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Abstract

This paper introduces MARBLE, the Manchester Asyn-
chRonous Bus for Low Energy, a two channel mi-
cropipeline bus with centralized arbitration and address
decoding which provides for the interconnection of asyn-
chronous VLSI macrocells. In addition to basic bus func-
tionality, MARBLE supports bus-bridging and test access,
demonstrating that all the functions of a high speed macro-
cell bus can be implemented efficiently in a fully asyn-
chronous design style.

MARBLE is used in the AMULET3i microprocessor to
connect the CPU core and DMA controller to RAM, ROM
and peripherals. It exploits pipelining of the arbitration,
address and data cycles, together with spatial locality op-
timizations and in-order split transfers, to supply the band-
width requirements of such a system. The design of a MAR-
BLE initiator data interface used in the AMULET3i is pre-
sented, including a Petri-net specification suitable for syn-
thesis using the Petrify tool.

1 Introduction

Asynchronous VLSI design has now reached the point
where it is feasible to design complex ASICs and macro-
cells such as microprocessor cores in addition to simpler
peripherals. There is therefore a growing need to find a
regular way to interconnect asynchronous macrocells and
to interface them to other (possibly synchronous, possibly
off-chip) subsystems in the manner illustrated in Figure 1.
The problems involved in the design of such interconnect
are typical bus-design problems, although the nature of
these problems is different from those encountered in pre-
vious bus designs due to the asynchronous VLSI aspect and
the requirement for an order of magnitude improvement in
the performance compared to typical backplane buses.

This paper discusses a system bus design based on the
micropipeline design style [1] that is suitable for imple-
mentation in CMOS. Section 2 gives an overview of the
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Figure 1: MARBLE System

split-transfer style used by the Manchester AsynchRonous
Bus for Low Energy (MARBLE) and then the key issues
of arbitration, signalling and data-validity are addressed in
sections 3 and 4. Figure 1 shows a typical target environ-
ment for MARBLE, illustrating how support can be pro-
vided for Harvard architecture cores; the local-bus RAM
is only necessary in high performance systems for which
a general system bus such as MARBLE cannot satisfy
the bandwidth and/or latency requirements. In addition
to basic initiator-to-target interconnection, modern buses
are also required to support advanced system level features
such as hardware aborts and low latency bridging to other
on-chip buses and the outside world. Section 6 of this pa-
per provides details of how these are handled in MARBLE.
Section 7 presents the design of a MARBLE initiator data
interface as used in the AMULET3i chip, and sections 8
and 9 introduce extensions to the MARBLE specification
which are currently under consideration, and a review of
the design tools used in the specification and implementa-
tion of the interfaces used in AMULET3i.

2 The MARBLE Architecture

The benefits of pipelining in microprocessor design
are well known [2], and similar benefits have been ob-



served in asynchronous processors [3] and synchronous
buses[4, 5]. Asynchronous buses present the same oppor-
tunity to pipeline the arbitration, address and data cycles
of consecutive transfers. However, the lack of synchro-
nization between these cycles introduces problems into the
control of bus handover between initiators.

To illustrate how the address and data transfers may be
pipelined, consider the bus interface arrangement shown in
Figure 2(a). When an address is transferred, the address
channel is occupied until the target device accepts the ad-
dress and completes the handshake. A similar situation
exists for the data channel. This tightly couples the bus
protocol to the device signalling protocol.

The introduction of a latch into the bus interface at each
port where a packet can be taken off the bus, as shown in
Figure 2(b), decouples the bus from the device. This al-
lows address packet n to be held in the latch at the target,
freeing the address channel to allow the initiator to send
packet n+1. At the same time data packet n can be trans-
ferred. Pipelining of the address and data cycles of differ-
ent transfers is thus allowed but not enforced.

The arbitration for the address and data channels can be
pipelined to occur with transfers on the channels in a sim-
ilar manner, with the arbitration grant interpreted as ‘you
may use the channel when it is next idle’. This allows the
arbitration for the next access to be hidden behind the cur-
rent cycle.

However, since the bus has multiple initiators and tar-
gets, and each of these could have any number of FIFO
stages as shown in Figure 2(c), the decoupling between
address and data cycles provided by the latches can po-
tentially allow the following complex behaviours:

� Data transfers may complete in a different order from
the corresponding address transfers;

� Multiple addresses could be streamed from an initia-
tor FIFO to a target FIFO during a burst, then there
could be a delay before the data transfers occur.

Simple in-order buses generally cannot cope with these
behaviours and therefore include some form of throttle
to regulate the address-data interlocking. Those in-order
buses that allow these split-transfers can usually only do
so by adding an extension to the underlying bus and pass-
ing other signals around the side of the bus, as opposed to
having inherent support. Such a technique can be used to
implement split transfers on AMBA [4] by using the re-
tract command. The Split Transfer Asynchronous Macro-
cell INterconnection Architecture (STAMINA) [6] takes
an alternative approach, using a split-transfer as its only
primitive transfer mode. The principal characteristics of
STAMINA are:

� it has separate address and data channels;
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Figure 2: Pipeline Interface Scenarios

� it exploits the low latency and cost of asynchronous
VLSI arbitration using mutual exclusion elements
(MUTEXs) to provide the separate arbitration of the
address and data channels;

� it only allows initiators to arbitrate for, and start cycles
on, the address channel;

� it only allows targets to arbitrate for, and start cycles
on, the data channel (thus write data is pulled and read
data is pushed);

� initiators start address cycles as soon as address infor-
mation is available;

� targets start data cycles in response to address cycles,
immediately for writes, or when the data is ready for
reads;

� a tag is passed with each address/data packet, indicat-
ing the initiator of the address cycle and the destina-
tion of the corresponding data cycle;

� a colour (sequence number) is passed with each ad-
dress/data packet to enable data to be reordered to en-
sure that it is presented to initiator/target devices in
the correct order.

Arbitration for data cycles only at the target reduces the
arbitration requirements when compared to a more usual
split transfer system, which would require all interfaces to
be able to start (and hence arbitrate for) data cycles. It
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Figure 3: STAMINA Architecture

also means that there is no requirement for queues/reorder-
buffers at the target interfaces since they will always per-
form data cycles in the required order, thus only the ini-
tiators need any reorder capability. This does, however,
permit the situation to occur where the bus can be stalled
waiting for data if the initiator commences a write opera-
tion but does not yet have the data available. This situation
should be rare in practice, and once the data becomes avail-
able the system will continue its operation. Figure 3 shows
how the initiator and target interfaces of a STAMINA bus
can be decomposed and it also shows the locations of the
latches, FIFOs and queues (reorder buffers) in such inter-
faces.

The FIFO in the target interface, as shown in Figure 3, is
used to control how many transactions can be issued to the
target before it will stall the address channel. The queue in
the initiator interface is used to reorder the data packets so
that data leaves/arrives at the initiator device in the correct
order, but can be transferred across the data channel of the
bus in any order.

Each packet on both the address and data channels car-
ries with it three pieces of system overhead: an initiator
tag (T), a colour (C) and a operation bit (O), all of which
must be stored at the target so that the same tag, colour and
operation (data-direction) are used for the corresponding
address and data cycles.

The tag is used to identify which initiator the transfer
originated from and is fixed to a unique value for each ini-
tiator. This is used to route the data cycles to the correct
initiator (the one whose tag is on the data packet).

The colour is used to reorder data packets at the initia-
tor data interface. The number of different colours for an
initiator is determined by the number of outstanding ad-
dresses that it can issue before it requires a data cycle.

The operation bit is used to indicate whether the trans-
fer is a read or a write, thus giving the direction of the data
transfer. This information is required by the target periph-

eral and the control modules in the data interfaces at both
the initiator and the target.

MARBLE implements a subset of the STAMINA [6]
with only one colour (hence no signals are necessary to
convey the colour), with the consequence that after an ini-
tiator has performed an address cycle it cannot start the
next address cycle until a data cycle has been started to
that same initiator, i.e. the initiator is never allowed to have
more than one address issued that is waiting for its corre-
sponding data cycle. This also removes the need for the
queue and the FIFOs at the interfaces. Latches are used at
the points where address/data is taken off the bus provide
the necessary decoupling.

3 Multimaster Arbitration

Any multimaster bus requires a means by which an in-
terface can obtain exclusive access to the bus. This is pro-
vided by the arbitration scheme, which may be distributed
or centralized. In MARBLE two separate arbiters are re-
quired, one for the address channel and one for the data
channel.

3.1 Distributed Arbitration

Distributed arbitration involves all contending initiators
agreeing upon which one has been granted the bus. The
SCSI bus standard [7] uses a distributed arbitration scheme
where each device has a unique identifier. When a device
requires bus access it must wait for an arbitration cycle and
then assert its ID onto a set of signal lines. After wait-
ing for a specified delay the device examines the lines to
check if its ID is present or if that of another (higher prior-
ity) device has been placed on the lines. If the device’s ID
is present then it has won the arbitration, otherwise it has
failed and should retry later. Futurebus [8] also uses a sim-
ilar type of arbitration. An alternative form of distributed



arbitration is that used in a token-passing network. Here a
token is passed around all devices that may require access
to the bus. A device may access the bus only when it is in
possession of the token. Such a scheme requires compli-
cated management of the token to ensure that one and only
one token is present in the ring at any time, and in a low-
power system the token should not be allowed to free-flow
around the ring since this wastes power.

3.2 Centralized Arbitration

In a centralized arbitration scheme each device commu-
nicates with a central arbiter using a request-grant hand-
shake. The device requests the bus, and the arbiter grants
the bus to only one device at a time. This requires dedi-
cated request and grant wires between each device and the
arbiter.

Synchronous bus arbiters, as used in AMBA [4] and PI-
Bus [5], sample the request lines on a clock edge and then
apply a (prioritised) decision algorithm to determine which
device is granted the bus. This approach cannot be used in
an asynchronous VLSI bus since there is no clock, and it is
prone to metastability.

MARBLE uses a centralized scheme with a bus-arbiter
composed of two trees (one each for the address and data
channels) of arbitrating call blocks as shown in Figures 4
and 5.
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Figure 4: Arbitrated Call Block

The arbitrating call block provides mutually exclusive
access to the bus by ensuring that the mutex is not released
until the grant has fallen. The circuit shown in Figure 4 is
a suitable implementation which guarantees that the mutex
is not released until Request and Grant are both low. This
is necessary to ensure that every arbitration propagates to

the root of the tree, thus preventing any one initiator (the
processor address interface for example) from hogging the
bus.

If the root node request is immediately fed back to the
acknowledge then the root node of the tree can be reduced
to a simple mutex. However, the tree in Figure 5 is more
general and allows the root node request/grant pair to be
connected to the bus controller or test unit allowing bus ac-
cess to be regulated or single-stepped. Different tree struc-
tures, composed of two-way or three-way [9] arbiters, al-
low the bus-bandwidth to be apportioned as required.
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Figure 5: MARBLE Arbitration Tree

4 Signalling and Data-Validity

Although dual rail encoding provides fully delay in-
sensitive operation it is considered too expensive for
cost-sensitive applications, hence macrocells such as
AMULET1 [3, 10] and AMULET2e [11, 12] use single
rail signalling. The same approach to data communication
can also be used for buses, although careful attention and
simulation are required to ensure that bundling constraints
are met. The issues that influence the choice of signalling
protocol and data-validity scheme for a micropipelined bus
include:

� The high loading of the bus lines requires large drive
currents to maintain clean, fast edges. Since 2-phase
signalling uses half the number of transitions of 4-
phase signalling this is favourable from a power view-
point, even though the control circuitry is more com-
plex.

� Minimal transfer duration, so as to keep occupancy of
the bus (a shared resource) to a minimum, is another
area where 2-phase signalling may be favoured since



4-phase signalling has the overhead of the return to
zero phases.

� Tristate data drive handover requires careful con-
trol and is closely linked to the clock edges in syn-
chronous systems. Asynchronous systems must in-
corporate this handover into the signalling protocol
which is easier to achieve using 4-phase signalling
due to the additional edges which can be used (in
conjunction with early data validity protocols [13]) to
provide idle periods either side of the data valid re-
gion, thus avoiding drive clashes on the data lines.

� Tristate signalling drive handover is difficult when us-
ing 2-phase signalling since the new participant(s) in
the transfer must be able to assume the current state of
the bus signalling lines before commencing the trans-
fer. When using a 4-phase signalling protocol this is
not necessary since every transfer always returns the
bus signalling lines to the same idle state and hence
all devices enter every transfer in the same state.

� Wired-OR signalling as used in backplane buses [8]
and early NMOS VLSI buses [14] cannot be used in
CMOS technology when zero idle power is a design
objective.

� Gated signalling using a wide OR gate to combine the
individual requests from each interface to give the bus
request line, and likewise for the acknowledge is pos-
sible when using 4-phase signalling, but the 2-phase
equivalent results in a large, complex circuit.

� Tristate signalling would require charge-retention
(negative resistance) on the signalling lines to main-
tain their value when the bus was idle or during an ini-
tiator or target handover period, but there is concern
as to whether this would give sufficient noise immu-
nity for the signalling lines, a spurious event on which
may cause system failure.

Four phase signalling with narrow data validity is used
in MARBLE. The initiator drives the address-request and
data-acknowledge lines and the target drives the address-
acknowledge and data-request lines. Information is bun-
dled with both the request (push channel) and the acknowl-
edge (pull channel) to allow bidirectional data transfer as
illustrated in Figure 6, but information cannot be bundled
during both phases of a transfer, thus only read or write
data can be transmitted in a single cycle, not both:

� Address Push Phase - Address and other command
signals are sent from the initiator to the target

� Address Pull Phase - ‘Defer’ (see section 6.2) status
is sent from the target to the initiator

� Data Push Phase - Read data and the Abort Response
is sent from the target to the initiator

� Data Pull Phase - Write data is sent from the initiator
to the target

As shown in Figure 6, this data validity scheme provides
a period of inactivity between successive uses of all data
lines. This inactive period will be at least the time taken
for a signal to propagate across the shortest interconnection
provided by the bus, which with fast-off data drivers will
avoid any drive-clashes on the bundled signal lines.
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Figure 6: MARBLE Data Validity

Proposals to ensure that a system using tristate sig-
nalling operates reliably focus on ensuring that the sig-
nalling lines are driven at all times:

� Newly active interfaces begin to drive their signalling
lines low immediately upon becoming active on the
bus.

� Interfaces releasing the bus should use slow-off sig-
nalling drivers to provide overlap between their
switch-off time and the next signalling-line driver’s
switch-on time.

� The centralised bus controller should use fast-on,
slow-off pull-down drivers to clamp the signalling
lines to ground when the signals are not driven by a
device. The bus controller knows when lines are be-
ing driven since it is responsible for arbitration and
decode.

However, although tristate signalling gives a more modular
system (the tristates replace the large/distributed OR gate
of the gated approach), the first incarnation of MARBLE
for AMULET3i will use gated signalling and the tristate
approach will be investigated in a later design.



5 Initiator ID Tagging

Every MARBLE transfer is tagged with the unique ID
of its initiator. This is used to route the data cycles back
to their originating initiator. The tag can also be used at
the target for protection checks, for example, per-initiator
access rights for the target can be applied. In addition, it
facilitates the optimisations discussed below and can be of
use in system testing.

6 Advanced Features and Optimizations

6.1 Spatial Locality

Some target devices and memory systems, notably
DRAM, can operate with reduced cycle times for all but the
first access in a series of accesses to the same or sequential
addresses. In DRAM, this is known as paged mode ac-
cess, where the first access requires both a RAS and CAS
precharge, but subsequent accesses to the same page re-
quire only a CAS precharge which is typically

�
� or

�
� of the

total RAS-CAS access time. To exploit this behaviour in a
macrocell-based system requires additional bus support to
convey the spatial locality properties of the addresses. It
is preferable to communicate this information in advance
of the sequential access when possible, since detection of
sequential addresses when they arrive at the target is both
expensive and too late to be of much use. MARBLE uses
a two-bit code transmitted as part of the address packet to
indicate the three situations where these types of optimiza-
tion can be beneficial, as shown in Table 1.

It should be noted that although Table 1 shows both pre-
dictive and non-predictive spatial locality codes, the pre-
dictive ones may be used only when it is known that the
transfer to the predicted address will be the next transfer
on the bus (i.e. the bus is locked by the initiator), the fi-
nal cycle of a burst having a non-predictive code. This is
satisfactory for the important cases of cache-line fetches
and DMA transfers. However, the primary use of the bus
is typically for the instruction fetch by the microproces-

Table 1: SEQ and PRED Spatial Locality Coding
PRED SEQ Meaning Typical Use

0 0 Non sequential Random access
0 1 Sequential to previ-

ous address
Instruction Fetch

1 0 Next address will
be in same ��� page

Cache Line Fetch
wrap-around

1 1 Next address will
be sequential and in
same � � page

DMA transfer,
Cache Line Fetch,
Block Move

sor core. These transfers will be conveyed across the bus
in single cycle arbitrated transfers, and the sequential flag
should be used as appropriate, the target being responsi-
ble for filtering the code based upon the transfer’s initiator
ID tag (transfers that have a tag different to the previous
transfer must be treated as non-sequential).

6.2 Defer

The protocol of a multimaster bus should ideally include
support for a ‘hardware retry’, where the transfer is not
completed but is retried automatically by the initiator some
period later. Its inclusion provides for more advanced fea-
tures (that may not be required in many systems):

� Defer is the basic primitive necessary for the support
of split transfers by simpler buses, which also require
sequence tagging information which can be conveyed
externally to the bus.

� It allows the bus to be released after starting a transfer
to a device that takes a long time to complete, so other
initiators can use the bus whilst deferring the comple-
tion of this transfer. This provides reduced latency
to these devices and improves overall system perfor-
mance.

� When a device is busy (possibly in a recovery cycle)
and cannot accept another transaction, in a system
without defer any attempt to access this device across
the bus would result in the bus being stalled with the
attempted transfer sat on it. Defer allows the initia-
tor to be told to retry the command later, i.e. defer
starting the transfer.

� Bridges between multimaster buses require that one or
both of the buses connected to the bridge supports de-
ferral. To illustrate the necessity of this feature, con-
sider the case where device A on bus 0 tries to com-
municate with device C on bus 1 at the same time as
device D on bus 1 tries to communicate with device B
on bus 0. Both transfers require the use of the bridge
and the two buses, so the bridge must reply with a de-
fer command to one initiator to allow the other trans-
fer to complete, otherwise the system would simply
deadlock.

MARBLE supports a defer response through the DEF bit
bundled in the pull part of the address cycle. It is only in-
tended to support the last use listed above, since the others
are either already incorporated into MARBLE’s underly-
ing split transfer protocol and decoupling latches, or are
considered unnecessary in MARBLE’s environment. Use
of defer does incur some degree of power-burn due to the
retries, but provided that the arbitration tree is fair (as is the



arbitrated-call tree presented earlier), the worst case num-
ber of retries can be predicted since the only reason for
deferring is that another initiator wants to use the bus, and
so once that initiator has completed its activity the deferred
initiator will eventually be serviced.

6.3 Abort

Many of the advanced features provided by a Memory
Management Unit (MMU) are not necessary in an embed-
ded system. Such features include virtual-memory sup-
port. However, there is often still a requirement to trap
non-mapped memory addresses or memory protection vio-
lations using a simple bus-protection mechanism and both
systems require a way to indicate external bus faults and
memory failures.

MARBLE allows the signalling of errors as an abort re-
sponse that is returned during the data cycle. This one bit
signal, ABT, could be expanded to indicate the severity or
location of the abort. One example of this use would be
to indicate whether the abort was generated as a result of a
memory access or a peripheral access. Since the abort can
be used to indicate target device errors, it can also be used
to support a software retry mechanism.

6.4 Concurrency Reduction

The composition of a typical MARBLE target interface
is shown in Figure 7. This interface structure, through the
inclusion of the three latches shown in the figure, provides
decoupling between the bus address channel and the target
device, between the bus data channel and the target device,
and also between the bus address channel and the bus data
channel. However, some situations can be envisaged where
these latches are not required, and full coupling between
the target device and the bus, and the two bus channels can
be tolerated.

A good example of such a situation would be the system
configuration registers. These are likely to be distributed
throughout the chip, probably as many separate targets on
the bus. Clearly since the target device here consists only
of registers that can be read or written to across the bus,
the latch in the data path is redundant. Removal of the
other two latches (in the address interface, and between
the address and data interfaces) causes the bus data chan-
nel activity for the cycle to be enclosed by the correspond-
ing address cycle on the bus, thus tightly coupling the ad-
dress and data cyles, forcing the removal of any pipelining
of address/data cycles (but arbitration can still be hidden).
However, since the target is an on-chip register that will
be accessed infrequently, reducing the pipelining shouldn’t
impact overall system throughput too adversely.

The immediate hardware saving is obvious. Three
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Figure 7: Target Interface Structure

latches (two of which have around 32 bits), and their asso-
ciated latch controllers can be removed (although protocol
converters to provide narrow-broad conversion may still be
required). However, closer inspection reveals another ben-
eficial hardware reduction: since the data channel activity
is fully enclosed by the address cycle, only one of these
reduced targets can ever attempt to use the bus at any one
time, so the environment now provides the mutual exclu-
sion between all of the reduced targets. This means that
these targets can all share one input into the data-channel
arbitration through a micropipeline call element [1]. Thus
the additional hardware overhead for adding simple re-
duced targets such as control registers is very low.

7 MARBLE Interface Design

A set of generic MARBLE interfaces has been created
to provide for the connection of devices using 4 phase
broad protocol micropipeline interfaces. These are being
used as part of the AMULET3i chip, but are designed for
general use.

7.1 Interface Decomposition

A bus interface is a complex circuit that is required to
connect a device to a bus ensuring that the bus protocol is
obeyed. Since the MARBLE protocol includes pipelined
address, data and arbitration cycles, the interfaces must in-
clude sufficient parallelism to accommodate the protocol,
performing any conversion necessary if the device inter-
face protocol is not compatible with the bus protocol.

The design of the MARBLE interfaces was partitioned
into the functional modules shown in Figures 7 and 8.
Each module was designed using Petri-nets to specify the
behaviour, and then where possible these were synthe-
sized using Petrify [15] to produce speed independent cir-
cuits. Some of the modules, notably the initiator-address-
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signalling and target-data-signalling modules, were hand
designed to ensure that any non speed independent be-
haviour was localized to these blocks and was carefully
controlled.

Details of the design of the modules in the initiator data
interface are presented below; (Figure 10 shows petri-nets
for the modules, Table 2 lists the signals, and short descrip-
tions of each block are provided). The design approach
used for the other blocks was the same.

Table 2: Signals within the Initiator Data Interface
Signals Meaning

SDR, SDA bus request and acknowledge sig-
nals

SDS bus data select signal from the cen-
tral decoder

DRsig, DAsig req and ack of channel between sig-
nalling and fork modules

DRcol, DAcol req and ack of colour channel be-
tween fork and colour control unit

DRbund, DAbund req and ack of channel between fork
and bund modules

DRprot, DAprot req and ack of channel between
bundling and protocol modules

DonTR, DonTA req and ack of bus data line tristate
drivers

DoffR, DoffA req and ack of data channel to the
decoupling latch

RoffR, RoffA req and ack of abort response chan-
nel to the decoupling latch

IDonR, IDonA req and ack of pull data on channel
DonR, DonA req and ack of data on channel from

the target
O operation signal bundled with the

DRxxx and DAxxx signals and on
the address and data channels of the
bus, high=read, low=write

dummy0, dummy1 these are not signals, they are
dummy transitions in the petri-nets

7.2 Signalling Module

The Signalling module waits until the data channel is
active with a cycle destined for this initiator, as indicated
by the Tag on the channel, and the SDS signal to the con-
troller from the centralized address/tag decoder. The sig-
nalling module then allows this cycle to pass through to
the next module (the Fork). The petri-net of the signalling
module is shown in Figure 10(e).

The other role of the signalling handler is to isolate the
non-isochronic fork nature of the bus data channel from the
other control modules within the data interface.

If tristate signalling were used, the signalling module
would be extended to include the control for the tristate and
clamp enables for the Data Channel Acknowledge which it
would be responsible for driving throughout the data cycle.

7.3 Fork

The Fork module in Figure 10(d) is a micropipeline
fork, the implementation of which is a single C-gate. It
forks off a connection to the initiator interface colour con-
trol unit which must be notified when the data interface
starts a cycle so that it can throttle the address interface
activity when necessary.

7.4 Bundling

The Bundling module, the petri-net for which is shown
in Figure 10(c), ensures that the bundling constraints of the
bus are met. In the initiator data interface this means that
the bundling module is responsible for enabling the tris-
tate drivers used to place write data onto the data channel
at the appropriate time (during the pull phase). To isolate
the problems of tristate drivers (which don’t give an ac-
knowledge to the enable line and are thus not delay insen-
sitive) from the controller, the tristate driver is enabled by
a Tristate Request, TR (DonTR in the petri-net), which is
fed through a delay to give a Tristate Acknowledge, TA
(DonTA in the petri-net), as shown in Figure 9. The length
of this delay will have to be determined through simula-
tion.

delay

TR TA

MARBLE Data ChannelData On

Figure 9: Tristate Driver
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Figure 10: Initiator Data Interface petri-nets

7.5 Protocol

The Protocol module in Figure 10(b) manages the sig-
nalling of the IDon (pull write data), Doff (push read data)
and Roff (push abort response) channels, ensuring that data
is provided to and removed from the bus at the correct time.

7.6 Device

The Device module is a protocol converter to connect
the push channel supplying the write data from the initia-
tor device to the pull write data channel from the Protocol
module, which in practice amounts to a single C-gate. The
petri-net for the device module is shown in Figure 10(a)

8 MARBLE Extensions

In addition to the support for the basic and deferred
transfers described earlier, MARBLE will also support a
number of functional extensions.

8.1 Test Strategy

MARBLE has been designed to aid VLSI testing
through the inclusion of a test interface that allows the ex-
ternal memory bus to be used to enter test vectors. These
can then be applied to individual macrocells across the bus
and the results can be extracted by similar means. MAR-
BLE supports two means of scan/test register access:

� Memory Mapped - the registers are mapped to an un-
used area of the memory map.

� Test Mode Transfer - an additional control signal is
added to the address channel to indicate either Test
Mode or Normal Operation.

The test interface is a finite state machine that acts as a
MARBLE initiator that can:

� Read a vector address and then a vector from the ex-
ternal memory interface and apply these to a target.

� Read a vector address from the external memory in-
terface and then fetch the contents of that address and
write them to the external memory interface

It is also intended that the test interface will allow the ex-
ternal memory bus to be used to monitor the address-traffic
from other macrocells in order to generate an address trace
for software debugging.

8.2 External Memory Bridge (EMB)

The external memory bridge is a key feature of any em-
bedded system whose memory requirements can’t be sat-
isfied using on-chip RAM. The EMB will be similar in
nature to that used in AMULET2e [12], supporting di-
rect connection to SRAM or DRAM and byte-packing
to allow word fetches from byte-wide memory to allow
bootstrapping from a single ROM (although this may also



be achieved by using on-chip ROM). The EMB will use
the SEQ and PRED spatial locality signals to control its
DRAM RAS precharge, performing a RAS precharge only
for non-sequential transfers. The issue of where the re-
fresh circuitry should be located is still to be resolved; it
can either be located within the EMB where it would re-
quire arbitrated access to the DRAM with any outstanding
transfer, or it could be another dedicated initiator on the
bus utilising MARBLE’s arbitration.

8.3 Synchronous Peripheral Bridge

Although asynchronous design is becoming more com-
mon, much synchronous hardware is still designed or
reused. There is thus a need to interconnect synchronous
and asynchronous subsystems on the same chip. A bridge
capable of interfacing MARBLE to synchronous macro-
cell buses like AMBA [4], and to older/slower legacy pe-
ripherals that use address-strobe type communication will
be constructed as part of the MARBLE macrocell library.
This bridge will be capable of being a bus-master on both
of its client buses (MARBLE is one) and will use MAR-
BLE’s defer response as described in section 6.2.

9 Design Flow and Tools

The design methodology used for the MARBLE inter-
faces is a good example of the approach being adopted
for the AMULET3 microprocessor, illustrating the present
usability and limitations of asynchronous design tools.
LARD [16] was used in the early stages for behavioural
simulation, and to investigate the trade-offs between dif-
ferent protocols and modularisations. Then, having settled
on a behavioural specification, the interfaces were speci-
fied using Petri nets. However, current synthesis tools are
very slow with large Petri nets (due to state explosion) and
lack hierarchy support, hence the design was manually bro-
ken into smaller modules as illustrated in Figures 8 and 7.
Some of these blocks were hand-crafted, but many were
then synthesized using Petrify [15].

However, synthesis tools automatically insert new sig-
nals to solve for a complete state coding (CSC). Inspection
of the resulting design often shows that :

� The inserted signals are not where the designer would
place them; often they are on the critical path of the
circuit

� The output Petri net is so different from the one input
by the designer that it is difficult to see any correlation
between the two.

In many cases it was found that CSC could be achieved
more effectively by changing the protocol of the controller

outputs from the broad to the early protocol and slightly re-
ducing parallelism within the design. This change then re-
quires changes to the interface latch controllers since they
must now perform the conversion from the early to the
broad data validity scheme. Suitable long-hold latch con-
trollers are documented elsewhere [17].

10 Conclusions

MARBLE, a macrocell bus for use in asynchronous em-
bedded systems, has been presented. MARBLE is based
on a split-transfer architecture allowing transfers between
different initiators and targets to be interleaved without the
need for retries, thus giving low energy operation and low
latency. Novel support for spatial locality optimisations
and test access are present in the design, as are the expected
bus features such as atomic transaction and burst transfer
support.

More advanced features including pipelining and bridg-
ing are supported but not rigidly enforced by MARBLE to
improve system performance, and it has been shown how
concurrency can be traded for hardware reductions in the
design of systems using MARBLE. MARBLE will form a
part of the AMULET3i chip, tapeout of which is expected
during 1998.

MARBLE demonstrates that all the features of a high-
speed on-chip macrocell bus can be implemented effi-
ciently in a fully asynchronous design style. Asynchronous
operation adds the advantages of elastic pipelines and zero
quiescent power to the modularity and support for testabil-
ity already offered by existing clocked macrocell buses.

References

[1] I.E. Sutherland. Micropipelines. Communications of
the ACM, 32(6):720–738, June 1989.

[2] J.L. Hennessy and D.A. Patterson. Computer Archi-
tecture, A Quantitative Approach. ISBN 1-55860-
188-0. Morgan Kaufmann Publishers Inc., 1990.

[3] J.V. Woods, P. Day, S.B. Furber, J.D. Garside, N.C.
Paver, and S. Temple. AMULET1: An Asynchronous
ARM Microprocessor. IEEE Transactions on Com-
puters, 46(4):385–398, April 1997.

[4] Advanced RISC Machines Ltd (ARM), UK. AMBA,
Advanced Microcontroller Bus Architecture Specifi-
cation, April 1997.

[5] Siemens AG, Germany. Open Microprocessor Initia-
tive (OMI) PI-BUS, 1994.

[6] W.J. Bainbridge. The Split Transfer Asyn-
chronous Macrocell INterconnnection Architecture,



STAMINA. Available from http://www.cs.man.ac.uk/-
amulet/projects/STAMINA/index.html.

[7] American National Standards Institution. Small Com-
puter System Interface (SCSI), 1986.

[8] IEEE Computer Society Press. FUTUREBUS : Spec-
ifications for Advanced Microcomputer Backplane
Buses, November 1983.

[9] D.J. Kinniment, A.V. Yakovlev, and B. Gaio.
Metastable behaviour and system performance. In
Proceedings of the Second UK Asynchronous Forum,
June 1997.

[10] N.C. Paver. The Design and Implementation of an
Asynchronous Microprocessor. PhD thesis, Depart-
ment of Computer Science, University of Manch-
ester, U.K., 1994. http://www.cs.man.ac.uk/amulet/-
publications/thesis/paver94 phd.html.

[11] S.B. Furber, J.D. Garside, S. Temple, and J. Lui.
Amulet2e: An asynchronous embedded controller.
In Proceedings of the 3rd International Symposium
on Advanced Research in Asynchronous Circuits and
Systems, ASYNC97, Eindhoven, Netherlands, pages
290–299, 1997. http://www.cs.man.ac.uk/amulet/-
publications/papers/async97 A2e.html.

[12] AMULET2e Data Sheet. http://www.cs.man.ac.uk/-
amulet/AMULET2e uP.html.

[13] A.M.G. Peeters. Single-Rail Handshake Circuits.
PhD thesis, Eindhoven University of Technology,
Netherlands, 1996.

[14] I.E. Sutherland, C.E. Molnar, R.F. Sproull, and J.C.
Mudge. The trimosbus. In Charles L. Seitz, editor,
Proceedings of the First Caltech Conference on Very
Large Scale Integration, pages 395–427, 1979.

[15] J. Cortadella, M. Kishinevsky, A. Kondratyev,
L. Lavagno, and A. Yakovlev. PETRIFY: A tool for
manipulating concurrent specifications and sythesis
of asynchronous controllers. In IEICE Transactions
on Informations and Systems, pages 315–325, 1997.

[16] P.B. Endecott. Language For Asynchronous Research
and Development, LARD. Available from http://-
www.cs.man.ac.uk/amulet/projects/amulet/lard/.

[17] J. Liu. Arithmetic and Control Components for an
Asynchronous System. PhD thesis, Department of
Computer Science, University of Manchester, U.K.,
1997. Submitted for examination.


