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Abstract To reduce the total execution timgyg,) the hit

ratio (hr) can be increased or the miss pendiltysd
In microprocessor athitectues featuring on-chip reduced. Increasing the' SiZ? of the cache .or'changing
cache the majority of memorgad operations a&r satisfied its structure (e.g. making it more associative) can
without external access. Tleis, howevera significant ~ improve the hit rate. Having a faster external memory

penalty associated with cache misses whiefjuire off- (e.g. adding further levels of cache) speeds up the line
chip accesses when theopessor is stalled for some or all ~ fetch; alternatively a wider external bus means that
of the cache linedfill time. fewer transactions are required to fetch a complete

This paper investigates the magnitude of the penalties|jne.

associated with diffent cache line fetch schemes and Such direct methods for reducing the miss penalty
demonstrates the desirability of an independent, parallel 56 ot always available or desirable for reasons such
line fetch mechanism. Such a mechanism for an asynchr »q chin_area, pin-count or power consumption. A com-
nous micoprocessor is then described. Thesolves some 0 oytary anproach is to hide the time taken for line
potentlal_ly comp!ex interactions _ determ|n|s'qcally_ a_md fetch operations
automan_cally povides a n_on_—blocklng mechanism similar This paper ex.amines the magnitudes of the various
to those In the most sophisticated syoaius systems. line fetch penalties and the methods available for
1: Introduction reducing them. It goes on to present a micropipeline
[13] circuit which not only manages the line fetch
Although any properly designed cache will inter- proplem correctly but provides several advanced fea-

cept a lage proportion (greater than ninety percent tyres at very low hardware cost.
[12]) of memory read requests and satisfy them at high

speed, it is inevitable that there will be occasional 2: | ine Fetch Strategies
cache misses. Such misses usually instigate a cach
line fetchwhere a number of words are read from the
main memory and copied into the cache. This require- ) X i )
ment for external memory cycles can impose asignifi-Operat'on' The first method is to ensure that the line

cant penalty on overall performance as a complete line'€iCh starts prematurely and completes before any
words from the line are needed (prefetching). Failing

fetch can take an order of magnitude longer than an his th ity i qi g £ ine fetch
internal memory cycle. this the penalty imposed in waiting for a line fetch may

When evaluating the performance of a CPU and be minimised by reducing any stall times.
cache sub-system it is usual to consider the overall
execution time of a chosen application program.
Assuming that the cache and CPU cycle at the same¢ When a cache miss occurs, the simplest procedure is
speed ;) when the cache hits and the CPU is only to stall the processor and fetch the entire missing line
stalled when a cache miss occurs, the execution timestarting at the lowest address. When the line fetch is
for a program witiNmemegsmemory requests can then complete the requested word is sent to the CPU and

Broadly speaking there are two approaches to
reducing the performance penalty due to the line fetch

2.1: Reducing the miss penalty

be expressed by equation 1.1 processing continues. This is easy to implement and is
commonly used in mid-range microprocessors (e.qg.
tiotal = Nimemregs D(hT Qi + (1=hr) G o) EQ 1.1 MIPS-X [5], Intel 486DX2 [14]). It is clearly sub-
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Figure 1: CPU and Cache Activity for Different Line Fetch Strategies

optimal as it requires the time for a number of memory 2. A read operation which may be satisfied from

cycles (typically four or eight [9]) to be added to the the pre-existing cache.
processing time for each cache miss. In more detail it 3. A read operation which is a cache miss and re-
means thatssiS: quires another line fetch.
4. Aread operation on a value which is in the last
toiss = b *WH,,y  EQ2.1 line to be requested.

_ . _ Once it has been determined that a write operation

Wheretyy is the first word memory latencywis il complete successfully (i.e. no exception occurs) it
the number of memory transfers need to fill a line (i.e. ;3 pe treated dige and foget The data can be writ-
the number of words in a line) atygis the time taken  ten into the cache (or write-Haf [4]) thus hiding any
to transfer one word. further memory access penalfjor this reason write

There are many ways of alleviating this penay  gperations will be neglected for the remainder of this
obvious improvement is to allow processing to con- yiscussion.

tinue as soon as the required word is availaely- It is clear that case (2) has no explicit dependency

restart[11]). This ir_ltroduce_:s some parallelism in that 4, ihe previously fetched cache line and such opera-
the CPU may continue whilst the line fetch completes. 4jgns may — in principle — proceed independently of the

A further optimization is to fetch the required word |ine fetch process, although cache access conflicts
first — wrapping the line fetch addresses appropriatelypetween these processes must be resolved. Simpler
— (desied wod firstwrapping-fetct{4]) thus reducing  mechanisms resolve any conflicts by stalling the proc-
tmiss0 @ MiNiMum Y + tyg). Both the early-restart  gg50r yntil the line fetch is complete; more sophisti-
a_nd desired word first optlmlsatlons are employed in -5teq systems empldyjt under misg6] which allows

high performance architectures (e.g. RS/6000-560ih¢ jine fetch to proceed in the background whilst the

[15]). ' processor continues in parallel.
When employing early-restart a problem can occur ¢ js apparent that case (3) requires its own cache

when the processor attempts its subsequent memor niss processing and line fetch. If there is contention

access, in that the cache may still be fetching thetq, regources it must either abandon the current line

remainder of the previous missed line. The next cyCleeich or wait until it has completed before proceeding.

may be any of the following: In situation (4) various options are available. One
1. A write operation. method, known astreaming is to allow the read



request to be synchronised with the incoming line fetch
data. When the required value is available (the reques
might have to wait) it is forwarded to the processor
Another simpler option is to stall the request, allow
the line fetch to complete and then send the requirec
data (which is now known to be present) to the proces-
sor.

Options such asearly-restart, streaming, hit under
miss etc. can be combined to produce manyedint
line fetch strategies. Three possible strategies are
depicted graphically in Figure 1 and summarised
below;

» Sall On Miss. A miss stalls the processor for
the whole duration of the line fetch.

Early Restart with Sreaming. Desired word is
fetched first and the CPU restarted early.
Fetched data is streamed to the CPU as long as
it requests it. If the CPU requests anything
else it is stalled until the fetch completes.

Non-Blocking. The previous strategy with the
addition of hit under miss support. Requested
data is forwarded to the processor as soon as
possible in all cases thus giving the maximum
degree of parallelism.

3: Simulation Results

Simulation was performed to determine the benefits
of the various strategies. An ARM [1] instruction level
simulator [2], was augmented with code modelling dif-
ferent cache architectures. A selection of programs
was run (single tasked) and statistics were recorded.

The results of cache read requests were first classi
fied into three categories; misses, hits in the main array
and hits in the last cache line to be fetched. Figure 2
shows the proportions of these when a representative
program (MPEG decoder) executes on one example
cache architecture.

The total height of a bar gives the classically meas-
ured hit rate with the remainder representing read
misses. The hit rate is divided into two parts; hits in the
main array —which constitute the majority — and the
smaller proportion of hits from the last line fetched.

This figure shows how both the total hit rate and
proportional contribution of the last line fetched to the
hit rate increase as the size of the cache line increase:
It should be noted that the proportional contribution of
hits from the last line fetched to the total hit rate is sig-
nificantly higher than if each cache line had equal
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Figure 2: Hit Rate Breakdown for MPEG Decoder
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importance. In an 8Kbyte, 4-way set associative cache
with a 2 word line, for example, one cache line repre-
sents only 0.39% of cache storage; this is much smaller
than the observed contribution of 4% from the last line
fetched.

The “last line fetched” is an ephemeral location,
rapidly replaced by the next line fetch. Further experi-
ments where conducted to examine the degree of tem-
poral locality exhibited during the line fetch. For each
line fetch operation it was determined how many
words contained within the line were used before a
request for other data was issued. Since line fetching is
performed on a demand basis, all line fetches result in
at least one word being used but they may use more
before moving dfthe line.
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Figure 3: Histogram of Unbroken LFL Reads
Following a Line Fetch



Figure 3 shows a typical distribution for the MPEG blocking caches is inappropriate for a small scale asyn-
decoderlt can be seen that for about 60% of line fetch chronous microprocessor
operations only the word that caused the miss is used -
indicating that streaming would fail to give any per- 4.1: An Asynchronous I mplementation
formance improvement in these cases. A non-blocking
cache would howevgallow the following request to
be serviced whilst allowing the line fetch to proceed in
parallel.

The cache being designed isgeted for the next
version of the AMULET asynchronous ARM [3];
AMULETZ2e. This includes an improved processor
core, a cache and other peripherals on a single ahip. T
save space there will be a single, unified instruction
and data cache. Data and instructions share the same

As mentioned in §2.8all On Miss is the most memory interface with data requests being arbitrated
commonly used line fetch strategy since it is simple to into the prefetched instruction stream. In this situation
implement. ® improve performance some synchro- & non-blocking strategy should be particularlfeef
nous designs use aBarly Restart based strategy tive because it allows the independent prefetch and
(RS6000-560 [15], ARM [1]), in particular the ARM data streams to mge with minimum interference.
series of cached microprocessors use a variant whict  If the asynchronous fetch strategy is to allow for
will be described below concurrent cache and line fetch actiyitiien there

In the ARM a cache miss stalls the processor andmust be methods by which the two processes can be
causes a line fetch to be started from the address of thSynchronised when necessary (e.g. when reading data
lowest word in the line. At the end of each memory that has just been fetched). In synchronous system this
read cycle the processsirequest is compareavith IS done by synchronising on clock edges; comparing
the address of the fetched data entering to the cache. the state of two systems when they are known to be sta-
they match it is sent to the CPU; if they do not, the ble. In an asynchronous system no clock exists thus an
CPU remains stalled for this cycle. Both the CPU and arbiter is usually employed. Arbiters, howevare
memory are clocked Synchronous|y at the memorypotentia”y slow circuits and thus it is desirable to
clock speed during this process. Thus streaming occur@void them in a design.
as long as the processor continues to request data fror Figure 4 illustrates the positioning of a pipelined
sequential addresses. cache between the micropipelined processor and mem-

The demand for greater performance has led toOry- The cache is divided into three stages; tgand
decoupled architectures becoming more commongP ~ Data stores and the Memory Interface.

8000, MIPS R10000, HaL R1, P6), many of which uti-

4: Synchronous Implementations
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requires that the prefetch Iielf can subsequently be 7 ' = =
refilled when the line fetch is complete so the cache
must be able to supply instructions at a greater rate
than the CPU requires.

~ Synchronous implementations to-date are expen-  cCache hit determination is done in the tag store with
sive from a hardware perspective; utilising multi- g| the cached data being held in the data store. The
ported, split caches with wide cache to CPU buses. Thémemory interface is responsible for all transactions
implementation complexity of these synchronous non- that involve main memory and in particylrissues
the multiple data read requests that constitute a line
1. There is a match if either i) the word that has arrived is the fetch operation
word that caused the original miss or ii) if processor has " . . s
requested a sequential address (a non-sequential request The key to this deS'Qn is the division of the data
causes the CPU to stall until the line fetch has completed) store into two parts; the main (conventional) cache

Figure 4: A Micropipelined Cache




RAM array holding the majority of the cached data and incoming data before carrying it back to the processor
a set ofline fetch latches. The line fetch latches com-  Any following read operations that require data from
prise a data latch for each word in a line and are usecthis line are directed solely to the line fetch latches
to store data as it arrives from memofis data is  where their data may already be present; if not they too
held here rather than in the cache body until the nextmust wait until the data arrive.
line fetch is initiated. A read hit in the main array requires no synchroni-
When a read request arrives at the tag store it is classation, is routed to the main aryand can proceed
sified as a hit in the main cache arrayit in the line  unhindered. This route completely bypasses the line
fetch latches or a miss. In the first two cases the data ifetch process and so may be serviced independently
read from the appropriate source and then sent to th@nd at any time. The cache is thus non-blocking.
CPU,; the last must instigate a new line fetch. The key point in this mechanism is the line fetch
Therit andLrL Hit control signals, shown in figure 5,  synchronisation block which must delay any line fetch
are generated by tag comparisonsindicates that the ~ reads until the correct data is present. Details of this
required data is cached amd Hit specifically indicates ~ block are shown in Figure 6.
that it is in the line fetch latches rather than the main  For each word in the cache line there is bolimex
array LFL Hit is determined by comparing the input fetch latch and asynchronisation latch. The line fetch
address with an additional tag which indicates the latches are edge triggered latches which hold data that
range of addresses currently being held in the line fetcrhas been fetched from memoiihe synchronisation
latches. Note that a cache miss, after instigating a linelatches are transparent latches which stall latch read

fetch, looks for its data in the line fetch latches. requests until the data that they require has arrived. A

request to read a line fetch lateeduest In) is decoded
LFENGINE | and steered onto the correct individual word request

1 line (LF Read Req0-3).
F;e;d — i READ LF When a line fetch starts a!l thiee fetch latches are

= SYNC LATCH R:j(d empty and all theynchronisation latches are opaque.

» Opaque synchronisation latches block the progress of
[%]

latch read requests until they are made transparent.

_ READ MAIN ARRAY This occurs when the line fetch engine receives data
LFL Hit from memory (on ther pATA bus), and assertsia
Figure 5: Control Circuit Request Steering. Latch Control Signal. This causes the appropriate line

fetch latch to latch the fetched data and makes the cor-
Assuming that the previous line fetch has com- responding synchronisation latch transparent allowing
pleted, a read miss first instigates a new line fetch ancany stalled.F read req to proceed.
then issues a request for the required word within the Using a transparent latch for synchronisation is not
line fetch latches. It must then synchronise with the hazardous in this case because although a synchronisa-
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Figure 6: LF Read Synchronisation Circuit



tion latch may bepened before, after or at the same The base system consists of an 8Kbyte, 4-way set
time as a request arrives it is newbosed when a  associative, unified cache in which external fgmefd)
request may arrive and so there is no possibility of writes do not block line fetch activitfFigure 7 shows
metastability how the total execution time for the MPEG decoder
The only further synchronisation required is varies as the line length is increased. The performance
between successive line fetch operations because theof both the stalling (hollow symbols) and non-blocking
each require use of the line fetch engine and line fetchmechanisms is shown (solid symbols) relative to the
latches. Thus when a new read miss occurs it must wai€xecution time of the fastest configuration.
for the preceding fetch to complete. Once the previous
line fetch has completed, the contents of the line fetch
latches must be copied into the main cache array

The Effect of Line Fetch Strategy on Total Execution Time
(for 8Kbyte, 4-Way Set Associative Cache [mpeg])

before allowing the new fetch to begin. 251 @@ NonBiok10:4070)
In this scheme only the autonomous line fetch proc- 24f ~ ©©@saineaoiem .
H H H Il Non-Bloc :40: L’
ess is aware that a cache line fetch has completed. Thi ,, | BB @m0 I

is safe because it can stall a request for another lineg
fetch arbitrarily This mechanism also leaves the last
line fetched in the line fetch latches until the next
request arrives.

The final task of the line fetch engine is to copy the
last fetched line into the main RAM array before
accepting data from the next fetch. It does this when it 12
is both readyLf complete is asserted) and a new read 1o}
miss has occurred, in which instance it has control of os , , , , , ,
the complete subsystem. ' 1 2 i Length (Wofds) 16 32

At this time the synchronisation latches are closed
and the contents of the line fetch latches are copied -
in parallel — into the RAM array as a standard cache
line replacement. This is a rapid operation and may be
hidden under the start-up time of the new line fetch.
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Figure 7: Overall Execution Time for Stalling and
Non-Blocking Line Fetch Strategies

The ratio of CPU/cache hit cycle time to memory
latency and transfer rate are shown in brackets, thus the
upper pair of curves relates to the CPU/cache configu-
5: Performance ration with a slower 20ns cycle time and the lower has

A number of cache line fetch mechanisms have @ 10ns cycle time. It can be seen that the non-blocking
been described and combinations of these allow for gStrategy consistently provides a speed advantage over
large number of dferent designs. The interaction the stalling mechanism; the speed-up ranges from
between the diérent read requests can extend over 2:0% t0 15.2%. These figures for speed-up are some-

several memory cycles and it isfitiélt to draw a clear ~ What greater than those presented by Przybylski [10]
picture of this. [11]. This is explained by the nature of this processor

Ultimately the desire is to maximise parallelism to @nd cache combination which is small as modermn

increase performanceo Hetermine the success of the caches go, an_d its un_ified nat_ure means that data refer-
proposed line fetch mechanism it has therefore beerences are arbitrated into the instruction stream.
simulated using realistic estimated delays for units ~The graph confirms the line length that gives the
such as cache and main memory speeds. The speed lowest total execution time for the cache with a stalling
main memory was chosen to reflect the types offetch policy is two words [8]. The preferred length for
DRAM memory Comm0n|y available — a total |atency the non-bIOCking caches Iines, hOWQ\iE'fOUf words.

of 70ns incurred when starting a line fetch with words ~ When line is increased to eight words the non-
arriving 40ns apart thereaftdrhe speed at which the blocking cache performance is degraded by 5.2% in
final asynchronous system would cycle was not well 10ns system and by 1.9% in the 20ns system. Even
defined and so both 10ns and 20ns cycle times werewith this degradation in overall performance the non-
simulated. blocking caches with eight-word lines still perform



better than the optimal stalling cache configuration. In tion of the line fetch engine but in this instance arbitra-
general the non-blocking mechanism is more amiabletion would be required to allow a new line fetch
to an increasing line length since longer lines allow request to interrupt one already in progress. Although
greater time for concurrent cache and CPU activity  this process has not yet been investigated it does not
seem unlikely that a further performance benefit could

6: Conclusions accrue.
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