is propagated back to the input, and hence, by

Fig. 5. Enhanced latch controller STG

Rin+

Ain+

Rin-

Ain-

Rout+

Aout+

Rout-

Aout-Lt-

Lt+

A+

A-

E+

E-

D+

D-

V

P

S

induction, along a pipeline of similar stages. Only the end
conditions remain to be checked, and we shall return to this
later.

6: Edge-triggered latch control specification

The transparent latch controller holds the latch nor-
mally open, allowing transients to propagate down the
pipeline, wasting power (though the dynamic circuitry in
the next stage may make this wastage very low). Where this
is undesirable, edge-triggered latches may be used to
ensure that only valid data values are propagated.

Normally an edge-triggered latch should have static
behaviour when its clock is held either high or low, but a
particularly simple form of dynamic single-phase edge-
triggered latch becomes rather complex when a full set of
weak feedback components is added. Instead, we can
design the control circuit so that the clock is never held
high and weak feedback is required only when the clock is
held low. The latch circuit is shown in figure 6.

The STG specification of a suitable control circuit for
this edge-triggered latch is shown in figure 7.

Fig. 6. Edge-triggered latch circuit

Fig. 7. Edge-triggered latch controller STG

Q
D

Ck

Rin+

Ain+

Rin-

Ain-

Rout+

Aout+

Rout-

Aout-Ck-

Ck+

A+

A-

E+

E-

D+

D-

V

P

S

(All these protocols take the micropipeline view that
the sender of the data initiates the transfer; where the
receiver is the initiator, yet further protocols are possible.)

For the current work we wish to propagate a signal
back up the pipeline to indicate that dynamic evaluation
may begin. This could be achieved using an additional
wire, but in the interests of efficiency it is desirable to min-
imize the number of wires, so instead we use one of the
inactive transitions in the existing protocol. Since we want
the ‘evaluate’ signal to follow ‘data available’ and to pre-
cede ‘data latched’, this restricts the choice of protocol to
‘broad’. The signalling sequence is illustrated in figure 2.

3: Pipeline stage structure

Using the broad protocol outlined above, the general
form of a processing pipeline stage is as shown in figure 3.

The dynamic logic and output register are controlled
using the input request and acknowledge (Rin andAin) and
the output request and acknowledge (Rout andAout).

The dynamic logic begins evaluation when its enable
(E) goes high and indicates a valid output on a ‘done’ signal
(D). When its enable is low it is precharged, and precharge
completion is signalled by the ‘done’ signal going low.

The output data register may either be a transparent
latch which passes data when its latch enable (Lt) is low
and holds it when high, or it may be a positive-edge trig-
gered flip-flip.

Fig. 2. The ‘broad’ handshake protocol.

Fig. 3. Pipeline stage structure.

Request

Data

Acknowledge

Rin

R
eg

is
te

r

D
yn

am
ic

lo
gi

c

Ain

Rout

Aout

LtE D

Data outData in

Control

The assumption will be that the stage is connected to
similar neighbours. However, there is a discussion on the
issues of interfacing to different protocols at the end of the
paper.

4: Simple latch controller specification

A simple dynamic pipeline which defers evaluation
until the output latch is free is used here as a reference
point. The control is specified using a Signal Transition
Graph (STG) [5] which shows the orderings of the signal
transitions. An STG for a controller for a register built from
transparent latches is shown in figure 4. The notation used
here follows that used in previous work to develop four-
phase micropipeline latch controllers which operated using
the early protocol and displayed various different levels of
coupling between the input and output handshake
sequences [6]. The dashed arrows indicate dependencies
which the environment must observe; the solid arrows rep-
resent orderings which this circuit must maintain. The solid
‘tokens’ drawn next to certain arcs represent an initial
‘marking’, and a particular transition can fire only when
there is a token on each of its input arcs (onlyRin+ can fire
in figure 4). When a transition fires, a token is placed on
each of its output arcs.

This STG shows that evaluation begins (E+) when the
input data is valid (Rin+) and the output latch is free (Lt-).
When evalution is complete (D+), the data is latched (Lt+)
and the valid output data signalled (Rout+). Note that as the
latches are transparent,Rout+ need not followLt+ provided
that time is allowed for the data to propagate through the
latches. The broad protocol allows the input handshake to
proceed throughAin+ andRin-, with Ain- waiting until the
data is safely latched (Lt+), and the data is held until the
output handshake completes (Aout-) before being released
(Lt-). The state variable (A) is not strictly necessary here (it

Fig. 4. Simple dynamic pipeline latch controller
STG

Rin+

Ain+

Rin-

Ain-

Rout+

Aout+

Rout-

Aout-Lt-

Lt+

A+

A-

E+

E-

D+

D-

V

P

S

Dynamic Logic in Four-Phase Micropipelines

S. B. Furber and J. Liu

Department of Computer Science, The University of Manchester,

 Oxford Road, Manchester M13 9PL, England.

 Abstract

Micropipelines are self-timed pipelines with charac-
teristics that suggest they may be applicable to low-power
circuits. They were originally designed with two-phase
control, but four-phase control appears to offer benefits
for CMOS implementations.

In low-power applications static circuit behaviour is
desirable since it allows activity to cease (and hence
power to be saved) without loss of state. However,
dynamic circuits offer the benefits of increased speed and
lower switched capacitance. Therefore low-power designs
often employ dynamic logic with additional latches or
charge-retention circuits to give pseudo-static behaviour.
These additions increase the cost and power consumption
of the dynamic circuits, thereby compromising their poten-
tial advantages.

Circuits are proposed in this paper that allow
dynamic logic to operate efficiently within a four-phase
micropipeline framework without the above-mentioned
encumbrances whilst still retaining externally static
behaviour.

1: Introduction

Micropipelines were introduced by Ivan Sutherland in
his 1988 Turing Award lecture [1]. They are self-timed cir-
cuits which employ a two-phase bundled data protocol.

The AMULET1 processor [2, 3, 4], developed at the
University of Manchester between 1991 and 1994, used the
micropipeline design style, but its successor, AMULET2,
abandoned the two-phase control in favour of four-phase
control mainly for performance reasons.

Both AMULET processors employ dynamic logic
techniques in some parts of their datapaths, but since the
delay-insensitive control circuits can stall in any state,
extra circuitry is included (such as an additional latch or
charge-retention circuitry) to give the dynamic circuits

pseudo-static behaviour.
Dynamic logic may easily be used in a self-timed pipe-

line without additional circuitry at the cost of some per-
formance loss. Leakage causes the output of the circuit to
be valid for a short time only; therefore the circuit should
not begin evaluation until the output latch is free. It also
requires its inputs to be held stable until evaluation is com-
plete, so during evaluation both the input and the output
latches are required by the intervening dynamic logic,
resulting in at most 50% of the logic being active at any
time.

The new idea introduced here is to observe that the
above description is slightly over-constrained. It is not
strictly necessary that the output latchis free before evalu-
ation begins; it is only necessary to know that it will
become free within a short time (the dynamic storage time
of the output nodes). This relaxation of the condition for
starting evaluation allows a significant improvement in the
pipeline’s performance.

2: Four-phase handshake protocols

The four-phase handshake protocol employed in most
control circuits on AMULET2 is the ‘early’ protocol illus-
trated in figure 1. This uses the rising edge of the Request
line to indicate ‘data available’ and the rising edge of the
Acknowledge line to indicate ‘data latched’. The falling
edges are return to zero actions that carry no meaning.

Other protocols are possible. The ‘late’ protocol uses
the falling edges as active and the ‘broad’ protocol uses the
rising Request and falling Acknowledge edges as active.

Fig. 1. The ‘early’ handshake protocol

Request

Data

Acknowledge

