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Abstract

In microprocessor architectures featuring on-chip
cache the majority of memory read operations are satisfied
without external access. There is, however, a significant
penalty associated with cache misses which require off-
chip accesses when the processor is stalled for some or all
of the cache line refill time.

This paper investigates the magnitude of the penalties
associated with different cache line fetch schemes and
demonstrates the desirability of an independent, parallel
line fetch mechanism. Such a mechanism for an asynchro-
nous microprocessor is then described. This resolves some
potentially complex interactions deterministically and
automatically provides a non-blocking mechanism similar
to those in the most sophisticated synchronous systems.

1: Introduction

Although any properly designed cache will inter-
cept a large proportion (greater than ninety percent
[12]) of memory read requests and satisfy them at high
speed, it is inevitable that there will be occasional
cache misses. Such misses usually instigate a cache
line fetchwhere a number of words are read from the
main memory and copied into the cache. This require-
ment for external memory cycles can impose a signifi-
cant penalty on overall performance as a complete line
fetch can take an order of magnitude longer than an
internal memory cycle.

When evaluating the performance of a CPU and
cache sub-system it is usual to consider the overall
execution time of a chosen application program.
Assuming that the cache and CPU cycle at the same
speed (thit) when the cache hits and the CPU is only
stalled when a cache miss occurs, the execution time
for a program with Nmemreqs memory requests can then
be expressed by equation 1.1

 EQ 1.1ttotal Nmemreqs hr thi t⋅ 1 hr–( ) tmiss⋅+( )⋅=

To reduce the total execution time (ttotal) the hit
ratio (hr) can be increased or the miss penalty (tmiss)
reduced. Increasing the size of the cache or changing
its structure (e.g. making it more associative) can
improve the hit rate. Having a faster external memory
(e.g. adding further levels of cache) speeds up the line
fetch; alternatively a wider external bus means that
fewer transactions are required to fetch a complete
line.

Such direct methods for reducing the miss penalty
are not always available or desirable for reasons such
as chip-area, pin-count or power consumption. A com-
plementary approach is to hide the time taken for line
fetch operations.

This paper examines the magnitudes of the various
line fetch penalties and the methods available for
reducing them. It goes on to present a micropipeline
[13] circuit which not only manages the line fetch
problem correctly but provides several advanced fea-
tures at very low hardware cost.

2: Line Fetch Strategies

Broadly speaking there are two approaches to
reducing the performance penalty due to the line fetch
operation. The first method is to ensure that the line
fetch starts prematurely and completes before any
words from the line are needed (prefetching). Failing
this the penalty imposed in waiting for a line fetch may
be minimised by reducing any stall times.

2.1: Reducing the miss penalty

When a cache miss occurs, the simplest procedure is
to stall the processor and fetch the entire missing line
starting at the lowest address. When the line fetch is
complete the requested word is sent to the CPU and
processing continues. This is easy to implement and is
commonly used in mid-range microprocessors (e.g.
MIPS-X [5], Intel 486DX2 [14]). It is clearly sub-



optimal as it requires the time for a number of memory
cycles (typically four or eight [9]) to be added to the
processing time for each cache miss. In more detail it
means thattmissis:

 EQ 2.1

Wheretlat is the first word memory latency, nw is
the number of memory transfers need to fill a line (i.e.
the number of words in a line) andtwd is the time taken
to transfer one word.

There are many ways of alleviating this penalty. An
obvious improvement is to allow processing to con-
tinue as soon as the required word is available (early-
restart [11]). This introduces some parallelism in that
the CPU may continue whilst the line fetch completes.
A further optimization is to fetch the required word
first – wrapping the line fetch addresses appropriately
– (desired word first/wrapping-fetch [4]) thus reducing
tmissto a minimum (tlat + twd). Both the early-restart
and desired word first optimisations are employed in
high performance architectures (e.g. RS/6000–560
[15]).

When employing early-restart a problem can occur
when the processor attempts its subsequent memory
access, in that the cache may still be fetching the
remainder of the previous missed line. The next cycle
may be any of the following:

1. A write operation.

tmiss tl at nw twd⋅+=

2. A read operation which may be satisfied from
the pre-existing cache.

3. A read operation which is a cache miss and re-
quires another line fetch.

4. A read operation on a value which is in the last
line to be requested.

Once it has been determined that a write operation
will complete successfully (i.e. no exception occurs) it
can be treated asfire and forget. The data can be writ-
ten into the cache (or write-buffer [4]) thus hiding any
further memory access penalty. For this reason write
operations will be neglected for the remainder of this
discussion.

It is clear that case (2) has no explicit dependency
on the previously fetched cache line and such opera-
tions may – in principle – proceed independently of the
line fetch process, although cache access conflicts
between these processes must be resolved. Simpler
mechanisms resolve any conflicts by stalling the proc-
essor until the line fetch is complete; more sophisti-
cated systems employhit under miss [6] which allows
the line fetch to proceed in the background whilst the
processor continues in parallel.

It is apparent that case (3) requires its own cache
miss processing and line fetch. If there is contention
for resources it must either abandon the current line
fetch or wait until it has completed before proceeding.

In situation (4) various options are available. One
method, known asstreaming, is to allow the read
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request to be synchronised with the incoming line fetch
data. When the required value is available (the request
might have to wait) it is forwarded to the processor.
Another, simpler, option is to stall the request, allow
the line fetch to complete and then send the required
data (which is now known to be present) to the proces-
sor.

Options such asearly-restart, streaming, hit under
miss etc. can be combined to produce many different
line fetch strategies. Three possible strategies are
depicted graphically in Figure 1 and summarised
below;

• Stall On Miss. A miss stalls the processor for
the whole duration of the line fetch.

• Early Restart with Streaming. Desired word is
fetched first and the CPU restarted early.
Fetched data is streamed to the CPU as long as
it requests it. If the CPU requests anything
else it is stalled until the fetch completes.

• Non-Blocking. The previous strategy with the
addition of hit under miss support. Requested
data is forwarded to the processor as soon as
possible in all cases thus giving the maximum
degree of parallelism.

3: Simulation Results

Simulation was performed to determine the benefits
of the various strategies. An ARM [1] instruction level
simulator [2], was augmented with code modelling dif-
ferent cache architectures. A selection of programs
was run (single tasked) and statistics were recorded.

The results of cache read requests were first classi-
fied into three categories; misses, hits in the main array
and hits in the last cache line to be fetched. Figure 2
shows the proportions of these when a representative
program (MPEG decoder) executes on one example
cache architecture.

The total height of a bar gives the classically meas-
ured hit rate with the remainder representing read
misses. The hit rate is divided into two parts; hits in the
main array –which constitute the majority – and the
smaller proportion of hits from the last line fetched.

This figure shows how both the total hit rate and
proportional contribution of the last line fetched to the
hit rate increase as the size of the cache line increases.
It should be noted that the proportional contribution of
hits from the last line fetched to the total hit rate is sig-
nificantly higher than if each cache line had equal

importance. In an 8Kbyte, 4-way set associative cache
with a 2 word line, for example, one cache line repre-
sents only 0.39% of cache storage; this is much smaller
than the observed contribution of 4% from the last line
fetched.

The “last line fetched” is an ephemeral location,
rapidly replaced by the next line fetch. Further experi-
ments where conducted to examine the degree of tem-
poral locality exhibited during the line fetch. For each
line fetch operation it was determined how many
words contained within the line were used before a
request for other data was issued. Since line fetching is
performed on a demand basis, all line fetches result in
at least one word being used but they may use more
before moving off the line.
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Figure 2: Hit Rate Breakdown for MPEG Decoder
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Figure 3 shows a typical distribution for the MPEG
decoder. It can be seen that for about 60% of line fetch
operations only the word that caused the miss is used –
indicating that streaming would fail to give any per-
formance improvement in these cases. A non-blocking
cache would however, allow the following request to
be serviced whilst allowing the line fetch to proceed in
parallel.

4: Synchronous Implementations

As mentioned in §2.1 Stall On Miss is the most
commonly used line fetch strategy since it is simple to
implement. To improve performance some synchro-
nous designs use anEarly Restart based strategy
(RS6000-560 [15], ARM [1]), in particular the ARM
series of cached microprocessors use a variant which
will be described below.

In the ARM a cache miss stalls the processor and
causes a line fetch to be started from the address of the
lowest word in the line. At the end of each memory
read cycle the processor’s request is compared1 with
the address of the fetched data entering to the cache. If
they match it is sent to the CPU; if they do not, the
CPU remains stalled for this cycle. Both the CPU and
memory are clocked synchronously at the memory
clock speed during this process. Thus streaming occurs
as long as the processor continues to request data from
sequential addresses.

The demand for greater performance has led to
decoupled architectures becoming more common (PA-
8000, MIPS R10000, HaL R1, P6), many of which uti-
lise non-blocking caches in order to retain memory
bandwidth during cache miss processing (HaL [7], P6
[6]).

A decoupled architecture is one where the CPU is
fed instructions from a prefetch buffer large enough to
hide some or all of the latency from a line fetch. This
requires that the prefetch buffer can subsequently be
refilled when the line fetch is complete so the cache
must be able to supply instructions at a greater rate
than the CPU requires.

Synchronous implementations to-date are expen-
sive from a hardware perspective; utilising multi-
ported, split caches with wide cache to CPU buses. The
implementation complexity of these synchronous non-

1. There is a match if either i) the word that has arrived is the
word that caused the original miss or ii) if processor has
requested a sequential address (a non-sequential request
causes the CPU to stall until the line fetch has completed)

blocking caches is inappropriate for a small scale asyn-
chronous microprocessor.

4.1: An Asynchronous Implementation

The cache being designed is targeted for the next
version of the AMULET asynchronous ARM [3];
AMULET2e. This includes an improved processor
core, a cache and other peripherals on a single chip. To
save space there will be a single, unified instruction
and data cache. Data and instructions share the same
memory interface with data requests being arbitrated
into the prefetched instruction stream. In this situation
a non-blocking strategy should be particularly effec-
tive because it allows the independent prefetch and
data streams to merge with minimum interference.

If the asynchronous fetch strategy is to allow for
concurrent cache and line fetch activity, then there
must be methods by which the two processes can be
synchronised when necessary (e.g. when reading data
that has just been fetched). In synchronous system this
is done by synchronising on clock edges; comparing
the state of two systems when they are known to be sta-
ble. In an asynchronous system no clock exists thus an
arbiter is usually employed. Arbiters, however, are
potentially slow circuits and thus it is desirable to
avoid them in a design.

Figure 4 illustrates the positioning of a pipelined
cache between the micropipelined processor and mem-
ory. The cache is divided into three stages; the Tag and
Data stores and the Memory Interface.

Cache hit determination is done in the tag store with
all the cached data being held in the data store. The
memory interface is responsible for all transactions
that involve main memory and in particular, it issues
the multiple data read requests that constitute a line
fetch operation.

The key to this design is the division of the data
store into two parts; the main (conventional) cache
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Figure 4: A Micropipelined Cache



RAM array holding the majority of the cached data and
a set ofline fetch latches. The line fetch latches com-
prise a data latch for each word in a line and are used
to store data as it arrives from memory. This data is
held here rather than in the cache body until the next
line fetch is initiated.

When a read request arrives at the tag store it is clas-
sified as a hit in the main cache array, a hit in the line
fetch latches or a miss. In the first two cases the data is
read from the appropriate source and then sent to the
CPU; the last must instigate a new line fetch.

TheHit andLFL Hit control signals, shown in figure 5,
are generated by tag comparisons.Hit indicates that the
required data is cached andLFL Hit specifically indicates
that it is in the line fetch latches rather than the main
array. LFL Hit is determined by comparing the input
address with an additional tag which indicates the
range of addresses currently being held in the line fetch
latches. Note that a cache miss, after instigating a line
fetch, looks for its data in the line fetch latches.

Assuming that the previous line fetch has com-
pleted, a read miss first instigates a new line fetch and
then issues a request for the required word within the
line fetch latches. It must then synchronise with the

Figure 5: Control Circuit Request Steering.
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incoming data before carrying it back to the processor.
Any following read operations that require data from
this line are directed solely to the line fetch latches
where their data may already be present; if not they too
must wait until the data arrive.

A read hit in the main array requires no synchroni-
sation, is routed to the main array, and can proceed
unhindered. This route completely bypasses the line
fetch process and so may be serviced independently
and at any time. The cache is thus non-blocking.

The key point in this mechanism is the line fetch
synchronisation block which must delay any line fetch
reads until the correct data is present. Details of this
block are shown in Figure 6.

For each word in the cache line there is both aline
fetch latch and asynchronisation latch. The line fetch
latches are edge triggered latches which hold data that
has been fetched from memory. The synchronisation
latches are transparent latches which stall latch read
requests until the data that they require has arrived. A
request to read a line fetch latch (Request In) is decoded
and steered onto the correct individual word request
line (LF Read Req0-3).

When a line fetch starts all the line fetch latches are
empty and all thesynchronisation latches are opaque.
Opaque synchronisation latches block the progress of
latch read requests until they are made transparent.
This occurs when the line fetch engine receives data
from memory (on theLF DATA bus), and asserts aLF

Latch Control signal. This causes the appropriate line
fetch latch to latch the fetched data and makes the cor-
responding synchronisation latch transparent allowing
any stalledLF read req to proceed.

Using a transparent latch for synchronisation is not
hazardous in this case because although a synchronisa-
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tion latch may beopened before, after or at the same
time as a request arrives it is neverclosed when a
request may arrive and so there is no possibility of
metastability.

The only further synchronisation required is
between successive line fetch operations because they
each require use of the line fetch engine and line fetch
latches. Thus when a new read miss occurs it must wait
for the preceding fetch to complete. Once the previous
line fetch has completed, the contents of the line fetch
latches must be copied into the main cache array
before allowing the new fetch to begin.

In this scheme only the autonomous line fetch proc-
ess is aware that a cache line fetch has completed. This
is safe because it can stall a request for another line
fetch arbitrarily. This mechanism also leaves the last
line fetched in the line fetch latches until the next
request arrives.

The final task of the line fetch engine is to copy the
last fetched line into the main RAM array before
accepting data from the next fetch. It does this when it
is both ready (LF Complete is asserted) and a new read
miss has occurred, in which instance it has control of
the complete subsystem.

At this time the synchronisation latches are closed
and the contents of the line fetch latches are copied –
in parallel – into the RAM array as a standard cache
line replacement. This is a rapid operation and may be
hidden under the start-up time of the new line fetch.

5: Performance

A number of cache line fetch mechanisms have
been described and combinations of these allow for a
large number of different designs. The interaction
between the different read requests can extend over
several memory cycles and it is difficult to draw a clear
picture of this.

Ultimately the desire is to maximise parallelism to
increase performance. To determine the success of the
proposed line fetch mechanism it has therefore been
simulated using realistic estimated delays for units
such as cache and main memory speeds. The speed of
main memory was chosen to reflect the types of
DRAM memory commonly available – a total latency
of 70ns incurred when starting a line fetch with words
arriving 40ns apart thereafter. The speed at which the
final asynchronous system would cycle was not well
defined and so both 10ns and 20ns cycle times were
simulated.

The base system consists of an 8Kbyte, 4-way set
associative, unified cache in which external (buffered)
writes do not block line fetch activity. Figure 7 shows
how the total execution time for the MPEG decoder
varies as the line length is increased. The performance
of both the stalling (hollow symbols) and non-blocking
mechanisms is shown (solid symbols) relative to the
execution time of the fastest configuration.

The ratio of CPU/cache hit cycle time to memory
latency and transfer rate are shown in brackets, thus the
upper pair of curves relates to the CPU/cache configu-
ration with a slower 20ns cycle time and the lower has
a 10ns cycle time. It can be seen that the non-blocking
strategy consistently provides a speed advantage over
the stalling mechanism; the speed-up ranges from
2.0% to 15.2%. These figures for speed-up are some-
what greater than those presented by Przybylski [10]
[11]. This is explained by the nature of this processor
and cache combination which is small as modern
caches go, and its unified nature means that data refer-
ences are arbitrated into the instruction stream.

The graph confirms the line length that gives the
lowest total execution time for the cache with a stalling
fetch policy is two words [8]. The preferred length for
the non-blocking caches lines, however, is four words.

When line is increased to eight words the non-
blocking cache performance is degraded by 5.2% in
10ns system and by 1.9% in the 20ns system. Even
with this degradation in overall performance the non-
blocking caches with eight-word lines still perform

Figure 7: Overall Execution Time for Stalling and
Non-Blocking Line Fetch Strategies
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better than the optimal stalling cache configuration. In
general the non-blocking mechanism is more amiable
to an increasing line length since longer lines allow
greater time for concurrent cache and CPU activity.

6: Conclusions

A cache’s performance is ultimately limited by its
miss penalty which is largely dominated by the length
of the cache line. The time taken to fetch a cache line
completely can impede the processor’s operation.

To alleviate the miss penalty it is desirable to have
parallel CPU and cache activity during line fetch oper-
ations, particularly in systems with small, unified
caches where occasional data references can break up
the largely sequential instruction stream. In this situa-
tion concurrent CPU and cache activity can improve
the performance of an optimally configured cache and
processor system by up to 10%.

A non-blocking cache can also be employed in situ-
ations where an increased line length is desired, for
example to increase the overall cache size without
increasing the tags store. In this situation the non-
blocking cache performs better than the best blocking
configuration.

Traditional synchronous processors provide some
parallelism by streaming which, in an asynchronous
framework, required some complex synchronisation
problems to be solved. In designing an arbiter free
micropipelined circuit to provide this synchronisation
it was found that a non-blocking cache, which further
parallelises CPU and cache activity at no extra cost,
was the simplest solution.

The design presented is modular. For example few
constraints placed on the line fetch engine. This may
fetch a line starting at any address (lowest, requested
etc.) at the designer’s discretion and words within the
line may be fetched in any order. This allows design
decisions to be made here which will not affect the
function of other parts of the circuit although they may
alter overall performance.

Advanced features such as cache hints may also be
included. These start a line fetch in advance of the need
for the data and cannot be allowed to stall the cache.
Such software controlled cache prefetch directives
have been shown to be highly effective at increasing
the performance of code. Again this enhancement does
not change the basic design of the circuit.

Finally it may be possible to abort a line fetch if it
seems unnecessary. Again this would be a local func-

tion of the line fetch engine but in this instance arbitra-
tion would be required to allow a new line fetch
request to interrupt one already in progress. Although
this process has not yet been investigated it does not
seem unlikely that a further performance benefit could
accrue.
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