
9. Conclusions

We have demonstrated that a self-timed on-chip cache
can be produced and readily interfaced to an asynchronous
microprocessor. In some parts of the design the asynchro-
nous style provides a distinct advantage over a conven-
tional, synchronous approach. An example of this is the
mechanism used to reduce power consumption by switch-
ing off the RAM sense amplifiers when they are known to
have produced their output; this method has also been
applied to ostensibly synchronous circuits in the past.

The self-timing, typically performed by using care-
fully matched timing signals within the full custom logic
can create problems however. A good example of this is in
the CAM where two serial self-timed paths must be used.
This is an unfortunate source of excess power consumption
as the “bundle” timed by the second of these signals com-
prises a single wire.

The exploitation of sequential cache accesses is a val-
uable mechanism for reducing power consumption. Avoid-
ing the precharge not only saves significant power but also
reduces the access time needed for subsequent cycles. This
can be exploited in an asynchronous environment because
even small differences in speed may be taken advantage of.
This may be contrasted with a synchronous system where a
speed difference must exceed a whole clock cycle before it
becomes useful.

The cache therefore provides a good example of a sys-
tem which provides “average case performance”, an often
used argument in favour of asynchronous systems. This is
not just a consequence of a data dependent cycle time; it is
also necessary that the environment provides suitable oper-
ating conditions. In this case cycles of different lengths are
closely interleaved, there is an elastic buffer (the proces-
sor’s instruction prefetch buffer) downstream and the
address interface is sufficiently fast to provide a ready
stream of addresses.

The cache line fill mechanism provides a great deal of
flexibility in a simple manner. Despite servicing the micro-
processor’s requests and operating the memory interface as
autonomous asynchronous processes, it allows the cache to
be completely non-blocking. It is also completely deter-
ministic and arbiter-free. Although the benefits may be less
marked there is no reason why an analogous mechanism
could not be employed in a synchronous system.

10. Acknowledgments

The work described in this paper was carried out as
part of ESPRIT project 6909, OMI/DE-ARM (the Open
Microprocessor systems Initiative - Deeply Embedded

ARM Applications project). The authors are grateful for
this support from the CEC. The encouragement and sup-
port of the members of the OMI/DE-ARM consortium is
also acknowledged.

The authors are grateful to Advanced RISC Machines
Limited and VLSI Technology Limited for their material
support. Particular thanks must go to the AMULET devel-
opment team, especially Paul Day and Nigel Paver for the
development of the AMULET2 processor core.

The VLSI designs described in this paper were devel-
oped using tools from Compass Design Automation Lim-
ited, and final verification usedTimeMill from EPIC
Design Technology, Inc. The quality and accuracy of these
tools contributes significantly to the feasibility of the self-
timed designs presented here.

11. References

[1] ARM Ltd., “ARM600 Datasheet”, Cambridge, England,
September 1991.

[2] ARM Ltd., “ARM Tools 200”, Cambridge, England, Janu-
ary 1995.

[3] Day, P., Furber S.B. “Investigations into Micropipeline
Latch Design Styles” IEEE Transactions on VLSI Systems,
June 1996

[4] Furber, S.B., “VLSI RISC Architecture and Organization”,
Marcel Dekker Inc., New York, 1989.

[5] Furber, S.B., et al., “A Micropipelined ARM”, In proceed-
ings of VLSI ‘93, Grenoble, France, September 1993.

[6] Hennessy, J.L., Patterson, D.A. “Computer Architecture: A
Quantitative Approach”, Morgan Kaufmann, 1990.

[7] Horowitz, M. et al., “MIPS-X: 20-MIPS Peak, 32-bit Multi-
processor with On-Chip Cache”, IEEE Journal of Solid-
State Circuits, Vol. 22, No. 5, October 1987.

[8] Jaggar, D.V. “A Performance Study of the Acorn RISC
Machine” M.Sc. Thesis, University of Canterbury, 1990

[9] Linley Gwennap “Intel’s P6 Uses Decoupled SuperScalar
Design”, Microprocessor Report, Vol. 9 Number 2, February
16 1995.

[10] Mehra, R “Micropipeline Cache Design Strategies for an
Asynchronous Microprocessor”, M.Sc. Thesis, University of
Manchester, October 1992.

[11] Paver, N.C., “The Design and Implementation of an Asyn-
chronous Microprocessor”, PhD Thesis, University of Man-
chester, June 1994.

[12] Przybylski, S., “Cache and Memory Hierarchy Design”,
Morgan Kaufmann, 1990.

[13] Sutherland, I.E., “Micropipelines”, Communications of the
ACM, Vol. 32, Number 6, June 1989, pp 720-738.

[14] Taufik, T. “Cache and Memory Design Considerations for
the Intel486 DX2 Microprocessor”, Intel Application Note
AP-469, May 1992.

[15] Weiss, S., Smith, J.E., “POWER and PowerPC”, Morgan
Kaufmann, 1994.

[16] Öner, K., Dubois, M. “Effects of Main Memory Latencies
on the Performance of Non-blocking Caches” Technical
Report #CENG-92-14, University of Southern California,
1992.

absence of a clock it is necessary to generate timing models
for these devices. To cater for a wide range of access times
for these devices, a single delay is defined by external com-
ponents. Multiples of this basic delay are then used when a
particular memory device is accessed. Internal control reg-
isters are used to determine the timing characteristics of
various parts of the AMULET2e memory map.

8. Performance

The layout of a single 1Kbyte cache block is shown in
figure 8. This block measures about 1mmx 2mm and
clearly shows the CAM (left hand side) and the RAM
pitch-matched together; the pipeline latch is visible in the
centre. The address enters the CAM at the bottom and the
dummy CAM line lies across the top of this block. The hit
determination and its timing logic are on the right of the
CAM block.

The RAM has two interfaces; the processor data buses
lie at the bottom, together with the sense amplifiers, write
drives and tri-state bus buffers. The line fetch latches are at
the top of the array, together with their more numerous
write drivers. The LFLs are also passed through the array
to enable the processor to read them. The dummy line for
timing is visible on the extreme right hand side.

At the time of writing the circuit has not been fabri-
cated so a measured performance is not available. However
detailed simulation on many of the elements has been per-
formed and the times extracted. Times quoted are for “typ-

Figure 8: One kilobyte CAM/RAM cache block

ical” silicon at room temperature characterised on a 0.5µm
3-layer metal, CMOS process, run at 3.3V. Some of the tim-
ings are approximate because the simulation of all the
‘high-level’ blocks was not finalised at the time of writing.

• CAM access time (hit) 8ns

• CAM precharge time 3ns

• CAM cycle time (hit) 11ns

• CAM cycle time (miss/write) 16-20ns

• RAM access time (random access) 7-8ns

• RAM access time (sequential access)4ns

• RAM precharge time 4ns

• RAM cycle time (random access) 11-12ns

• RAM cycle time (sequential access) 8ns

• Estimated approximate overall cycle time
(including estimate of control logic) 12-15ns

Unfortunately tools were unavailable to extract precise
power consumption figures from the cache. However some
qualitative estimates of the power saving due to sequential
accesses have been attempted by extracting the capaci-
tances of the major signals within the cache. These suggest
that a sequential RAM access will consume significantly
less than half the power of a random access; most of the
power dissipating signals (such as the bit line precharge)
are omitted. In addition – during a sequential cycle – the
CAM is bypassed entirely and thus dissipates no power.

cache line replacement. This is a rapid operation and is hid-
den under the start-up time of the new line fetch.

6.2. Performance Evaluation

An ARM [1] instruction level simulator [2], was aug-
mented with code which modelled the cache architectures.
A selection of programs was run (single tasked) and statis-
tics were recorded. This revealed two important points.

1) Given a cache comprising 256 lines and with a
>90% hit rate it might be estimated that the chance of an
access to a specified cache line would be about 0.4%. How-
ever if the specified line is the last line fetched from mem-
ory this chance is significantly higher at around 4%.

2) Perhaps surprisingly, after a cache miss has started
a line fetch the subsequent number of sequential accesses is
often quite small. In about half the line fetches performed
only a single word was required before an access to some
other cache line is requested.

The former is explicable by code fetches where
sequential data is required. When a new section of pro-
gramme is run many line fetches will be performed and

En

S

R

Q

S

R

Q

S

R

Q

S

R

Q

LF_req LF_ack

LF_data0

LF_complete

LF_data1

LF_data2

LF_data3

word address

LF_req3

LF_req2

LF_req1

LF_req0

LF_ack3

LF_ack2

LF_ack1

LF_ack0

LF_rdy3

LF_rdy2

LF_rdy1

LF_rdy0

Processor read interface

Memory line fetch interface

Data in

En

En

En

LF_En3

LF_En2

LF_En1

LF_En0

Figure 7: Line fetch latch read synchronisation

most of the fetched words will be required. The latter
appears to be attributable to data references where the proc-
essor immediately finds its next op-code already cached.

The performance gain attributable to the non-blocking
line fetch mechanism described over a naive, stalling line
fetch process varies according to the programme being
evaluated. However the reduction in overall run time was
significant and averaged approximately 15% for the cache
employed in AMULET2e.

7. External Memory Interface

AMULET2e was designed to provide a simple inter-
face to commodity memory and peripheral devices. It pro-
vides a conventional “synchronous” bus interface to which
such devices may be directly attached. Support for static
RAMs and peripherals which behave like static RAM is
provided as is an interface to dynamic RAMs. The external
data bus is 32 bits wide but it can be configured to perform
multiple cycles for 16 or 8 bit wide memories.

Although AMULET2e is internally self-timed, the
external memories to which it is interfaced are not. In the

latch or a miss. In the first two cases the data is read from
the appropriate source and then sent to the CPU; the last
must instigate a new line fetch and is thus more complex.
The flow of these requests is shown in figure 6.

The “Hit” and “LFL Hit” control signals are generated
by tag comparisons. “Hit” indicates that the required data
is cached and “LFLHit” specifically indicates that it is in
the line fetch latches rather than the main array. “LFL Hit”
is the output of the special LFL tag line. Note that a cache
miss, after instigating a line fetch, looks for its data in the
line fetch latches.

Assuming that the previous line fetch has completed, a
read miss first instigates a new line fetch and then issues a
request for the required word within the line fetch latches.
It must then synchronise with the incoming data word
before carrying it back to the processor. Any following read
operations that require data from this line are directed
solely to the line fetch latches where their data may already
be present; if not they too must wait until the data arrive.

A read hit in the main array requires no synchronisa-
tion. It is routed to the main array and can proceed unhin-
dered. This route completely bypasses the line fetch
process and so may be serviced independently and at any
time. There is no conflict for access to the RAM array
because the line fetch process does not attempt to write into
this area. The cache is thus non-blocking [16].

The key point in this mechanism is the line fetch syn-
chronisation block (figure 7) which must delay any line
fetch reads until the correct data are present. For each word
in the cache line there is both a line fetch latch and a syn-
chronisation latch. The line fetch latches are edge triggered
latches which hold words that have been fetched from

Hit

LFL Hit

Read
Req Read

Ack

F

T

T

F

S
el

ec
t

S
el

ec
t

LF ENGINE

SYNC.

MAIN CACHE ARRAY

LF LATCH
D

A
T

A

A
D

D
R

Figure 6: Control Circuit Request Steering.

memory. The synchronisation latches are flip-flops which
are set when a particular word is valid. These stall read
requests until the required data have arrived. A request to
read a line fetch latch (“LF_req”) is decoded and steered
onto the correct individual word request line (LF_req0-3)
where it synchronises with the appropriate flip-flop.

When a line fetch starts all the line fetch latches are
emptied and all the synchronisation flip-flops are cleared.
This occurs when the line fetch process is instigated and
before the processor can attempt to read the LFL.

When the LFL receives data from memory the appro-
priate flip-flop is set allowing a pending request (if any) to
proceed. This mechanism is non-hazardous because the
process can only delay a request; no requests are sent until
all the flip-flops are cleared. Synchronisation occurs in a
glitch free fashion and there is no possibility of metastabil-
ity.

The only further synchronisation required is between
successive line fetch operations. The autonomous line fetch
process is aware that a cache line fetch has completed and
it can stall a request for a subsequent line fetch arbitrarily.
Thus when a new read miss occurs it must wait for the pre-
ceding fetch to complete in a conventional, serial fashion.

This mechanism leaves the last line fetched in the line
fetch latches indefinitely. The final task of the line fetch
engine is to copy this line into the main RAM array before
accepting data from the next fetch. It does this when it is
both ready (LF Complete is asserted) and a new read miss
has occurred, in which instance it has control of the com-
plete subsystem. At this time the synchronisation flip-flops
are cleared and the contents of the line fetch latches are
copied – in parallel – into the RAM array as a standard

sor memory interface which is a simple circuit capable of
cycling somewhat more rapidly than most parts of the proc-
essor, thus input starvation should be relatively rare. The
output of the cache is the processor’s data interface where
the majority of returned data are routed to the prefetch
buffer. This is a fast, elastic buffer which is made suffi-
ciently large to prevent it filling up very often.

6. The Line Fetch Mechanism

In addition to efficiently returning data items which it
has cached, the cache system should also attempt to per-
form effectively when a cache miss occurs. In AMU-
LET2e, a write cycle which misses causes no action in the
cache. A read however causes a line fetch to begin and four
words are fetched from the (slower) external memory sys-
tem. Although infrequent this can still impose a major per-
formance penalty, and measures must be adopted to
alleviate this delay.

The simplest mechanism to adopt whilst filling a cache
line is to stall the processor until the fetch is complete.
When the line fetch finishes the requested word is sent to
the CPU and processing allowed to continue. This solution
is commonly used in mid-range microprocessors (e.g.
MIPS-X [7], Intel 486 DX2 [14]). It also has the advantage
that the various processes are kept in strict sequence, which
can simplify an asynchronous implementation. It is clearly
sub-optimal however, as it would require (in this case) the
time for four memory cycles to be added to the processing
time for each cache miss.

Ideally what is required is that the line fetch starts by
fetching the required word, forwards this to the processor
and then continues autonomously to complete the line fill.
The processor is then free to continue in parallel.

This is known as early-restart [12] and is a technique
employed in high performance architectures (e.g. RS/6000-
560 [15]).

The parallelism introduced by this mechanism can
cause problems when the processor requests its next mem-
ory cycle. To illustrate this the cycle following the miss can
be classified as follows:

1) A write operation.
2) A read operation which may be satisfied from

the existing cache contents.
3) A read operation which is a cache miss and

requires another line fetch.
4) A read operation on a value which is in the last

line to be requested.
Once it has been determined that a write operation is

not going to abort it can safely be buffered and dealt with
at leisure. Many modern cache architectures contain a
write-buffer [6]; in an elastically pipelined system this is
almost automatic. In general this allows the write operation

to be delayed without impact on the processor’s perform-
ance. Read operations are more interesting in that they
must return results to the processor, preferably with as little
delay as possible.

Providing that the line fetch process and the processor
do not conflict over cache accesses it is clear that case (2)
may – in principle – proceed without impediment. This
process – known as hit under miss [9] – is sometimes
employed in current synchronous designs although many
systems resolve potential conflicts by stalling the processor
until the line fetch is complete.

It is apparent that case (3) requires its own cache miss
processing and line fetch. If a line fetch is still in progress
there will be contention for the external bus. In this case
either the current line fetch must be abandoned or the sub-
sequent request stalled until it is complete.

In situation (4) various options are available. One
method, known as streaming, is to allow the read request to
be synchronised with the incoming line fetch data. When
the required value is available (the request might have to
wait) it is forwarded to the processor. Another, simpler,
option is to stall the request, allow the line fetch to com-
plete and then send the required data (which is now known
to be present) to the processor.

6.1. An Asynchronous Line Fetch Implementation

To avoid stalling the processor for extended periods
during a line fetch a mechanism for parallelising the line
fetch was sought. If the asynchronous fetch strategy is to
allow for concurrent cache and line fetch activity, then
there must be a method by which the two processes can be
synchronised when necessary (e.g. when reading data that
has just been fetched). In synchronous system this can be
done by counting and synchronising on clock edges, com-
paring the state of the subsystems when they are known to
be stable. Typically in an asynchronous system an arbiter is
employed. Unfortunately arbiters are potentially slow cir-
cuits which may introduce non-determinism into the sys-
tem and thus it is desirable to avoid them.

The solution was to divide the cache block into two
parts. The larger part is a conventional, associative cache
comprising CAM and RAM arrays. Added to this is
another single entry CAM/RAM pair which has been des-
ignated the Line Fetch Latch (LFL). The function of the
LFL is to cache the last line which wasrequested from
memory. The CAM entry is conventional in that it is writ-
ten to when deciding to fetch a line from memory; the
“RAM” entry is unconventional as it is filled gradually at
the external memory’s speed and thus may or may not be
full at any given time.

When a read request arrives at the tag store it is classi-
fied as a hit in the main cache array, a hit in the line fetch

Sequential access not only allows faster memory
cycles but it saves power too. Firstly the analogue sense
amplifiers are enabled for a shorter time; secondly the pre-
charge cycle of the RAM bit lines is omitted when it is
known that the following cycle is going to be sequential
and in the same cache line.

This feature could be applied to any cache, synchro-
nous or asynchronous. However in a synchronous cache the
time of any cycle is effectively limited to an integer multi-
ple of the clock period, and without very fast clocks it is
difficult to effectively exploit the speed advantage of this
property. Asynchronous circuits adapt quite naturally to
this situation however and can provide average case per-
formance.

5.1. Average case performance

A frequently used argument in favour of asynchronous
systems is that they are capable of being optimised for an

Figure 5: Sequential RAM read cycles

“average” case performance rather than the worst case
which synchronous systems must be designed for. Unfortu-
nately, due to complex and often data dependent timing
interactions between subsystems this “ideal” cannot always
be achieved.

If an average case throughput is to be achieved in a
given system over a given period of time it must be free of
external timing constraints over this period; thus it must
never be starved of input data or blocked because of a back-
log of output data. In many systems this is difficult to guar-
antee.

The cache described above exhibits the requisite prop-
erties needed for average case performance. It has a varia-
ble, data-dependent cycle time; however the coherence of
the input data stream ensures that a slow, non-sequential
cycle is frequently followed by one or more faster, sequen-
tial cycles. This means that the period needed to demon-
strate an “average” performance is of the order of a few
memory cycles. The cache input is supplied by the proces-

way. However, due to the nature of RAM design, the read
process is inherently quite slow and deserves further atten-
tion.

The RAM array is one cache line or 128 bits wide. The
addition of a 129th (dummy) bit is therefore a small extra
imposition. This bit is modelled closely on the other RAM
bits, but includes a small extra delay in order to guarantee
functionality.

Figure 4 illustrates a RAM read cycle simulated using
SPICE. The first panel shows the external request being
applied and later removed to prepare for the next cycle.
Below this are its internal reflections on theprecharge and
the selected word line. The stored bit (third panel) dis-
charges the bit line (fourth panel) and the dummy timing bit
is also discharged in parallel.

The sense amplifier timing (panel 5) is described
below; the last panel shows the internal read completion
signal and the final acknowledgement that the RAM read is
complete. The time from request to acknowledge is around
7ns for this cycle.

4. Self timed sense amplifiers

The primary design consideration in memory circuits
is to pack the maximum number of bits into the smallest
possible space. To achieve this the individual memory cells
are constructed from small transistors which must drive
large, capacitive loads. This, in turn, means that reading the
memory can be a lengthy process as it takes the memory
cell a considerable time to drive its output bus as shown in
figure 4.

As slow access times are unacceptable in high per-
formance circuits it is desirable to produce an early
response from the memory. To do this circuits known as
sense amplifiers are used to detect small changes in voltage
and to produce full-rail CMOS levels before the RAM cell
itself could do so. This is clearly seen in figure 4, where the
output has been determined before the bit line has been dis-
charged to more than a third of its initial voltage. A further
advantage in this case is that, because the bit lines do not
need to be fully discharged before a decision is made,
power can be saved on cycling these numerous and highly
capacitive wires.

Unfortunately the sense amplifiers must be analogue
circuits, drawing power continuously while they are ena-
bled, unlike digital CMOS which draws significant current
only when switching. This is a considerable penalty which
may be alleviated by activating the sense amplifiers only
when they are needed.

In the AMULET2e cache the sense amplifier control is
self-timed. Activation of the sense amplifiers is deliber-
ately delayed because there will be an initial period during
which the memory state is not determinable (figure 4, sig-

nal “ensa”). This delay is imposed by a chain of gates. If
this delay is too long the sense amplifier enable will be
delayed and the memory access time increased; if too short
extra power will be wasted. The simulated delay has there-
fore been measured (SPICE) and set as being slightly
shorter than optimal to prevent impact on the access time.

In order to determine when the output of the sense
amplifiers is valid an identical sense amplifier is attached to
the dummy bit. This always makes a transition (called
“RdDone”) which signals that the read data has been
resolved. When this has occurred the data output is latched
(within the sense amplifier) the output’s presence is
acknowledged and, simultaneously, the sense amplifiers
are disabled. Thus the sense amplifiers are on for (just over)
the minimum possible time. The (digital) output of the
sense amplifier may be held indefinitely without further
power consumption, necessary because the time taken for
the processor to accept the proffered data is not determina-
ble.

5. Exploiting sequentiality

A major feature of the AMULET2e cache is its ability
to exploit the generally sequential nature of memory refer-
ences. For the ARM architecture – which AMULET emu-
lates – typically 85% of memory references are instruction
fetches [8] and the majority (75%-80%) of these are
sequential. This means that a high proportion (>50%) of
addresses generated refer to the same cache line as their
predecessor.

This is easy to exploit since AMULET2 generates
sequentiality information in its address interface. If a cycle
is known to be in the same cache line as its predecessor then
its hit status and, in the case of a hit, the cache address of
the data is already known. In this case the associative look-
up in the CAM need not be performed and the previously
used RAM line can remain selected, thus avoiding a slow
and power consuming precharge-discharge cycle in each of
these blocks. It also means that “sequential” cache cycles
can be significantly faster than their “random” counter-
parts.

In sequential cycles the action of the timing circuitry is
the same as in “random” cycles, except that the initial delay
in enabling the sense amplifiers is omitted. As the data will
be ready to be read immediately, the sense amplifiers are
switched on as soon as possible and rapidly switch off
again (see figure 5).

Figure 5 displays certain implementational artifacts.
For example a local precharge between the cycles is visi-
ble. This is present to avoid potential charge sharing prob-
lems as the different output words are multiplexed; it
causes a fairly insignificant ripple in the bit line discharge
which is, nevertheless, modelled by the timing signal.

transition, the second that this models the worst case timing
for any of the true CAM lines. At this point the status of the
individual hit lines is known, but not the overall hit state.

The output of the first timing signal activates the
remaining circuitry. This comprises two distributed gates,
the first being used to determine the overall hit state, the

H
it tim

ing

H
it determ

ination

CAM array

Dummy line

Bit line drivers

Address

Req Ack

Hit

Figure 3: CAM timing mechanism

second being a timing model for this. The timing output
includes a small extra delay which guarantees that when it
makes its transition the hit signal will already have done so
if the cache has hit.

In some cases a third process is also invoked. This is
when the cache has missed and a cache line is to be
replaced. In this case the CAM is also written to.

CAM writes only occur following a CAM read. The
(previously failing) address is already present and there is
no need to charge/discharge large, capacitive wires, so
write cycles are quite rapid. Rather than expending time
and power in an attempt to detect write completion it is eas-
ier to produce a pulse with a separate timing circuit to con-
trol the write. This is longer than the worst case write time,
but is still more efficient than attempting to monitor the
write operation directly. As CAM writes only occur when
a cache line is allocated or reallocated and are therefore
infrequent it is not important to optimise this process.

3.2. RAM timing

The RAM self-timing is rather simpler than that of the
CAM in that only a single process – either a read or a write
– is invoked in any given cycle. The write process is almost
identical to that in the CAM and is modelled in a similar

Figure 4: RAM read timing

the overall cache size to be deferred until the chip was
being assembled; it also allows the cache to be adapted and
reused easily in future designs. Within each cache block
(set) the architecture is fully associative with 64 cache lines
each of four words. In AMULET2e four blocks are
employed; it therefore has a 4 Kbyte cache which is 64 way
associative.

A “write-through” [6] scheme is employed, where data
is always sent to the external memory as well as updating
the cached copy if present. A “write around” policy [6] is
adopted, i.e. no cache allocation is performed for write
operations which miss the cache.

Cache lines are selected for replacement using a
pseudo-random number generator. This gives a ‘graceful’
degradation in performance as the size of the working set
increases, making performance measurements less subject
to pathological fluctuations. It is also easier to implement
than a least recently used (LRU) algorithm.

Fundamentally this is the same as the ARM3 and
ARM6 series cache architecture. For a relatively small
cache this has been demonstrated to give significantly bet-
ter hit rates than a cache of lower associativity [4]. This
choice also allows a fairer comparison of other factors with
existing synchronous ARM systems.

Internally each cache block is an independent unit; one
block is selected on each memory cycle according to an
appropriate set of address bits. The remaining sets remain
quiescent. Within each cache block is a self-timed micropi-
peline. This has two stages: the first stage being a CAM
look-up and the second a RAM access which is conditional
on a cache hit (figure 2). In cases such as a cache miss the
RAM is not activated directly and the CAM stage is able to
invoke the common external memory interface. This proc-
ess is described later.

Figure 2: AMULET2e cache block structure

1K cache

AMULET2

LatchCAM

Hit

1K cache

1K cache

1K cache

output
AMULET2

input

RAM

address data

Constructing the memory from relatively small blocks
is beneficial in that it reduces internal capacitance and so
increases the speed of the block whilst also decreasing its
power consumption. The price is that of a small added
decoder stage with its resulting impact on the access time.

The cache is unified in that instruction and data refer-
ences are mixed before leaving the processor core. Studies
of such caches on ARM processors yields a read hit rate of
around 95% [10].

3. Self-timed memory accesses

With the high degree of associativity used in the
AMULET2e cache it is sensible to use a special purpose
CAM for the cache “tags”. This means that there are two
self-timed blocks within the system (CAM & RAM).

It would be impractical to build a large regular struc-
ture such as a memory which included delay insensitive
self-timing. However an accurate timing model must be
produced which is capable of adapting to the operating con-
ditions of the circuit as well as manufacturing process fluc-
tuations which may yield devices varying by up to a factor
of four in speed. This also increases the process portability
of the resulting design. As in other parts of the AMULET
devices, timing has been done by including extra, dummy
bits within the custom logic of the datapath. These have the
same layout as the real data lines and are as analogous as
possible in every sense.

3.1. CAM timing

The Content Addressable Memory (CAM) presents a
particular problem in that it requires two separate, serial
self-timed processes. This is necessary because the mem-
ory array contains distributed high fan-in gates which must
be implemented using dynamic CMOS logic. The first of
these gates determines whether any bit in a given CAM line
does not match the presented address. If this is the case then
that CAM line has “missed”. When operating it is normal
for either all or (hopefully) all but one CAM line to miss.

It is also necessary to know whether any of the CAM
lines did hit to determine whether or not to proceed with a
RAM cycle. Because this is also performed by a distributed
dynamic gate – in this case with a fan-in of 64 – this is only
possible once the status of the individual hit lines is
resolved. It is also necessary to know when this second
process is complete so that the CAM cycle can be termi-
nated.

The CAM array (figure 3) therefore includes two tim-
ing signals. The first is a dummy CAM line. This is an ana-
logue of the normal CAM lines except that it is guaranteed
to “miss” with a single bit mismatch. The first of these con-
ditions ensures that the dummy line will produce an output

The AMULET2e Cache System

J.D. Garside, S. Temple, R. Mehra

Department of Computer Science, The University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.

jgarside@cs.man.ac.uk, stemple@cs.man.ac.uk, rmehra@cs.man.ac.uk

Abstract

AMULET2e is an asynchronous microprocessor sys-
tem based on the AMULET2 processor core. In addition to
the processor it incorporates a number of distinct subsys-
tems, the most notable of which is an asynchronous on-
chip cache. This includes several novel features which
exploit the asynchronous design style to increase through-
put and reduce power consumption.

These features are evident at a number of levels in the
design. For example, the cache is micropipelined to
increase its throughput, at the architectural level there is
an arbitration free non-blocking line fetch mechanism
while at the circuit design level there is a power-saving
RAM sense amplifier control circuit.

A significant property of the cache system is its ability
to cycle in a data dependent way which allows the system
to approach average case performance.

1. Introduction

The performance of modern RISC microprocessors is
typically limited by their memory system and it is usual to
improve this by providing a memory hierarchy which
includes some form of high-speed cache. For an asynchro-
nous microprocessor it is logical that the cache should be
asynchronous too. It should also be borne in mind that cur-
rent commercial memories present a synchronous interface
and the asynchronous microprocessor must be able to inter-
face to these devices at some level.

AMULET1 [5], [11] demonstrated that a commercial
microprocessor can be implemented in a completely self-
timed fashion. Interfacing AMULET1 to conventional
memories was difficult however, and its performance
would be greatly enhanced by providing an on-chip cache.
Thus, the AMULET2 project entailed not only enhance-
ments to the AMULET1 core but also the design of an
asynchronous on-chip cache and a memory interface which

would connect directly to commodity memory devices.
The resulting chip is intended as an embedded microproc-
essor and is designated AMULET2e (figure 1).

Although a basic asynchronous memory system is not
inherently difficult to design there are some interesting
problems to solve. More importantly a number of features
of the self-timed design provide advantages over a rigor-
ously cycled, clocked system. The design which has
evolved has also provided the opportunity to include a
number of power saving mechanisms.

The resulting design is quite simple in operation but
provides a number of advanced features. It includes asyn-
chronous pipelined operation, a data dependent cycle time,
and a non-blocking, arbitration free cache line fetch mech-
anism. The microarchitecture is based on a bundled data
micropipelined [13] system with four-phase control cir-
cuits [3]. It has been implemented using retargetable 0.5µm
design rules with three layer metal and characterised for
3.3V operation.

2. Basic cache architecture

The AMULET2e cache is built from a number of inde-
pendent 1 kilobyte blocks (figure 2) selected according to
the memory address. This allowed the final decision about

Figure 1: AMULET2e

addr.
dec.

tag
CAM

ctrl
regs.

A
M

U
LE

T
2

line fillline fill

data
RAM

fu
nn

el
 a

nd
 m

em
or

y
co

nt
ro

l

delay
enables

area
pipeline
latches

address

data out

data in

data

address

chip
selects

DRAM
control

