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ABSTRACT

Current mobile phone applications demand high performance from the DSP, and future
generations are likely to require even greater throughput. However, it is important to balance these
processing demands against the requirement of low power consumption for extended battery
lifetime. A novel low-power digital signal processor (DSP) architecture CADRE (Configurable
Asynchronous DSP for Reduced Energy) addresses these requirements through a multi-level
power reduction strategy. A parallel architecture and configurable compressed instruction set
meets the throughput requirements without excessive program memory bandwidth, while a large
register file reduces the cost of data accesses. Sign-magnitude representation is used for data, to
reduce switching activity within the datapath. Asynchronous design gives fine-grained activity
control without the complexities of clock gating, and gives low electromagnetic interference.
Finally, the operational model of the target application allows for a reduced interrupt structure,

simplifying processor design by avoiding the need for exact exceptions.
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1. INTRODUCTION

The market for mobile communication devices, particularly mobile phones, has grown at a
phenomenal rate and is still expanding rapidly. Part of this rapid growth can be attributed to the
decrease in price of the handsets, to the point that mobile network operators are able to actually
give away handsets, recouping the cost in the revenue gained from contract fees and call costs.
The low unit price makes this market fiercely competitive, and manufacturers are continually
vying with one another to find new features which give their phones an edge over those of their
rivals. However, one factor dominates when distinguishing between phones: the size and weight
of the handset. This is largely controlled by the trade-off between battery size and battery lifetime,
which itself is controlled by the power consumption of the circuitry within the phone. The
requirement for extended battery lifetime with reduced battery size makes mobile phones a key
application for low power VLSI design.

Modern cellphones are based on digital communication protocols, such as the globally accepted
GSM protocol. These require complex control and signal processing functions, with the phones
performing filtering, error correction, speech compression / decompression, protocol management
and, increasingly, additional functions such as voice recognition and multimedia capabilities. This
processing load means that the digital components of the phone consume a significant proportion
of the total power. The bulk of the remaining power is used for radio transmission, which is fixed
by the distance to the basestation and the required signal-to-noise ratio. The required power will
decrease as the number of subscribers increases and cell sizes decrease to compensate. Also,
mobile communication devices will increasingly be used as part of local wireless communication

networks such as the Bluetooth wireless LAN protocol [1], where the transmitted power is very



low. It is therefore clear that the key to reduced power consumption for both current and future
generations of mobile phone must be found in the digital subsytems.

These digital subsystems are typically based on the combination of a microprocessor coupled by
an on-chip bus to a digital signal processor core. The microprocessor is responsible for control
and user-interface tasks, while the DSP handles the intensive numerical calculations.

An example of a current part for GSM systems is the GEM301 baseband processor [2] produced
by our collaborator Mitel Semiconductor, which contains an ARM7 microprocessor coupled to an
OAK DSP core as shown in Figure 1. A study of the literature for this product revealed that,
within the digital subsystem, the DSP is responsible for approximately 65% of the total power
consumption when engaged in a call using the GSM half-rate speech compression /
decompression algorithm a@odec(the term half-rate deriving from the level of compression,

such that two speech channels can fit into a single transmission timesilot).
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Figure 1. Structure of GEM301 baseband processor

It can be expected that this proportion of the total power consumption will increase in future

generations of GSM chipsets as the complexity of coding algorithms increases. For this reason, it



would appear that the most benefit can be gained by reducing the power consumed by the DSP
core. To address this area, the CADRE asynchronous digital signal processor is being developed
to meet the requirements for performance, power consumption and EMI. Based on current
throughput, it is expected that the next generation of mobile phone chipsets will require a
throughput of greater than 100MIPS from the DSP. We have chosen a target performance of
160MIPS for the new design, which is intended to meet the requirements for this application
comfortably and represents an approximately fourfold increase in speed over the OAK DSP in the
GEM301 chip. CADRE uses fixed point arithmetic with a precision of 16 bits and an accumulator
precision of 40 bits. The GSM standard specification requires only 32 bits of precision for
accumulated results, but an additional 8-bit guard portion for the accumulators simplifies program

design by allowing up to 128 summations before overflow can occur.

2. SOURCES OF POWER CONSUMPTION

The power consumed by CMOS circuitry is dominated by that due to switching activity [3]. The
dynamic power dissipated at any node can be calculated by the well-known eqmatit%cvzg ,

whereC is the node capacitancé,is the supply voltage anfds the rate of switching at that node.
This expression leads to three main strategies for reducing the power consumption.

2.1 Reducing the supplyitage

The first method of reducing power consumption is to reduce the supply voltage, which has the
greatest effect due to the quadratic term. However, this also has the effect of reducing the
operating speed of the circuits and reducing noise margins. These effects become extreme as the

supply voltage approaches the threshold voltages of the MOS transistors and, in addition, the



static leakage current increases. Leakage current is a serious issue for battery powered systems
where large amounts of time are spent in an idle state.

In applications where demand is variable, varying the power supply so that the data is ready ‘just
in time’ can be a very effective means of minimising the average power [4], although changing the
operating speed is complex for clocked systems. Where demand is fixed, the supply voltage
should be set as low as possible while still achieving the required performance.

2.2 Reducing switched capacitance

The second method of reducing power consumption is to reduce the overall switched capacitance
within the circuit. This can be done to some extent by appropriate sizing of transistors within the
circuit. However, as deep sub-micron technologies are adopted, an increasingly large proportion
of the switched capacitance in a circuit comes from parasitic wire capacitances. The impact of this
can be minimised by localising the transfer of data and avoiding long paths across a circuit
wherever possible, by exploiting local storage and by appropriate algorithmic transformations [6],
[7].

2.3 Reducing switching aetty

The final method of reducing power consumption is to reduce the number of transitions at each
node within the circuit. This can be done through algorithmic transformations exploiting
correlations between data [3] [8] [9], by localising transfer of data [6] [7] and by eliminating
redundant activity. There are a number of methods for eliminating redundant activity, such as
appropriate choice of number representation [3], disabling unused subword portions of the
datapath [10], and preventing the creation and propagation of intermediate values or ‘glitches’ [3]

[11].



One potential source of redundant activity in synchronous systems is the clock signal itself, which
is subject to high capacitance as it is distributed throughout the system. Clock gating to idle
subsytems, or deactivating the clock altogether during idle periods, can mitigate the waste of
energy to some extent, but this introduces considerable complexity in the system design. The
complexity is introduced both from the need to use either software or hardware to identify idle

components, and from the delay incurred in restarting a high speed clock generator or PLL clock

buffer before the output stabilises.
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Figure 2. Synchronous and asynchronous pipelines

As an alternative to clocked designs, an asynchronous (self-timed) design can be used. In an

asynchronous system, operations are managed by means of local handshakes between adjacent



circuits. A comparison between a conventional synchronous pipeline and an asynchronous
micropipeline[12] is shown in Figure 2. In the synchronous system in Figure 2a, the clock
controls the passage of data along the pipeline. In contrast, the passage of data through the
asynchronous system of Figure 2b is controlled by a succession of indepdratetghakes
between adjacent circuit elements, managed by the associated latch control circuits. When an
element has valid data to pass on, it assertsadeestsignal. The subsequent stage indicates that

it has captured the new data by asserting dbknowledgesignal. All synchronisation activity
occurs locally between adjacent stages, minimising the wiring load. The entire system can be
stopped simply and rapidly by stalling the handshake process at any stage of the pipeline, and
processing can resume immediately upon that stage resuming activity. This behaviour is an
inherent property of an asynchronous system, and means that even the smallest period of
inactivity can be exploited to reduce power consumption, without the need to stop and restart a
clock.

Processing delay in the asynchronous pipeline is managed either by explicit completion signals
from the datapath or by a matched delay in the request path, as shown in the figure. Whichever
method is used, the delay is dependent only on the local worst-case delay as opposed to the global
worst-case delay as required for synchronous systems. This means that, for example, simpler
operations in a processor can complete more quickly than more complex ones.

For system-on-chip (SOC) designs, asynchronous modules offer an attractive element of
composability as the interfaces to such modules are defined precisely, without reference to a
global timing reference. The degree that the interface is constrained depends on the particular
asynchronous design style used, ranging from the fully delay-insensitive style used by Theseus

Logic Inc. [5], which is guaranteed correct by construction at the expense of using two wires for



each signal, to the bundled data design style employed in this work where it is assumed that the
delay in the request signal is similar to the delay in the associated data bus. This imposes more
constraints on the layout, but uses half the number of wires and therefore consumes less power.
A very useful side-effect of asynchronous design is that the circuits cause inherently less
electromagnetic emissions than their clocked counterparts. In the clocked circuit, the passage of
data and therefore all activity is synchronised to the clock edge. This causes large current spikes at
the clock frequency and large quantities of radiation at harmonics of the clock frequency. By
contrast, activity in an asynchronous system is distributed in time, meaning that very little
harmonic radiation is generated. It is clear that this behaviour is particularly useful in wireless
systems.

2.4 Paver consumption in the DSP

The power consumption in an on-chip processing system as described here can be broken down
into two main areas. The first main area is the power cost associated with accesses to the program
and data memories. This is made up of the power consumed within the RAM units themselves,
and the power required to transmit the data across the large capacitance of the system buses.
Memory accesses can form the largest component of power consumption in data-dominated
applications [6], and a study of the Hitachi HX24E DSP [13] showed that memory accesses
caused a significant proportion (~20%) of the total power consumption even where the activity of
the system is not dominated by memory transfers.

The second main area of power consumption comes from the energy dissipated while performing
the actual operations on the data within the processor core. This is made up of the energy
dissipated by transitions within the datapath associated with the data, and the control overhead

required to perform the operations on the data.



3. ARCHITECTURE OF THE NEW DSP

The challenge for CADRE is to meet the required throughput without excessive power
consumption. An instruction rate of 160MHz is not large when compared with current high-
performance microprocessors. However, the demands of low power consumption and low
electromagnetic interference mean that lower operating speeds are preferred. Meeting the
required throughput at a lower operating speed necessitates the use of parallelism, where silicon
die area is traded for increased speed. This allows simpler and more energy efficient circuits to be
used within each processing element, and for the supply voltage to be reduced for a given
throughput. If a simple proportional relationship between supply voltage and speed is assumed,
doubling the number of processing elements allows the supply voltage to be halved. This reduces
the energy dissipated per operation in each functional unit by four and the total power
consumption by two (so-callearchitecture driven voltage scalif@]). The practical benefit will

be less than that predicted by the simple delay model, but is still sufficiently large to be
worthwhile when area constraints allow it. Multiple functional units also provide flexibility for the
programmer to rearrange operations so as to exploit correlations between data [3] [9] [14].
Silicon die area is rapidly becoming less expensive; indeed, one of the challenges is to make
effective use of the vast number of transistors available to the designer [15]. This makes
parallelism and replication very attractive. Most new DSP offerings by the major manufacturers
incorporate some form of parallelism, such as the LSI Logic Inc. ZSP164xx DSPs [16] with 4-
way parallelism or the Texas Instruments TMS320C55x low-power DSPs [17] which feature two

multiply-accumulate units and two ALUs.



3.1 Choice of parallel architecture

The OAK DSP core in the GEM301 baseband processor maintains a maximum throughput of
approximately 40MIPS when engaged in a call using a half-rate codec. This is a uniscalar device,
and so to reach the required throughput of 160MIPS we have chosen simply to increase the
processing throughput by means of four way parallelism. The choice and layout of the functional
units were decided upon by examining a number of key DSP algorithms [18] to see how
parallelism could be exploited. To give a starting point for the instruction set, the benchmark
algorithms for the Motorola 56000 DSP series [19] were chosen, as the authors have some
experience with this range of processors. The chosen algorithms were FIR filters, IR filters and

fast Fourier transforms; the FIR filter and FFT will be illustrated here.

3.1.1 FIR Filter algorithm.The first algorithm to be considered was the FIR Filter algorithm. This

M-1
is expressed by the equatigm) = Y ox(n-K and there are clearly a number of ways in which
k=0

this sum of products can be implemented in parallel form. The time-consuming portion of this
algorithm is the succession of multiply-accumulate (MAC) operations and so, to speed up
execution by a factor of four, it is necessary to have four functional units capable of performing
these multiply-accumulate operations.

A simple way of distributing the arithmetic for this algorithm is to have each MAC unit process a
guarter of the operations on each pass of the algorithm, storing the partial sum in a high-precision
accumulator within the unit. At the end of the pass, a final summation of the four partial sums is
performed. These final sums require additional high-precision communication paths between the

functional units to avoid loss of precision, and to perform the sum in the shortest possible time
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requires two of these pathways. The distribution of operations to the various functional units (Mac
A-D) is shown in Table I.

Arithmetic operations are of the formpperation srcl,src2,dest " wheresrcl and

src2 are 16 or 40 bit values andkst specifies the destination accumulator. Where one of the
sources is an accumulator from another functional unit, the notatexja-d]:src is used to
indicate which functional unit and accumulator is involved. Thpy operation is a 16x16 bit
multiply, themac operation is a 16x16 bit multiply with the result being added to the destination
accumulator, and thadd operation is a 40 bit addition. Bold type indicates the operation in the

algorithm after which the result is available.

MAC A MAC B MAC C MAC D
mpy X n,C 0.8 mpy X n.1,C 1. mpy X n.2,C 2, mpy X n.3,C 3.
mac X .4 ,C 4,@ mac X ,.5,C 5,8 mac X .6 ,C .2 mac X ,.7,C 7,8
mac X . ,C j.a mac X p..q1 »C j+1 @ mac X p.2 ,C j+2 ,a mac X p..3 ,C j+3 .2
(i=48,...)
mac X rI-M+4'C M_4,a mac X n-M+3!C M_3,a mac X rI-M+2'C M_z,a mac X n-M+1!C M_l,a
- add maca:a,a,a - add macc:a,a,a
- - - add macbh:a,a,a

Table I: Distribution of operations for simple FIR filter implementation

When more than one item of new data is available at a time (such as when processing is block-
based) it is possible to optimize the FIR filter algorithm to reduce power consumption, by
transforming the algorithm so that 4 new data points are processed on each pass. The transformed
sequence of operations is shown in Table Il. The benefit of this transformation is that correlations
between both the data values and the filter coefficients can be exploited. In the new arrangement,

the filter value is held constant at one input of the multiplier over four successive multiplications
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while successive data values are applied to the other input. This dramatically reduces the amount
of switching activity within the multiplier, at the expense of requiring more instructions and more

accumulator registers in each functional unit.

MAC A MAC B MAC C MAC D
mpy X n,C 0.8 mpy X n.1,C 1. mpy X n.2,C 2,a@ mpy X n.3,C 3.
mpy X n.1 ,C 0.0 mpy X p.2.C 1,0 mpy X n3.C 2,0 mMpY X p.4.C 3,0
mpy X p.2 ,€ 0,C mpy X n.3,C 1,€ mpy X n.4,C 2,€ mpy X n.5,C 3,C
mpy X n.3.¢ o.d mpy X n4.C 1.d mpy X pns.C 2.d mpy X n.6.C 3.d
mac X n-j ,C j ,a mac X n-j-1 ,C 1 ,a mac X n-j-2 ,C +2 ,a mac X n-j-3 ,C i+3 ,a
mac X pj.1 ,Cj,b mac X nj2 ,Cj+1 .0 mac X nj3 ,Cj2,b mac X nj.4 ,Cj+3.b
mac X n-j-2 ,C j ,C mac X n-j-3 ,C 1 ,C mac X n-j-4 ,C +2 ,C mac X n-j-5 ,C +3 ,C
mac X nj.3 ,Cj,d mac X nj4 ,Cj+1.d mac X njs ,Cj+2 ,d mac X nje ,Cj+3.d
(i=4.8,...)

mac X n-M+1'C M_4,a mac X n_M,C M_3,a mac X n-M-1 ,C M_Z,a mac X n-M-2 ,C M_l,a
mac X .m,C M-4,0 mac X .M-1:C m-3.0 mac X n.m-2 ,C m-2,b mac X .m-3 :C m-1.D
mac X n-m-1 ,C j ,C mac X n-m-2 ,€ m-3:C mac X n.m-3:C m-2:C mac X n-m-4 ,€ m-1.C
mac X n.m-2 ,C i ,d mac X .m-3:C m-3.d mac X p.\-4 C Mm-2,d mac X .m-5:C m-1.d
add macb:a,a,a add maca:b,b,b - add macc:a,a,a
add macd:a,a,a - add macd:c,c,c add macc:b,b,b
add macb:c,c,c add macd:b,b,b - add macc:d,d,d

- add maca:d,d,d add maca:c,c,c -

- - - add macb:d,d,d

Table 1I: Distribution of operations for transformed block FIR filter algorithm

Each functional unit now maintains 4 partial sums, one for each of the passes of the FIR filter
algorithm, and these partial sums are again brought together at the end of processing. In this case,
4 high precision pathways between the functional units would be beneficial, but this represents

too great an area overhead. Instead, it was noted that the summation of results across the
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functional units occurs in a pairwise fashion, and so it was decided to group the functional units
into two pairs (Mac A and B, Mac C and D) connected by local high precision buses, with all four
units connected by a single global high precision bus. As a shorthand, these buses are named
LIFU1&2 (Local Interconnect of Functional Units) and GIFU (Global Interconnect of Functional
Units). This arrangement, as shown in Figure 3, provides the benefits of having three high
precision pathways for most operations, but incurs the area expense of only two global pathways.
Driving shorter local buses also causes less power consumption. Despite only having three
pathways to perform summations over, it is still possible to keep all of the functional units
occupied by interleaving the summation of the partial results with the final set of multiplications.

Details of this have been omitted from Table 1l for the sake of clarity.

— AN — AN — AN — N
o o o o o o (&) (&)
= = = = = = = =

MAC A MAC B MAC C MAC D

l LIFU1 l l LIFU2 l

GIFU

Figure 3. Layout of functional units

3.1.2 Fast ourier Transform.The fast Fourier transform is actually a ‘parallelized’ form of the

. n
—j ZHKN

N-1
discrete Fourier transform described by the equation= 3 x(ne . The algorithm consists
n=0

of a series of passes of the ‘FFT butterfly’ operator across the data. The butterfly operates on two
(complex) data valuea and b to produce two output data valués and B according to the

equationsa = a+ Wb ands =a-wb , wherdf is the value of a complex exponential (the so-
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called ‘twiddle factor’). The calculation of each butterfly requires a complex multiply and two

complex additions. In general, the complex multiplicatian requires four real multiply
operations and two real additions, to calculate W xb) = Re( W) x Re( b —Im(W,) x Im(b) and
Im(W, xb) = Im(W,) x Re( ) + Re{ W) xIm(b) . Two further complex additions are then required to

generate A and B, requiring four real additions in total. However, if the functional units support
shifting of one of the operands, to produce a multiplication by a factor of two, then it is possible to
avoid two of the final additions by using the following algorithm:

Re( A = Re( 3 +Re( W) x Re( ) —Im(W;) x Im(b)

Im(A) = Im(a) + Im(W;) x Re( ) + Re( W) x Im(b)

Re(B = Re(d—Re(W) xRe(h +Im(W;) xIm(b) = 2x Re(d —Re( A

Im(B) = Im(a) - (Im(W) x Re( b + Re{ W) x Im(b)) = 2x Im(a) —Im(A)

A natural way of performing these calculations within the functional units is to use them in pairs,
to perform the complex operations for two butterflies simultaneously. The mapping of the FFT
butterfly is shown in Table Ill. This mapping requires two write ports to the accumulator bank in
each functional unit, so that the moves can take place in parallel with the operations (with read-
before-write sequencing being enforced within the functional units). The italicised move
operations only require a separate instruction on the first FFT butterfly of each pass, as they can
take place in parallel with the final add of the accumulators when a number of butterflies are being
performed in succession. A full implementation of this algorithm can perform 4 complex FFT

butterflies with 6 parallel instructions, with all of the functional units fully occupied throughout.
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MAC A MAC B MAC C MAC D
move a 4, ,a move a 4;,a move a ,,,a move a 5 ,a
move a,b move a,b move a,b move a,b
mac Wy, ,b 4, .,a mac Wy; ,b 1, .a mac Wy, ,b 5, ,a mac Wy; ,b 5, ,a
mac -W 4; ,b 45 ,a2 mac W ¢, ,b 4; ,a mac -W ,; ,b 5 ,a mac W 5, ,b 5 ,a
add 2b,-a add 2b,-a add 2b,-a add 2b,-a

Table I1I: Distribution of operations for FFT butterfly

3.2 Choice of number representation

It is well known that sign-magnitude representation of signed binary numbers can cause less
switching activity than two’s complement number representation in systems such as DSPs where
the data shows correlation between successive values or when low-amplitude signals are being
processed [3] [10]. The difference in switching activity is due to activity in the redundant sign bits
required to represent small negative numbers in two’s complement representation. However, sign-
magnitude arithmetic requires somewhat more complexity in the arithmetic circuits, particularly
in order to ensure that the result of a subtraction always has a positive mantissa.

In order to investigate this trade-off, models of DSP datapaths using both sign-magnitude and 2’s
complement arithmetic were written. Studies of a simulated low-pass FIR filter algorithm on
speech data showed that the sign-magnitude datapath exhibited significantly less switching
activity, between 20%-40% as counted at the module interfaces. The extra complexity to
implement sign-magnitude arithmetic is restricted to a minimum-geometry portion of the datapath
within the adder, and so has little effect on the power consumption. Sign-magnitude arithmetic has
been used within CADRE, as the reduced switching activity due to the data representation affects
power consumption throughout the system. This is particularly significant when the large

capacitance of system buses to memory is considered [3].
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3.3 Supplying instructions to the functional units

Having chosen a parallel structure for the processor, the next challenge is to devise a method of
supplying independent instructions to the functional units at a sufficient rate without excessive
power consumption. In a general-purpose superscalar microprocessor, this task is often managed
by a dedicated scheduling unit which analyses the incoming instruction stream and dispatches
independent instructions to the available resources. This approach has been adopted by ZSP
Corporation for the ZSP164xx DSPs. However, the scheduling unit is a complex device which
consumes significant amounts of power, so for power-critical applications it makes more sense to
remove this task from the processor. Instead, the programmer (or, more often, the compiler) can
group independent instructions, in advance, into a simgig long instruction woravhich can be

read from memory and directly dispatched to the functional units. The VLIW approach is
becoming the more common method for managing parallelism in current DSPs. The main
drawback with conventional VLIW is that, where dependencies exist, it is necessary to insert
NOPs within the instruction word which reduce the code efficiency. This can be tackled to some
extent by using variable length instructions, such as the EPIC (Explicitly Parallel Instruction-set
Computing) technique [20] at the expense of greater complexity of instruction decoding. Variable
length instructions of this type are employed in the Texas Instruments TMS320C55x DSPs.
However, in the case of both superscalar and VLIW approaches it is necessary to fetch data from
program memory at the full rate demanded by the functional units.

DSP operations tend to be characterised by regular repetition of a number of short, fixed
algorithms. It is possible to exploit this characteristic to reduce the quantity of information that
needs to be fetched from program memory, thereby reducing power consumption. One possible

method would be to cache the incoming instruction stream, to exploit the locality of reference in
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the memory accesses. However, cache memory consumes a significant amount of power when
searching for a hit, particularly when multi-way associative caches are used. In addition, it is still
necessary to fetch instructions and update the program counter at the full issue rate of the
processor or to use a very wide instruction path. Instead, we propose that VLIW encodings for the
required instructions can be stored, in advance, in configuration memories internal to the
functional units themselves. These stored operations can then be recalled with a single word from
program memory, dramatically reducing the amount of information that needs to be fetched.
DSPs already exist which make use of configurable instructions, such as the Philips REAL DSP
core [21] or the Infineon CARMEL DSP core [22]. However, both of these have a single global
configuration memory for the entire core, which is only used for specialised instructions. The
proposed scheme differs in thatl parallel execution is performed using preconfigured
instructions. To reduce the distance over which the data needs to travel, and hence the power
consumption, the configuration memories are separate and located within each functional unit.
Locating the memories within the functional units also increases modularity, and allows any
arbitrary type of functional unit to be inserted into the architecture (although to speed design,
identical functional units are being used in the prototype). In the current design the configuration
memories are RAMs, allowing reconfiguration at any point in execution. For a given application,

it may be desirable to turn part of this storage into ROM to encode a few standard algorithms.

3.4 Supplying data to the functional units

Given a parallel processing structure, and a means of supplying instructions to it, the next design
issue is to supply data at a sufficient rate, without excessive power consumption. This is clearly a

serious problem, as each functional unit can require two operands per operation and may also
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need to write data back from the accumulators, giving a total of eight reads and four write
accesses per cycle.

CADRE, in common with many other current DSPs, uses a dual Harvard architecture where one
program memory and two separate data memories (labelled X and Y) are used. This avoids
conflicts between program and data fetches, and many DSP operations map naturally onto dual
memory spaces (e.g. data and coefficients for a FIR filter operation).

The memory hierarchy principle works well for DSPs, as many algorithms display strong locality

of reference. For this reason, a large register file of 256 16-bit words was included in CADRE,
segmented into X and Y register banks to match the main memory organisation. The large register
file allows for a high degree of data reuse (allowing, for instance, a complete GSM speech data
frame of 160 words to be stored), and a large explicit register file offers a significant advantage
over having a cache and fewer registers as is common in traditional DSP architectures.

In the programmer’s models of most traditional DSP architectures, as shown in Figure 4a,
operands are treated as residing within main memory and are accessed by indirect reference using
address registers. These address registers must be wide enough to address the entire data space of
the processor, 24 bits in this design. After each operation, it is generally necessary to update these
address registers to point to the next data item. The data address generators (DAG) generally
provide support for the algorithm being executed, with circular buffering or bit-reversed
addressing, and therefore require complex circuitry. Even if all eight of the fetched data items
reside within the cache, there is still a significant power consumption associated with these
address register updates (up to eight of them), and this power must be added to that required for

the cache lookups.
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In the new architecture (Figure 4b), 24-bit address registers are used only for loading and storing
data in bulk between the data register file and main memory. 32-bit ports from the register bank to
both X and Y memory allow up to 2 registers from each bank to be transferred simultaneously
using a single address register for each bank. Once the data is loaded into the register bank, it can
be accessed indirectly by means of 7-bit index registers. The 7-bit data index generators (DIG)
give much faster updates at a much lower power cost than their 24-bit counterparts. Also, a multi-
ported register file is significantly less complex and consumes substantially less power than a
multi-ported cache memory, particularly if the cache is an associative design.

3.5 Raister bank design

The parallel architecture implies that there must be four ports to each of the X and Y register
banks, if each functional unit is constrained to using at most one item from each of X and Y data
spaces. While many DSP algorithms do segment neatly into X and Y data spaces, it is desirable
not to constrain the programmer in this way and to allow them each free choice of access to both
the X and Y register banks. Unconstrained choice of register would require eight read ports to
each of the X and Y register banks to cater for the worst case of all the functional units requiring
both operands from the same bank. This is in addition to the ports required for writebacks from
the functional units and loads / stores between memory and the register bank. A large, multiported
register bank of this type would require a considerable area, would be slow, and would consume
large amounts of power if directly implemented, due to the high load on the ouput bus of each

read port.
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Many DSP algorithms exhibit sequential accesses to data which, when parallelized, mean that
four sequential data values are required at each iteration. The other common case is that a single
data value is required by all functional units (e.g. when all data is to be prescaled by a quantity). It

is possible to exploit these access characteristics so as to provide what appears to be a large
multiported register file, but with a lower hardware cost, lower power consumption and improved
access speed. This is done by segmenting each of the register banks into four sub-banks as shown
in Figure 5. The four sub-banks hold sequential registers (i.e. registers 0,4,8,... in sub-bank 0,
registers 1,5,9,... in sub-bank 1, etc.). The structure of the register bank is shown in Figure 5.
Reads and writes to the register bank are managed independently, using very different approaches.
The four possible write requests from the functional units, plus the write request of any load
operation from memory, arrive asynchronously. Each write request is forwarded to the appropriate
sub-bank based on its register selection, where an asynchronous arbiter tree controls access to the
write port of each bank. Asynchronous arbitration has the property of being very fast when no
contention occurs, but allows requests to be safely serviced in turn if two or more requests arrive
simultaneously.

Read requests arrive together from all of the functional units, and are managed by separate read
processes synchronized by an overall control unit (not shown). Each active read process requests a
particular register from a particular sub-bank. The read request is passed to a simple (non-
asynchronous) priority arbiter at the selected sub-bank. Each of these arbiters can accept requests
from any number of the read processes, and selects one request as the winner. The winning
request is then granted access to read the required register from the sub-bank.

Once the read has completed, the winning register choice passes back to the read processes along

with the data, and any process whose read request has been satisfied can capture the data and
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remove their request. The read cycle can then be repeated until all of the read requests have been

satisfied.

l J Writeback requests
| |
Bank sel.
| Il
| r |
Write arbiters
| l | l l | l |
X/Y subbanks 32 32 32 32 32 32 32 32
I I I I I I I I
Read winner
selection T T T LEET LEET T LEET T
| Bank sel. \\ Result select /
@ /
{ Read process
|

Read requests (x8)

Figure 5. Register bank arrangement

This arrangement means that, if the read processes require sequential register numbers, each read

process will request data from a different sub-bank, no contention for access will occur, and the
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read operation will complete in a single cycle. If a number of read processes require access to a
single register then all of their requests will arrive at the same read arbiter. This causes contention,
but it does not matter which of the processes wins control: as soon as the register has been read,
all of the read processes see that the correct register is available and can capture the data and
remove their requests.

These strategies for reading and writing mean that the common case operations will execute
quickly (within the time of a read or write cycle). Where the programmer has been unable to avoid
conflict, a delay of one or more read or write cycles will be incurred. However, this is not a serious
penalty as the cycle time for a 32 entry single-port register file should be reasonably fast. The
asynchronous nature of the design means that the variable completion time does not cause any
problems elsewhere in the design: the rest of the system can simply wait as necessary.

The proposed scheme requires a considerable amount of wiring resources to route the read and
write requests to the appropriate register sub-banks. However, only one of these routes will be
active for a given read so the power implications of this extra wiring are not severe, and modern
multiple metal layer processes will help to mitigate the area cost. Some extra logic delay is
incurred, but the logic depth is similar to that which would be required for address decoding in a
256 word register bank, and the majority of the logic delay is only incurred on the first read cycle.

3.6 Instruction encoding anaerution control

The instructions for the DSP consist of 32 bit words (to match the data width of typical host

microprocessors), and are split into two classes: compressed parallel instructions, or all other
control and setup instructions. Control and setup instructions are responsible for tasks such as
setting up index and address register values and initializing loops, after which the processing work

can be done by the compressed parallel instructions without disturbance.
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Compressed parallel instructions are described by a 32 bit instruction which maps onto a 320 bit
long instruction word stored in 10 separate 128 x 32-bit configuration memories, as shown in
Figure 6. Within each functional unit are two separate 32 bit configuration memories, the opcode
and operand memories. The configuration words from opcode memory set up the sequence of
operations to be performed by the ALU, which can consist of any combination of:

* An arithmetic operation (with the result being written to the ALU accumulators).

* A parallel move to the ALU accumulators.

* A writeback from the accumulators to the register bank.

Also, the opcode configuration word is responsible for setting up additional functions such as
driving of the GIFU / LIFU.

The configuration words from the operand memory specify the source of the data for the
operations in the ALU, the destinations for the operations, and the target register of any
writeback. The source data for operations are selected biynilne and can be either an indirect
reference to the register file (using an index register), a direct reference to the register file, or an
immediate value stored in the operand memory.

The remaining two configuration memories are located outside of the functional units. The first of
these holds details of how the index registers are to be updated. The second specifies load or store
operations to be performed in parallel with the arithmetic operations, and includes details of the
address registers to be used to access memory, how the address registers are to be updated, and
which register locations are to be used (specified either directly, or indirectly using an index

register value).
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Figure 6. Parallel instruction expansion

Compressed parallel instructions are indicated by means of a zero in the most significant bit

position, meaning that they can be rapidly identified. The instruction format is shown in Table IV.

Each 32 bit parallel instruction contains two 7-bit fields to select the configuration memory entries

required for the operation: bits 0-6 select the opcode configuration memory word to be used,

while bits 7-13 address the operand memory word to be used, and also which load/store and index
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update operations are to be performed. Splitting the configuration memory in this way allows the
maximum amount of reuse for configuration memory locations; for example, many algorithms
may require four parallel multiply-accumulate operations, but may require different source and

destination registers for the operations.

Bit position  Function

0-6 Opcode config. memory address

7-13 Operand / load-store / index config. memory address
14 Enable for load/store operations

15 Global enable of writes to accumulators

16 Global enable of writebacks

17 Enable index register updates

18-22 Condition code bits

23-26 Enable operations in functional unit 1-4

27-30 Select conditional operation in functional unit 1-4
31 0 - indicates a parallel instruction

Table IV: Parallel instruction encoding

To provide even more flexibility in operation, and to reduce configuration memory requirements
still further, it is possible to selectively disable components of the stored parallel operation from
within the compressed instruction word. This allows each configuration memory location to
specify the maximum number of possible concurrent operations, avoiding redundancy of storage,
and each algorithm can then select only those parallel components required at the time. Bits 14-17
of the compressed instruction are master enables for the load / store operations, writes to the
accumulators, writebacks to the register bank and updates to the index registers; and bits 23-26
enable or disable arithmetic operations in each of the functional units. Arithmetic operations in
each of the functional units can also be made conditional, using bits 27-30. Each functional unit

maintains an internal condition code register, and the state of this can be tested against the
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condition code provided in the instruction. Conditional execution reduces the need for branch
instructions, which disrupt normal pipeline operation unless expensive branch prediction is used.

3.7 Instruction bffering

Most DSPs include some form of hardware loop instruction, allowing an algorithm to be executed

a fixed number of times without introducing branch dependencies. In the CADRE architecture,
this function is managed by a 32 entry instruction buffer which also manages the loop count,
meaning that subsequent stages see an entirely flat instruction stream, and supports up to 16
nested loops. The highly compressed instructions mean that even fairly complex DSP kernel
routines can fit within this space, and can be executed without the need to access main memory. A
study of the Hitachi HX24E DSP [23] showed that power consumption could be reduced by
between 25% and 30% by employing a 64 entry instruction buffer: this was sufficiently large for
simple algorithms, but not for example a FFT. The compressed instructions for CADRE allow
more complex algorithms to be buffered, despite the use of a smaller buffer. The use of an
instruction buffer to reduce power consumption has been adopted for the new Texas Instruments
TMS320C55x processors.

Apart from the looping behaviour, the buffer acts as a FIFO ring-buffer and to store prefetched
instructions, meaning that the next set of instructions can be prepared while either executing the
current algorithm or when waiting for new data to arrive. Despite its complex looping behaviour,
the instruction buffer consumes less power in normal operation than many conventional FIFO
buffers, due to the asynchronous structure chosen [24]. The combination of the large register file
and the compressed instruction buffer can massively reduce the number of memory accesses: for
example, it is possible to perform a 64-point complex fast Fourier Transform with only a single

pass through both the program and data memories. This represents a reduction of 86% in program
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memory accesses and PC updates, and a reduction of approximately 74% in data memory
accesses, when compared to a conventional architecture where instructions and data are always
fetched from memory.

3.8 DSP pipeline structure

A block-level representation of the DSP is shown in Figure 7. The fetch stage autonomously
fetches instructions from program memory, from where they are passed on to the instruction
buffer stage. From here, the instructions pass on to the decode stage, where the most-significant
bit is examined to separate them into compressed parallel operations and control / setup
instructions. Control and setup instructions are decoded and executed without further pipelining,
to minimise setup latency.

If a compressed parallel instruction is detected, then a read is initiated in the operand
configuration memories, index update memory (within the decode block) and load/store memory
(within the load/store unit). The next stage of operation is for each functional unit to capture those
index register values which are required for indirect references to the data registers, and to update
the index register values according to the current instruction.

Once the register sources are known, each functional unit requests the specified data from the
register bank. While the registers are being read, the opcode configuration memories are read to
set up the operations to be performed in each functional unit, and any parallel load or store
operation is initiated.

Once the register and configuration reads have completed, both the data and setup information is
valid and the requested arithmetic operations, parallel moves and writebacks can be performed by

the functional units.
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Figure 7. Top level architecture of CADRE

3.9 Interrupt support

DSP pipelines are traditionally optimized for repeated execution of small DSP kernel routines,
and are less efficient at executing control-oriented code. However, most manufacturers add extra

hardware to their designs, such as branch prediction, speculative execution, complex interrupt
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structures and support for exact exceptions, to improve the control performance and allow the
processor to be used as a stand-alone device. CADRE is intended to operate in conjunction with a
microprocessor, and so a considerable amount of this hardware can be eliminated by allowing the
microprocessor to handle control tasks and for the DSP to operate in the role of a coprocessor.
Obviating the requirement for additional hardware, through the proper allocation of tasks between
the two devices in this application, contributes to lowering the overall power consumption. The
microprocessor prepares tasks for the DSP, and instructs it to perform them through a simple
interrupt structure which also allows for synchronisation with data. Under normal circumstances,
the DSP will only respond to an interrupt when halted, i.e. when it has completed the current task.
This allows the processor state to be managed without the need for exact exceptions. If necessary,
the host microprocessor can issue a non-maskable interrupt, which will cause the DSP to respond
immediately at the expense of losing the current processor state. Situations where non-maskable
interrupts would be issued are cases when the processor has failed to complete the current task in
the time available, or when an urgent event needs to be tended to, and so it is acceptable to discard

the data and either repeat the operation later or forget about it.

4. CONCLUSIONS

An overview has been given of a novel architecture for a low-power DSP for mobile phone
chipsets. This demonstrates an aggressive multi-level low power design approach, tackling power
consumption at all stages from the algorithmic and architectural down to the circuit level. The
characteristics of the presented application allow for particularly dramatic reductions in accesses
to both the program and data memories, and the type of data being processed allows for
correlations in the data to be exploited by the use of sign-magnitude number representation and

algorithmic transformations. The architecture is also scalable, as both the number of functional
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units, size of configuration memories, and the size of the register file can be expanded to suit a
particular application, and a mixture of functional units can be used to suit. The design for the
processor has been completed at the schematic level, and testing of the complete system is now
under way. A set of power consumption results for key benchmarks and algorithms from the GSM
protocol is soon to follow and will be reported, after which it is expected to take the design to

layout.
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