
ad,

uture

these

attery

ble

lti-level

n set

large

data, to

tivity

nce.

ture,
CADRE: A Low-Power, Low-EMI DSP Architecture for
Digital Mobile Phones

Mike Lewis, Linda Brackenbury

{lewism, lbrackenbury}@cs.man.ac.uk

AMULET Group, Department of Computer Science, University of Manchester, Oxford Ro

Manchester M13 9PL, United Kingdom

Principal author: Mike Lewis, tel. +44 161 275 3531

ABSTRACT

Current mobile phone applications demand high performance from the DSP, and f

generations are likely to require even greater throughput. However, it is important to balance

processing demands against the requirement of low power consumption for extended b

lifetime. A novel low-power digital signal processor (DSP) architecture CADRE (Configura

Asynchronous DSP for Reduced Energy) addresses these requirements through a mu

power reduction strategy. A parallel architecture and configurable compressed instructio

meets the throughput requirements without excessive program memory bandwidth, while a

register file reduces the cost of data accesses. Sign-magnitude representation is used for

reduce switching activity within the datapath. Asynchronous design gives fine-grained ac

control without the complexities of clock gating, and gives low electromagnetic interfere

Finally, the operational model of the target application allows for a reduced interrupt struc

simplifying processor design by avoiding the need for exact exceptions.

KEYWORDS

VLSI, low-power, mobile, DSP, GSM, asynchronous
1

at a

o the

ctually

l costs.

ually

f their

eight

time,

he

a key

cepted

ones

ement

. This

portion

fixed

er will

te. Also,

ation

very
1. INTRODUCTION

The market for mobile communication devices, particularly mobile phones, has grown

phenomenal rate and is still expanding rapidly. Part of this rapid growth can be attributed t

decrease in price of the handsets, to the point that mobile network operators are able to a

give away handsets, recouping the cost in the revenue gained from contract fees and cal

The low unit price makes this market fiercely competitive, and manufacturers are contin

vying with one another to find new features which give their phones an edge over those o

rivals. However, one factor dominates when distinguishing between phones: the size and w

of the handset. This is largely controlled by the trade-off between battery size and battery life

which itself is controlled by the power consumption of the circuitry within the phone. T

requirement for extended battery lifetime with reduced battery size makes mobile phones

application for low power VLSI design.

Modern cellphones are based on digital communication protocols, such as the globally ac

GSM protocol. These require complex control and signal processing functions, with the ph

performing filtering, error correction, speech compression / decompression, protocol manag

and, increasingly, additional functions such as voice recognition and multimedia capabilities

processing load means that the digital components of the phone consume a significant pro

of the total power. The bulk of the remaining power is used for radio transmission, which is

by the distance to the basestation and the required signal-to-noise ratio. The required pow

decrease as the number of subscribers increases and cell sizes decrease to compensa

mobile communication devices will increasingly be used as part of local wireless communic

networks such as the Bluetooth wireless LAN protocol [1], where the transmitted power is
2

uture

led by

ontrol

duced

to an

that,

ower

ion /

n,

ture

son, it
low. It is therefore clear that the key to reduced power consumption for both current and f

generations of mobile phone must be found in the digital subsytems.

These digital subsystems are typically based on the combination of a microprocessor coup

an on-chip bus to a digital signal processor core. The microprocessor is responsible for c

and user-interface tasks, while the DSP handles the intensive numerical calculations.

An example of a current part for GSM systems is the GEM301 baseband processor [2] pro

by our collaborator Mitel Semiconductor, which contains an ARM7 microprocessor coupled

OAK DSP core as shown in Figure 1. A study of the literature for this product revealed

within the digital subsystem, the DSP is responsible for approximately 65% of the total p

consumption when engaged in a call using the GSM half-rate speech compress

decompression algorithm orcodec(the term half-rate deriving from the level of compressio

such that two speech channels can fit into a single transmission timeslot).

Figure 1. Structure of GEM301 baseband processor

It can be expected that this proportion of the total power consumption will increase in fu

generations of GSM chipsets as the complexity of coding algorithms increases. For this rea

ARM7

M
e

m
o

ry in
te

rfa
ce

OAK DSP

ARM peripherals OAK peripherals

DMA
3

e DSP

eloped

urrent

ire a

ce of

ation

in the

lator

for

gram

The

,

.

s the

g the

as the

n, the
would appear that the most benefit can be gained by reducing the power consumed by th

core. To address this area, the CADRE asynchronous digital signal processor is being dev

to meet the requirements for performance, power consumption and EMI. Based on c

throughput, it is expected that the next generation of mobile phone chipsets will requ

throughput of greater than 100MIPS from the DSP. We have chosen a target performan

160MIPS for the new design, which is intended to meet the requirements for this applic

comfortably and represents an approximately fourfold increase in speed over the OAK DSP

GEM301 chip. CADRE uses fixed point arithmetic with a precision of 16 bits and an accumu

precision of 40 bits. The GSM standard specification requires only 32 bits of precision

accumulated results, but an additional 8-bit guard portion for the accumulators simplifies pro

design by allowing up to 128 summations before overflow can occur.

2. SOURCES OF POWER CONSUMPTION

The power consumed by CMOS circuitry is dominated by that due to switching activity [3].

dynamic power dissipated at any node can be calculated by the well-known equation

whereC is the node capacitance,V is the supply voltage andf is the rate of switching at that node

This expression leads to three main strategies for reducing the power consumption.

2.1 Reducing the supply voltage

The first method of reducing power consumption is to reduce the supply voltage, which ha

greatest effect due to the quadratic term. However, this also has the effect of reducin

operating speed of the circuits and reducing noise margins. These effects become extreme

supply voltage approaches the threshold voltages of the MOS transistors and, in additio

P f
1
2
---CV

2
 
 =
4

ystems

y ‘just

g the

oltage

itance

n the

ortion

of this

ircuit

s [6],

each

iting

ing

ch as

f the

s’ [3]
static leakage current increases. Leakage current is a serious issue for battery powered s

where large amounts of time are spent in an idle state.

In applications where demand is variable, varying the power supply so that the data is read

in time’ can be a very effective means of minimising the average power [4], although changin

operating speed is complex for clocked systems. Where demand is fixed, the supply v

should be set as low as possible while still achieving the required performance.

2.2 Reducing switched capacitance

The second method of reducing power consumption is to reduce the overall switched capac

within the circuit. This can be done to some extent by appropriate sizing of transistors withi

circuit. However, as deep sub-micron technologies are adopted, an increasingly large prop

of the switched capacitance in a circuit comes from parasitic wire capacitances. The impact

can be minimised by localising the transfer of data and avoiding long paths across a c

wherever possible, by exploiting local storage and by appropriate algorithmic transformation

[7].

2.3 Reducing switching activity

The final method of reducing power consumption is to reduce the number of transitions at

node within the circuit. This can be done through algorithmic transformations explo

correlations between data [3] [8] [9], by localising transfer of data [6] [7] and by eliminat

redundant activity. There are a number of methods for eliminating redundant activity, su

appropriate choice of number representation [3], disabling unused subword portions o

datapath [10], and preventing the creation and propagation of intermediate values or ‘glitche

[11].
5

which

idle

ste of

. The

idle

clock

. In an

adjacent
One potential source of redundant activity in synchronous systems is the clock signal itself,

is subject to high capacitance as it is distributed throughout the system. Clock gating to

subsytems, or deactivating the clock altogether during idle periods, can mitigate the wa

energy to some extent, but this introduces considerable complexity in the system design

complexity is introduced both from the need to use either software or hardware to identify

components, and from the delay incurred in restarting a high speed clock generator or PLL

buffer before the output stabilises.

Figure 2. Synchronous and asynchronous pipelines

As an alternative to clocked designs, an asynchronous (self-timed) design can be used

asynchronous system, operations are managed by means of local handshakes between

La
tc

h

La
tc

h

La
tc

h

Logic

Clock

Logic

La
tc

h

La
tc

h

La
tc

h

Logic Logic

req

ack

Go Done

Delay
req

ack

(a) Synchronous processing pipeline

(b) Asynchronous micropipeline
6

onous

ock

gh the

en an

at

an be

e, and

is an

riod of

tart a

ignals

hever

global

impler

nt of

e to a

rticular

eseus

s for
circuits. A comparison between a conventional synchronous pipeline and an asynchr

micropipeline [12] is shown in Figure 2. In the synchronous system in Figure 2a, the cl

controls the passage of data along the pipeline. In contrast, the passage of data throu

asynchronous system of Figure 2b is controlled by a succession of independenthandshakes

between adjacent circuit elements, managed by the associated latch control circuits. Wh

element has valid data to pass on, it asserts therequestsignal. The subsequent stage indicates th

it has captured the new data by asserting theacknowledgesignal. All synchronisation activity

occurs locally between adjacent stages, minimising the wiring load. The entire system c

stopped simply and rapidly by stalling the handshake process at any stage of the pipelin

processing can resume immediately upon that stage resuming activity. This behaviour

inherent property of an asynchronous system, and means that even the smallest pe

inactivity can be exploited to reduce power consumption, without the need to stop and res

clock.

Processing delay in the asynchronous pipeline is managed either by explicit completion s

from the datapath or by a matched delay in the request path, as shown in the figure. Whic

method is used, the delay is dependent only on the local worst-case delay as opposed to the

worst-case delay as required for synchronous systems. This means that, for example, s

operations in a processor can complete more quickly than more complex ones.

For system-on-chip (SOC) designs, asynchronous modules offer an attractive eleme

composability as the interfaces to such modules are defined precisely, without referenc

global timing reference. The degree that the interface is constrained depends on the pa

asynchronous design style used, ranging from the fully delay-insensitive style used by Th

Logic Inc. [5], which is guaranteed correct by construction at the expense of using two wire
7

at the

more

ower.

less

age of

ikes at

y. By

little

less

n down

rogram

elves,

buses.

inated

sses

ity of

rming

nergy

rhead
each signal, to the bundled data design style employed in this work where it is assumed th

delay in the request signal is similar to the delay in the associated data bus. This imposes

constraints on the layout, but uses half the number of wires and therefore consumes less p

A very useful side-effect of asynchronous design is that the circuits cause inherently

electromagnetic emissions than their clocked counterparts. In the clocked circuit, the pass

data and therefore all activity is synchronised to the clock edge. This causes large current sp

the clock frequency and large quantities of radiation at harmonics of the clock frequenc

contrast, activity in an asynchronous system is distributed in time, meaning that very

harmonic radiation is generated. It is clear that this behaviour is particularly useful in wire

systems.

2.4 Power consumption in the DSP

The power consumption in an on-chip processing system as described here can be broke

into two main areas. The first main area is the power cost associated with accesses to the p

and data memories. This is made up of the power consumed within the RAM units thems

and the power required to transmit the data across the large capacitance of the system

Memory accesses can form the largest component of power consumption in data-dom

applications [6], and a study of the Hitachi HX24E DSP [13] showed that memory acce

caused a significant proportion (~20%) of the total power consumption even where the activ

the system is not dominated by memory transfers.

The second main area of power consumption comes from the energy dissipated while perfo

the actual operations on the data within the processor core. This is made up of the e

dissipated by transitions within the datapath associated with the data, and the control ove

required to perform the operations on the data.
8

ower

igh-

d low

g the

silicon

s to be

given

umed,

duces

ower

be

the

make

akes

urers

h 4-

two
3. ARCHITECTURE OF THE NEW DSP

The challenge for CADRE is to meet the required throughput without excessive p

consumption. An instruction rate of 160MHz is not large when compared with current h

performance microprocessors. However, the demands of low power consumption an

electromagnetic interference mean that lower operating speeds are preferred. Meetin

required throughput at a lower operating speed necessitates the use of parallelism, where

die area is traded for increased speed. This allows simpler and more energy efficient circuit

used within each processing element, and for the supply voltage to be reduced for a

throughput. If a simple proportional relationship between supply voltage and speed is ass

doubling the number of processing elements allows the supply voltage to be halved. This re

the energy dissipated per operation in each functional unit by four and the total p

consumption by two (so-calledarchitecture driven voltage scaling[3]). The practical benefit will

be less than that predicted by the simple delay model, but is still sufficiently large to

worthwhile when area constraints allow it. Multiple functional units also provide flexibility for

programmer to rearrange operations so as to exploit correlations between data [3] [9] [14].

Silicon die area is rapidly becoming less expensive; indeed, one of the challenges is to

effective use of the vast number of transistors available to the designer [15]. This m

parallelism and replication very attractive. Most new DSP offerings by the major manufact

incorporate some form of parallelism, such as the LSI Logic Inc. ZSP164xx DSPs [16] wit

way parallelism or the Texas Instruments TMS320C55x low-power DSPs [17] which feature

multiply-accumulate units and two ALUs.
9

put of

evice,

se the

tional

how

mark

some

s and

This

hich

f this

d up

ming

ss a

cision

s is

en the

time
3.1 Choice of parallel architecture

The OAK DSP core in the GEM301 baseband processor maintains a maximum through

approximately 40MIPS when engaged in a call using a half-rate codec. This is a uniscalar d

and so to reach the required throughput of 160MIPS we have chosen simply to increa

processing throughput by means of four way parallelism. The choice and layout of the func

units were decided upon by examining a number of key DSP algorithms [18] to see

parallelism could be exploited. To give a starting point for the instruction set, the bench

algorithms for the Motorola 56000 DSP series [19] were chosen, as the authors have

experience with this range of processors. The chosen algorithms were FIR filters, IIR filter

fast Fourier transforms; the FIR filter and FFT will be illustrated here.

3.1.1 FIR Filter algorithm.The first algorithm to be considered was the FIR Filter algorithm.

is expressed by the equation and there are clearly a number of ways in w

this sum of products can be implemented in parallel form. The time-consuming portion o

algorithm is the succession of multiply-accumulate (MAC) operations and so, to spee

execution by a factor of four, it is necessary to have four functional units capable of perfor

these multiply-accumulate operations.

A simple way of distributing the arithmetic for this algorithm is to have each MAC unit proce

quarter of the operations on each pass of the algorithm, storing the partial sum in a high-pre

accumulator within the unit. At the end of the pass, a final summation of the four partial sum

performed. These final sums require additional high-precision communication paths betwe

functional units to avoid loss of precision, and to perform the sum in the shortest possible

y n() ckx n k–()
k 0=

M 1–

∑=
10

(Mac

the

tion

the

block-

, by

formed

tions

ement,

tions
requires two of these pathways. The distribution of operations to the various functional units

A-D) is shown in Table I.

Arithmetic operations are of the form, ‘operation src1,src2,dest ’ where src1 and

src2 are 16 or 40 bit values anddest specifies the destination accumulator. Where one of

sources is an accumulator from another functional unit, the notationmac[a-d]:src is used to

indicate which functional unit and accumulator is involved. Thempy operation is a 16x16 bit

multiply, themac operation is a 16x16 bit multiply with the result being added to the destina

accumulator, and theadd operation is a 40 bit addition. Bold type indicates the operation in

algorithm after which the result is available.

When more than one item of new data is available at a time (such as when processing is

based) it is possible to optimize the FIR filter algorithm to reduce power consumption

transforming the algorithm so that 4 new data points are processed on each pass. The trans

sequence of operations is shown in Table II. The benefit of this transformation is that correla

between both the data values and the filter coefficients can be exploited. In the new arrang

the filter value is held constant at one input of the multiplier over four successive multiplica

MAC A MAC B MAC C MAC D

mpy x n,c 0,a mpy x n-1 ,c 1,a mpy x n-2 ,c 2,a mpy x n-3 ,c 3,a

mac x n-4 ,c 4,a mac x n-5 ,c 5,a mac x n-6 ,c 6,a mac x n-7 ,c 7,a

… … … …

mac x n-i ,c i ,a mac x n-i-1 ,c i+1 ,a mac x n-i-2 ,c i+2 ,a mac x n-i-3 ,c i+3 ,a

(i = 4,8,…)

… … … …

mac x n-M+4,c M-4,a mac x n-M+3,c M-3,a mac x n-M+2,c M-2,a mac x n-M+1,c M-1,a

- add maca:a,a,a - add macc:a,a,a

- - - add macb:a,a,a

Table I: Distribution of operations for simple FIR filter implementation
11

mount

more

filter

is case,

sents

ss the
while successive data values are applied to the other input. This dramatically reduces the a

of switching activity within the multiplier, at the expense of requiring more instructions and

accumulator registers in each functional unit.

Each functional unit now maintains 4 partial sums, one for each of the passes of the FIR

algorithm, and these partial sums are again brought together at the end of processing. In th

4 high precision pathways between the functional units would be beneficial, but this repre

too great an area overhead. Instead, it was noted that the summation of results acro

MAC A MAC B MAC C MAC D

mpy x n,c 0,a mpy x n-1 ,c 1,a mpy x n-2 ,c 2,a mpy x n-3 ,c 3,a

mpy x n-1 ,c 0,b mpy x n-2 ,c 1,b mpy x n-3 ,c 2,b mpy x n-4 ,c 3,b

mpy x n-2 ,c 0,c mpy x n-3 ,c 1,c mpy x n-4 ,c 2,c mpy x n-5 ,c 3,c

mpy x n-3 ,c 0,d mpy x n-4 ,c 1,d mpy x n-5 ,c 2,d mpy x n-6 ,c 3,d

… … … …

mac x n-j ,c j ,a mac x n-j-1 ,c j+1 ,a mac x n-j-2 ,c j+2 ,a mac x n-j-3 ,c j+3 ,a

mac x n-j-1 ,c j ,b mac x n-j-2 ,c j+1 ,b mac x n-j-3 ,c j+2 ,b mac x n-j-4 ,c j+3 ,b

mac x n-j-2 ,c j ,c mac x n-j-3 ,c j+1 ,c mac x n-j-4 ,c j+2 ,c mac x n-j-5 ,c j+3 ,c

mac x n-j-3 ,c j ,d mac x n-j-4 ,c j+1 ,d mac x n-j-5 ,c j+2 ,d mac x n-j-6 ,c j+3 ,d

(j = 4,8,…)

… … … …

mac x n-M+1,c M-4,a mac x n-M,c M-3,a mac x n-M-1 ,c M-2,a mac x n-M-2 ,c M-1,a

mac x n-M,c M-4,b mac x n-M-1 ,c M-3,b mac x n-M-2 ,c M-2,b mac x n-M-3 ,c M-1,b

mac x n-M-1 ,c j ,c mac x n-M-2 ,c M-3,c mac x n-M-3 ,c M-2,c mac x n-M-4 ,c M-1,c

mac x n-M-2 ,c j ,d mac x n-M-3 ,c M-3,d mac x n-M-4 ,c M-2,d mac x n-M-5 ,c M-1,d

add macb:a,a,a add maca:b,b,b - add macc:a,a,a

add macd:a,a,a - add macd:c,c,c add macc:b,b,b

add macb:c,c,c add macd:b,b,b - add macc:d,d,d

- add maca:d,d,d add maca:c,c,c -

- - - add macb:d,d,d

Table II: Distribution of operations for transformed block FIR filter algorithm
12

units

four

named

nal

high

ways.

three

nits

ons.

he

sists

on two

-

functional units occurs in a pairwise fashion, and so it was decided to group the functional

into two pairs (Mac A and B, Mac C and D) connected by local high precision buses, with all

units connected by a single global high precision bus. As a shorthand, these buses are

LIFU1&2 (Local Interconnect of Functional Units) and GIFU (Global Interconnect of Functio

Units). This arrangement, as shown in Figure 3, provides the benefits of having three

precision pathways for most operations, but incurs the area expense of only two global path

Driving shorter local buses also causes less power consumption. Despite only having

pathways to perform summations over, it is still possible to keep all of the functional u

occupied by interleaving the summation of the partial results with the final set of multiplicati

Details of this have been omitted from Table II for the sake of clarity.

Figure 3. Layout of functional units

3.1.2 Fast Fourier Transform.The fast Fourier transform is actually a ‘parallelized’ form of t

discrete Fourier transform described by the equation . The algorithm con

of a series of passes of the ‘FFT butterfly’ operator across the data. The butterfly operates

(complex) data valuesa and b to produce two output data valuesA and B according to the

equations and , whereWi is the value of a complex exponential (the so

MAC A

sr
c1

sr
c2

MAC B

sr
c1

sr
c2

MAC C

sr
c1

sr
c2

MAC D

sr
c1

sr
c2

GIFU

LIFU1 LIFU2

X k() x n()e j2πk
n
N
----–

n 0=

N 1–

∑=

A a Wi b+= B a Wi– b=
13

two

iply

nd

to

port

le to

airs,

FFT

k in

read-

ove

ey can

being

FFT

ut.
called ‘twiddle factor’). The calculation of each butterfly requires a complex multiply and

complex additions. In general, the complex multiplication requires four real mult

operations and two real additions, to calculate a

. Two further complex additions are then required

generate A and B, requiring four real additions in total. However, if the functional units sup

shifting of one of the operands, to produce a multiplication by a factor of two, then it is possib

avoid two of the final additions by using the following algorithm:

A natural way of performing these calculations within the functional units is to use them in p

to perform the complex operations for two butterflies simultaneously. The mapping of the

butterfly is shown in Table III. This mapping requires two write ports to the accumulator ban

each functional unit, so that the moves can take place in parallel with the operations (with

before-write sequencing being enforced within the functional units). The italicised m

operations only require a separate instruction on the first FFT butterfly of each pass, as th

take place in parallel with the final add of the accumulators when a number of butterflies are

performed in succession. A full implementation of this algorithm can perform 4 complex

butterflies with 6 parallel instructions, with all of the functional units fully occupied througho

Wi b

Re Wi b×() Re Wi() Re b() Im Wi()–× Im b()×=

Im Wi b×() Im Wi() Re b() Re Wi()+× Im b()×=

Re A() Re a() Re Wi() Re b() Im Wi()–× Im b()×+=

Im A() Im a() Im Wi() Re b() Re Wi()+× Im b()×+=

Re B() Re a() Re Wi() Re b() Im Wi()+× Im b()×– 2 Re a()× Re A()–= =

Im B() Im a() Im Wi() Re b() Re Wi()+× Im b()×()– 2 Im a()× Im A()–= =
14

e less

where

being

bits

r, sign-

larly

nd 2’s

on

tching

ity to

path

ic has

ffects

large
3.2 Choice of number representation

It is well known that sign-magnitude representation of signed binary numbers can caus

switching activity than two’s complement number representation in systems such as DSPs

the data shows correlation between successive values or when low-amplitude signals are

processed [3] [10]. The difference in switching activity is due to activity in the redundant sign

required to represent small negative numbers in two’s complement representation. Howeve

magnitude arithmetic requires somewhat more complexity in the arithmetic circuits, particu

in order to ensure that the result of a subtraction always has a positive mantissa.

In order to investigate this trade-off, models of DSP datapaths using both sign-magnitude a

complement arithmetic were written. Studies of a simulated low-pass FIR filter algorithm

speech data showed that the sign-magnitude datapath exhibited significantly less swi

activity, between 20%-40% as counted at the module interfaces. The extra complex

implement sign-magnitude arithmetic is restricted to a minimum-geometry portion of the data

within the adder, and so has little effect on the power consumption. Sign-magnitude arithmet

been used within CADRE, as the reduced switching activity due to the data representation a

power consumption throughout the system. This is particularly significant when the

capacitance of system buses to memory is considered [3].

MAC A MAC B MAC C MAC D

move a 1r ,a move a 1i ,a move a 2r ,a move a 2i ,a

move a,b
mac W1r ,b 1r ,a

move a,b
mac W1i ,b 1r ,a

move a,b
mac W2r ,b 2r ,a

move a,b
mac W2i ,b 2r ,a

mac -W 1i ,b 1i ,a mac W 1r ,b 1i ,a mac -W 2i ,b 2i ,a mac W 2r ,b 2i ,a

add 2b,-a add 2b,-a add 2b,-a add 2b,-a

Table III: Distribution of operations for FFT butterfly
15

hod of

ssive

anaged

atches

y ZSP

hich

nse to

r) can

h is

main

nsert

some

n-set

iable

SPs.

a from

fixed

that

ssible

ce in
3.3 Supplying instructions to the functional units

Having chosen a parallel structure for the processor, the next challenge is to devise a met

supplying independent instructions to the functional units at a sufficient rate without exce

power consumption. In a general-purpose superscalar microprocessor, this task is often m

by a dedicated scheduling unit which analyses the incoming instruction stream and disp

independent instructions to the available resources. This approach has been adopted b

Corporation for the ZSP164xx DSPs. However, the scheduling unit is a complex device w

consumes significant amounts of power, so for power-critical applications it makes more se

remove this task from the processor. Instead, the programmer (or, more often, the compile

group independent instructions, in advance, into a singlevery long instruction wordwhich can be

read from memory and directly dispatched to the functional units. The VLIW approac

becoming the more common method for managing parallelism in current DSPs. The

drawback with conventional VLIW is that, where dependencies exist, it is necessary to i

NOPs within the instruction word which reduce the code efficiency. This can be tackled to

extent by using variable length instructions, such as the EPIC (Explicitly Parallel Instructio

Computing) technique [20] at the expense of greater complexity of instruction decoding. Var

length instructions of this type are employed in the Texas Instruments TMS320C55x D

However, in the case of both superscalar and VLIW approaches it is necessary to fetch dat

program memory at the full rate demanded by the functional units.

DSP operations tend to be characterised by regular repetition of a number of short,

algorithms. It is possible to exploit this characteristic to reduce the quantity of information

needs to be fetched from program memory, thereby reducing power consumption. One po

method would be to cache the incoming instruction stream, to exploit the locality of referen
16

r when

s still

of the

or the

o the

d from

ched.

DSP

obal

The

d

power

l unit.

any

sign,

ration

tion,

s.

esign

arly a

y also
the memory accesses. However, cache memory consumes a significant amount of powe

searching for a hit, particularly when multi-way associative caches are used. In addition, it i

necessary to fetch instructions and update the program counter at the full issue rate

processor or to use a very wide instruction path. Instead, we propose that VLIW encodings f

required instructions can be stored, in advance, in configuration memories internal t

functional units themselves. These stored operations can then be recalled with a single wor

program memory, dramatically reducing the amount of information that needs to be fet

DSPs already exist which make use of configurable instructions, such as the Philips REAL

core [21] or the Infineon CARMEL DSP core [22]. However, both of these have a single gl

configuration memory for the entire core, which is only used for specialised instructions.

proposed scheme differs in thatall parallel execution is performed using preconfigure

instructions. To reduce the distance over which the data needs to travel, and hence the

consumption, the configuration memories are separate and located within each functiona

Locating the memories within the functional units also increases modularity, and allows

arbitrary type of functional unit to be inserted into the architecture (although to speed de

identical functional units are being used in the prototype). In the current design the configu

memories are RAMs, allowing reconfiguration at any point in execution. For a given applica

it may be desirable to turn part of this storage into ROM to encode a few standard algorithm

3.4 Supplying data to the functional units

Given a parallel processing structure, and a means of supplying instructions to it, the next d

issue is to supply data at a sufficient rate, without excessive power consumption. This is cle

serious problem, as each functional unit can require two operands per operation and ma
17

write

e one

avoids

to dual

ality

RE,

gister

data

ntage

e 4a,

e using

space of

e these

nerally

sed

items

these

ired for
need to write data back from the accumulators, giving a total of eight reads and four

accesses per cycle.

CADRE, in common with many other current DSPs, uses a dual Harvard architecture wher

program memory and two separate data memories (labelled X and Y) are used. This

conflicts between program and data fetches, and many DSP operations map naturally on

memory spaces (e.g. data and coefficients for a FIR filter operation).

The memory hierarchy principle works well for DSPs, as many algorithms display strong loc

of reference. For this reason, a large register file of 256 16-bit words was included in CAD

segmented into X and Y register banks to match the main memory organisation. The large re

file allows for a high degree of data reuse (allowing, for instance, a complete GSM speech

frame of 160 words to be stored), and a large explicit register file offers a significant adva

over having a cache and fewer registers as is common in traditional DSP architectures.

In the programmer’s models of most traditional DSP architectures, as shown in Figur

operands are treated as residing within main memory and are accessed by indirect referenc

address registers. These address registers must be wide enough to address the entire data

the processor, 24 bits in this design. After each operation, it is generally necessary to updat

address registers to point to the next data item. The data address generators (DAG) ge

provide support for the algorithm being executed, with circular buffering or bit-rever

addressing, and therefore require complex circuitry. Even if all eight of the fetched data

reside within the cache, there is still a significant power consumption associated with

address register updates (up to eight of them), and this power must be added to that requ

the cache lookups.
18

toring

ank to

ously

, it can

(DIG)

multi-

han a

ister

data

sirable

o both

rts to

iring

from

ported

sume

each
In the new architecture (Figure 4b), 24-bit address registers are used only for loading and s

data in bulk between the data register file and main memory. 32-bit ports from the register b

both X and Y memory allow up to 2 registers from each bank to be transferred simultane

using a single address register for each bank. Once the data is loaded into the register bank

be accessed indirectly by means of 7-bit index registers. The 7-bit data index generators

give much faster updates at a much lower power cost than their 24-bit counterparts. Also, a

ported register file is significantly less complex and consumes substantially less power t

multi-ported cache memory, particularly if the cache is an associative design.

3.5 Register bank design

The parallel architecture implies that there must be four ports to each of the X and Y reg

banks, if each functional unit is constrained to using at most one item from each of X and Y

spaces. While many DSP algorithms do segment neatly into X and Y data spaces, it is de

not to constrain the programmer in this way and to allow them each free choice of access t

the X and Y register banks. Unconstrained choice of register would require eight read po

each of the X and Y register banks to cater for the worst case of all the functional units requ

both operands from the same bank. This is in addition to the ports required for writebacks

the functional units and loads / stores between memory and the register bank. A large, multi

register bank of this type would require a considerable area, would be slow, and would con

large amounts of power if directly implemented, due to the high load on the ouput bus of

read port.
19

Figure 4. Reducing address generation and data access cost with a register file

DAG (24b)
DAG (24b)

DAG (24b)
DAG (24b)

DAG (24b)
DAG (24b)

DAG (24b)
DAG (24b)
DAG (24 bit)

CACHE

X memY mem

(a) Conventional DSP architecture

REGISTER FILE

DAG (24 bit)
DAG (24 bit)

X memY mem

DIG (7 bit)
DIG (7 bit)

DIG (7 bit)
DIG (7 bit)

DIG (7 bit)
DIG (7 bit)

DIG (7 bit)
DIG (7 bit)

DIG (7 bit)

(b) CADRE architecture
20

n that

single

ity). It

a large

oved

s shown

ank 0,

ure 5.

oaches.

load

priate

ss to the

n no

arrive

te read

uests a

(non-

equests

inning

es along

ata and
Many DSP algorithms exhibit sequential accesses to data which, when parallelized, mea

four sequential data values are required at each iteration. The other common case is that a

data value is required by all functional units (e.g. when all data is to be prescaled by a quant

is possible to exploit these access characteristics so as to provide what appears to be

multiported register file, but with a lower hardware cost, lower power consumption and impr

access speed. This is done by segmenting each of the register banks into four sub-banks a

in Figure 5. The four sub-banks hold sequential registers (i.e. registers 0,4,8,... in sub-b

registers 1,5,9,... in sub-bank 1, etc.). The structure of the register bank is shown in Fig

Reads and writes to the register bank are managed independently, using very different appr

The four possible write requests from the functional units, plus the write request of any

operation from memory, arrive asynchronously. Each write request is forwarded to the appro

sub-bank based on its register selection, where an asynchronous arbiter tree controls acce

write port of each bank. Asynchronous arbitration has the property of being very fast whe

contention occurs, but allows requests to be safely serviced in turn if two or more requests

simultaneously.

Read requests arrive together from all of the functional units, and are managed by separa

processes synchronized by an overall control unit (not shown). Each active read process req

particular register from a particular sub-bank. The read request is passed to a simple

asynchronous) priority arbiter at the selected sub-bank. Each of these arbiters can accept r

from any number of the read processes, and selects one request as the winner. The w

request is then granted access to read the required register from the sub-bank.

Once the read has completed, the winning register choice passes back to the read process

with the data, and any process whose read request has been satisfied can capture the d
21

ve been

ach read

d the
remove their request. The read cycle can then be repeated until all of the read requests ha

satisfied.

Figure 5. Register bank arrangement

This arrangement means that, if the read processes require sequential register numbers, e

process will request data from a different sub-bank, no contention for access will occur, an

Writeback requests

Write arbiters

Bank sel.

X/Y subbanks

Read winner

Bank sel.

32 32 32 32

Result select

=

Read process

Read requests (x8)

32 32 32 32

selection
22

ss to a

ntion,

n read,

ata and

xecute

avoid

rious

t. The

se any

ad and

ill be

odern

ay is

in a

ycle.

host

other

uch as

work
read operation will complete in a single cycle. If a number of read processes require acce

single register then all of their requests will arrive at the same read arbiter. This causes conte

but it does not matter which of the processes wins control: as soon as the register has bee

all of the read processes see that the correct register is available and can capture the d

remove their requests.

These strategies for reading and writing mean that the common case operations will e

quickly (within the time of a read or write cycle). Where the programmer has been unable to

conflict, a delay of one or more read or write cycles will be incurred. However, this is not a se

penalty as the cycle time for a 32 entry single-port register file should be reasonably fas

asynchronous nature of the design means that the variable completion time does not cau

problems elsewhere in the design: the rest of the system can simply wait as necessary.

The proposed scheme requires a considerable amount of wiring resources to route the re

write requests to the appropriate register sub-banks. However, only one of these routes w

active for a given read so the power implications of this extra wiring are not severe, and m

multiple metal layer processes will help to mitigate the area cost. Some extra logic del

incurred, but the logic depth is similar to that which would be required for address decoding

256 word register bank, and the majority of the logic delay is only incurred on the first read c

3.6 Instruction encoding and execution control

The instructions for the DSP consist of 32 bit words (to match the data width of typical

microprocessors), and are split into two classes: compressed parallel instructions, or all

control and setup instructions. Control and setup instructions are responsible for tasks s

setting up index and address register values and initializing loops, after which the processing

can be done by the compressed parallel instructions without disturbance.
23

20 bit

wn in

code

nce of

h as

r the

f any

t

or an

rst of

or store

of the

ted, and

ndex
Compressed parallel instructions are described by a 32 bit instruction which maps onto a 3

long instruction word stored in 10 separate 128 x 32-bit configuration memories, as sho

Figure 6. Within each functional unit are two separate 32 bit configuration memories, the op

and operand memories. The configuration words from opcode memory set up the seque

operations to be performed by the ALU, which can consist of any combination of:

• An arithmetic operation (with the result being written to the ALU accumulators).

• A parallel move to the ALU accumulators.

• A writeback from the accumulators to the register bank.

Also, the opcode configuration word is responsible for setting up additional functions suc

driving of the GIFU / LIFU.

The configuration words from the operand memory specify the source of the data fo

operations in the ALU, the destinations for the operations, and the target register o

writeback. The source data for operations are selected by theimux, and can be either an indirec

reference to the register file (using an index register), a direct reference to the register file,

immediate value stored in the operand memory.

The remaining two configuration memories are located outside of the functional units. The fi

these holds details of how the index registers are to be updated. The second specifies load

operations to be performed in parallel with the arithmetic operations, and includes details

address registers to be used to access memory, how the address registers are to be upda

which register locations are to be used (specified either directly, or indirectly using an i

register value).
24

nt bit

e IV.

tries

used,

index
Figure 6. Parallel instruction expansion

Compressed parallel instructions are indicated by means of a zero in the most significa

position, meaning that they can be rapidly identified. The instruction format is shown in Tabl

Each 32 bit parallel instruction contains two 7-bit fields to select the configuration memory en

required for the operation: bits 0-6 select the opcode configuration memory word to be

while bits 7-13 address the operand memory word to be used, and also which load/store and

Compressed instruction

Load / store ops.

Index update ops.

Operands Opcode

ALU

re
g.

 r
eq

immed.

reg. data

imux

Operands Opcode

ALU

re
g.

 r
eq

immed.

reg. data

imux

Operands Opcode

ALU

re
g.

 r
eq

immed.

reg. data

imux

Operands Opcode

ALU

re
g.

 r
eq

immed.

reg. data

imux

Functional units

O
pe

ra
nd

 s
el

ec
t

O
pc

od
e

se
le

ct

Index reg. values
25

s the

thms

and

ents

from

n to

orage,

14-17

to the

23-26

ns in

l unit

st the
update operations are to be performed. Splitting the configuration memory in this way allow

maximum amount of reuse for configuration memory locations; for example, many algori

may require four parallel multiply-accumulate operations, but may require different source

destination registers for the operations.

To provide even more flexibility in operation, and to reduce configuration memory requirem

still further, it is possible to selectively disable components of the stored parallel operation

within the compressed instruction word. This allows each configuration memory locatio

specify the maximum number of possible concurrent operations, avoiding redundancy of st

and each algorithm can then select only those parallel components required at the time. Bits

of the compressed instruction are master enables for the load / store operations, writes

accumulators, writebacks to the register bank and updates to the index registers; and bits

enable or disable arithmetic operations in each of the functional units. Arithmetic operatio

each of the functional units can also be made conditional, using bits 27-30. Each functiona

maintains an internal condition code register, and the state of this can be tested again

Bit position Function

0-6 Opcode config. memory address

7-13 Operand / load-store / index config. memory address

14 Enable for load/store operations

15 Global enable of writes to accumulators

16 Global enable of writebacks

17 Enable index register updates

18-22 Condition code bits

23-26 Enable operations in functional unit 1-4

27-30 Select conditional operation in functional unit 1-4

31 0 - indicates a parallel instruction

Table IV: Parallel instruction encoding
26

ranch

 used.

uted

ture,

ount,

p to 16

kernel

ory. A

d by

e for

llow

of an

ments

ched

ng the

iour,

FIFO

ter file

ses: for

ngle

rogram
condition code provided in the instruction. Conditional execution reduces the need for b

instructions, which disrupt normal pipeline operation unless expensive branch prediction is

3.7 Instruction buffering

Most DSPs include some form of hardware loop instruction, allowing an algorithm to be exec

a fixed number of times without introducing branch dependencies. In the CADRE architec

this function is managed by a 32 entry instruction buffer which also manages the loop c

meaning that subsequent stages see an entirely flat instruction stream, and supports u

nested loops. The highly compressed instructions mean that even fairly complex DSP

routines can fit within this space, and can be executed without the need to access main mem

study of the Hitachi HX24E DSP [23] showed that power consumption could be reduce

between 25% and 30% by employing a 64 entry instruction buffer: this was sufficiently larg

simple algorithms, but not for example a FFT. The compressed instructions for CADRE a

more complex algorithms to be buffered, despite the use of a smaller buffer. The use

instruction buffer to reduce power consumption has been adopted for the new Texas Instru

TMS320C55x processors.

Apart from the looping behaviour, the buffer acts as a FIFO ring-buffer and to store prefet

instructions, meaning that the next set of instructions can be prepared while either executi

current algorithm or when waiting for new data to arrive. Despite its complex looping behav

the instruction buffer consumes less power in normal operation than many conventional

buffers, due to the asynchronous structure chosen [24]. The combination of the large regis

and the compressed instruction buffer can massively reduce the number of memory acces

example, it is possible to perform a 64-point complex fast Fourier Transform with only a si

pass through both the program and data memories. This represents a reduction of 86% in p
27

emory

always

ously

ction

nificant

setup

lining,

rand

mory

those

update

om the

read to

store

ation is

ed by
memory accesses and PC updates, and a reduction of approximately 74% in data m

accesses, when compared to a conventional architecture where instructions and data are

fetched from memory.

3.8 DSP pipeline structure

A block-level representation of the DSP is shown in Figure 7. The fetch stage autonom

fetches instructions from program memory, from where they are passed on to the instru

buffer stage. From here, the instructions pass on to the decode stage, where the most-sig

bit is examined to separate them into compressed parallel operations and control /

instructions. Control and setup instructions are decoded and executed without further pipe

to minimise setup latency.

If a compressed parallel instruction is detected, then a read is initiated in the ope

configuration memories, index update memory (within the decode block) and load/store me

(within the load/store unit). The next stage of operation is for each functional unit to capture

index register values which are required for indirect references to the data registers, and to

the index register values according to the current instruction.

Once the register sources are known, each functional unit requests the specified data fr

register bank. While the registers are being read, the opcode configuration memories are

set up the operations to be performed in each functional unit, and any parallel load or

operation is initiated.

Once the register and configuration reads have completed, both the data and setup inform

valid and the requested arithmetic operations, parallel moves and writebacks can be perform

the functional units.
28

tines,

d extra

terrupt
.

Figure 7. Top level architecture of CADRE

3.9 Interrupt support

DSP pipelines are traditionally optimized for repeated execution of small DSP kernel rou

and are less efficient at executing control-oriented code. However, most manufacturers ad

hardware to their designs, such as branch prediction, speculative execution, complex in

FUNCTIONAL
UNIT

O
P

E
R

A
N

D
 M

E
M

.

O
P

C
O

D
E

 M
E

M
.

FUNCTIONAL
UNIT

O
P

E
R

A
N

D
 M

E
M

.

O
P

C
O

D
E

 M
E

M
.

FUNCTIONAL
UNIT

O
P

E
R

A
N

D
 M

E
M

.

O
P

C
O

D
E

 M
E

M
.

FUNCTIONAL
UNIT

O
P

E
R

A
N

D
 M

E
M

.

O
P

C
O

D
E

 M
E

M
.

LOAD /
STORE
UNIT

X mem

Y mem

REGISTER BANK
2 x 128 x 16-bit

FETCH
INSTR.

DECODEBUFFER

P mem

Operand sel.

Opcode sel.

Index reg. values

GIFU

LIFU LIFU

INDEX
REGISTERS
29

w the

with a

ing the

essor.

tween

The

imple

nces,

t task.

essary,

spond

skable

t task in

discard

one

power

The

esses

s for

n and

tional
structures and support for exact exceptions, to improve the control performance and allo

processor to be used as a stand-alone device. CADRE is intended to operate in conjunction

microprocessor, and so a considerable amount of this hardware can be eliminated by allow

microprocessor to handle control tasks and for the DSP to operate in the role of a coproc

Obviating the requirement for additional hardware, through the proper allocation of tasks be

the two devices in this application, contributes to lowering the overall power consumption.

microprocessor prepares tasks for the DSP, and instructs it to perform them through a s

interrupt structure which also allows for synchronisation with data. Under normal circumsta

the DSP will only respond to an interrupt when halted, i.e. when it has completed the curren

This allows the processor state to be managed without the need for exact exceptions. If nec

the host microprocessor can issue a non-maskable interrupt, which will cause the DSP to re

immediately at the expense of losing the current processor state. Situations where non-ma

interrupts would be issued are cases when the processor has failed to complete the curren

the time available, or when an urgent event needs to be tended to, and so it is acceptable to

the data and either repeat the operation later or forget about it.

4. CONCLUSIONS

An overview has been given of a novel architecture for a low-power DSP for mobile ph

chipsets. This demonstrates an aggressive multi-level low power design approach, tackling

consumption at all stages from the algorithmic and architectural down to the circuit level.

characteristics of the presented application allow for particularly dramatic reductions in acc

to both the program and data memories, and the type of data being processed allow

correlations in the data to be exploited by the use of sign-magnitude number representatio

algorithmic transformations. The architecture is also scalable, as both the number of func
30

suit a

r the

is now

GSM

n to

The

and

us
and

urrent
deo

rallel

igital

es”,

ram

lier
units, size of configuration memories, and the size of the register file can be expanded to

particular application, and a mixture of functional units can be used to suit. The design fo

processor has been completed at the schematic level, and testing of the complete system

under way. A set of power consumption results for key benchmarks and algorithms from the

protocol is soon to follow and will be reported, after which it is expected to take the desig

layout.

5. ACKNOWLEDGEMENTS

This work formed part of the EPSRC/MoD Powerpack project, grant number GR/L27930.

authors wish to express their gratitude for this support.

6. REFERENCES

[1] Official Bluetooth web site,http://www.bluetooth.com/
[2] GEM301 GSM Baseband Processor Preliminary Information, Mitel Semiconductors 1997
[3] A.P. Chanrakasan, R.W. Brodersen, “Minimizing Power Consumption in Digital CMOS Circuits”,Proc. IEEE,

vol. 83 no. 4, April 1995
[4] L.S. Nielsen, C. Niessen, J. Sparsø, K. van Berkel, “Low-Power Operation Using Self-Timed Circuits

Adaptive Scaling of the Supply Voltage”, IEEE Transactions on VLSI Systems, vol.2 no.4 Dec. 1994
[5] K.M. Fant, S.A. Brandt, “NULL Conventional Logic: A Complete and Consistent Logic for Asynchrono

Digital Circuit Synthesis”, inProc. International Conference on Application-specific Systems, Architectures,
Processors, pp. 261-273, 1996.

[6] F. Catthoor, “Energy-Delay Efficient Data Storage and Transfer Architectures and Methodologies: C
Solutions and Remaining Problems”,Journal of VLSI Signal Processing Systems for Signal, Image and Vi
Technology, vol. 21 no. 2 pp. 258-265, 1999

[7] K. Danckaert, K. Masselos, F. Catthoor, H.J. DeMan, C. Goutis, “Strategy for Power-Efficient Design of Pa
Systems”,IEEE Transactions on VLSI Systems, vol.7 no.2 pp. 219-231, 1996

[8] S. Ramprasad, N.R. Shanbhag, I.N. Hajj, “Decorrelating (DECOR) Transformations for Low-Power D
Filters”, IEEE Transactions on Circuits and Systems- II: Analog and Digital Signal Processing, vol. 46 no.6 June
1999

[9] T. Arslan, A.T. Erdogan, D.H. Horrocks, “Low Power Design for DSP: Methodologies and Techniqu
Microelectronics Journal, vol. 27 no. 8 pp. 731-744, Nov. 1996

[10]L.S. Nielsen, J. Sparsø, “A Low Power Asynchronous Datapath for a FIR Filterbank”, inProc. Advanced
Research in Asynchronous Circuits and Systems, March 1996, IEEE Computer Society Press

[11]M. Lewis, L. Brackenbury, “Reconfigurable Latch Controllers for Low Power Asynchronous Circuits”, inProc.
Advanced Research in Asynchronous Circuits and Systems,April 1999, IEEE Computer Society Press

[12] I.E. Sutherland, “Micropipelines”,Communications of the ACM, vol. 32 no. 6 pp. 720-738, June 1989
[13]H. Kojima, D. Gorny, K. Nitta, K. Sasaki, “Power analysis of a programmable DSP for architecture / prog

optimization”, inTech. Dig. IEEE Symp. Low Power Electron., pp. 26-27, Oct. 1995
[14]A.T. Erdogan, T. Arslan, “Low Power Multiplication Scheme for FIR Filter Implementation on Single Multip

CMOS DSP Processors”,Electronics Letters, vol. 32 no. 21 pp 1959-1960, 1996
31

ip”,

band

ng

ter

the

iously

ity of

l signal

is a

UK

5 and

n to

Viterbi
[15]Bindra_A, “Flexible, modular process packs more than half a billion transistors on a tiny silicon ch
Electronic Design, vol.48 no.10, pp.26, May 2000

[16]An Overview of the ZSP Architecture, white paper available at http://www.zsp.com/, LSI Logic Inc.
[17]TMS320C55x DSP Core Technical Documentation, Texas Instruments Inc.
[18]R.J. Higgins,Digital Signal Processing in VLSI, Prentice Hall Inc., Englewood Cliffs NJ, 1990
[19]DSP56000 Digital Signal Processor Family Manual, Motorola Inc. 1995
[20]M.S. Schlansker, B. Ramakrishna Rau, “EPIC: Explicitly Parallel Instruction Computing”,COMPUTER, vol.33

no.2 pp.37-45, 2000
[21]P. Kievits, E. Lambers, C. Moerman, R. Woudsma, “R.E.A.L. DSP Technology for Telecom Base

Processing”,Proc. 9th International Conference on Signal Processing Applications and Technology, Miller
Freeman Inc., 1998

[22]Carmel DSP Core Technical Overview Handbook, Infineon Technologies, 2000
[23]R.S. Bajwa, M. Hiraki, H. Kojima, D.J. Gorny, K. Nitta, A. Shridhar, K. Seki, K. Sasaki, “Instruction Bufferi

to Reduce Power in Processors for Signal Processing”,IEEE Transactions on VLSI Systems, vol. 5 no. 4 pp. 417-
423, Dec. 1997

[24]M. Lewis, L.E.M. Brackenbury, “An Instruction Buffer for a Low-Power DSP”,Proc. Advanced Research in
Asynchronous Circuits and Systems, April 2000, pp. 176-186, IEEE Computer Society Press

MIKE LEWIS is a Ph.D. student with the AMULET Group in the Department of Compu

Science at the University of Manchester UK, and will shortly be submitting his thesis on

application of asynchronous design techniques to low power digital signal processing. Prev

he received the M.Eng. degree in electronic and information engineering from the Univers

Cambridge, in 1997. His research interests include asynchronous processor design, digita

processing, mobile communications, computer arithmetic and design for low power. He

student member of the IEEE.

DR. LINDA BRACKENBURY has been on the academic staff at Manchester University,

since graduating with a M.Sc. in Computer Science. She worked on the designs of the MU

mu5 machines designed at the University before turning her attention to taking designs dow

silicon. Her current research interests are in low-power design, asynchronous systems,

architectures, and algorithms and applications for digital optics.
32

	CADRE: A Low-Power, Low-EMI DSP Architecture for Digital Mobile Phones
	ABSTRACT
	Keywords
	1. INTRODUCTION
	Figure 1.� Structure of GEM301 baseband processor

	2. Sources of Power Consumption
	2.1 Reducing the supply voltage
	2.2 Reducing switched capacitance
	2.3 Reducing switching activity
	Figure 2.� Synchronous and asynchronous pipelines

	2.4 Power consumption in the DSP

	3. ARchitecture of the NEW DSP
	3.1 Choice of parallel architecture
	3.1.1 FIR Filter algorithm
	mpy xn-2,c2,a
	(i = 4,8,…)
	Table I: Distribution of operations for simple FIR filter implementation

	mpy xn-2,c2,a
	mpy xn-3,c2,b
	mpy xn-4,c2,c
	mpy xn-5,c2,d
	mac xn-j-2,cj+2,a
	mac xn-j-3,cj+2,b
	mac xn-j-4,cj+2,c
	mac xn-j-5,cj+2,d
	mac xn-M-1,cM-2,a
	mac xn-M-2,cM-2,b
	mac xn-M-3,cM-2,c
	mac xn-M-4,cM-2,d
	Table II: Distribution of operations for transformed block FIR filter algorithm
	Figure 3.� Layout of functional units

	3.1.2 Fast Fourier Transform
	move a1r,a
	move a1i,a
	move a2r,a
	move a2i,a
	move a,b
	mac W1r,b1r,a
	move a,b
	mac W1i,b1r,a
	move a,b
	mac W2r,b2r,a
	move a,b
	mac W2i,b2r,a
	mac -W1i,b1i,a
	mac W1r,b1i,a
	mac -W2i,b2i,a
	mac W2r,b2i,a
	add 2b,-a
	add 2b,-a
	add 2b,-a
	add 2b,-a
	Table III: Distribution of operations for FFT butterfly

	3.2 Choice of number representation
	3.3 Supplying instructions to the functional units
	3.4 Supplying data to the functional units
	3.5 Register bank design
	Figure 4.� Reducing address generation and data access cost with a register file
	Figure 5.� Register bank arrangement

	3.6 Instruction encoding and execution control
	Figure 6.� Parallel instruction expansion
	Table IV: Parallel instruction encoding

	3.7 Instruction buffering
	3.8 DSP pipeline structure
	Figure 7.� Top level architecture of CADRE

	3.9 Interrupt support

	4. Conclusions
	5. Acknowledgements
	6. References
	[1] Official Bluetooth web site, http://www.bluetooth.com/
	[2] GEM301 GSM Baseband Processor Preliminary Information, Mitel Semiconductors 1997
	[3] A.P. Chanrakasan, R.W. Brodersen, “Minimizing Power Consumption in Digital CMOS Circuits”, Pr...
	[4] L.S. Nielsen, C. Niessen, J. Sparsø, K. van Berkel, “Low-Power Operation Using Self-Timed Cir...
	[5] K.M. Fant, S.A. Brandt, “NULL Conventional Logic: A Complete and Consistent Logic for Asynchr...
	[6] F. Catthoor, “Energy-Delay Efficient Data Storage and Transfer Architectures and Methodologie...
	[7] K. Danckaert, K. Masselos, F. Catthoor, H.J. DeMan, C. Goutis, “Strategy for Power-Efficient ...
	[8] S. Ramprasad, N.R. Shanbhag, I.N. Hajj, “Decorrelating (DECOR) Transformations for Low-Power ...
	[9] T. Arslan, A.T. Erdogan, D.H. Horrocks, “Low Power Design for DSP: Methodologies and Techniqu...
	[10] L.S. Nielsen, J. Sparsø, “A Low Power Asynchronous Datapath for a FIR Filterbank”, in Proc. ...
	[11] M. Lewis, L. Brackenbury, “Reconfigurable Latch Controllers for Low Power Asynchronous Circu...
	[12] I.E. Sutherland, “Micropipelines”, Communications of the ACM, vol. 32 no. 6 pp. 720-738, Jun...
	[13] H. Kojima, D. Gorny, K. Nitta, K. Sasaki, “Power analysis of a programmable DSP for architec...
	[14] A.T. Erdogan, T. Arslan, “Low Power Multiplication Scheme for FIR Filter Implementation on S...
	[15] Bindra_A, “Flexible, modular process packs more than half a billion transistors on a tiny si...
	[16] An Overview of the ZSP Architecture, white paper available at http://www.zsp.com/, LSI Logic...
	[17] TMS320C55x DSP Core Technical Documentation, Texas Instruments Inc.
	[18] R.J. Higgins, Digital Signal Processing in VLSI, Prentice Hall Inc., Englewood Cliffs NJ, 1990
	[19] DSP56000 Digital Signal Processor Family Manual, Motorola Inc. 1995
	[20] M.S. Schlansker, B. Ramakrishna Rau, “EPIC: Explicitly Parallel Instruction Computing”, COMP...
	[21] P. Kievits, E. Lambers, C. Moerman, R. Woudsma, “R.E.A.L. DSP Technology for Telecom Baseban...
	[22] Carmel DSP Core Technical Overview Handbook, Infineon Technologies, 2000
	[23] R.S. Bajwa, M. Hiraki, H. Kojima, D.J. Gorny, K. Nitta, A. Shridhar, K. Seki, K. Sasaki, “In...
	[24] M. Lewis, L.E.M. Brackenbury, “An Instruction Buffer for a Low-Power DSP”, Proc. Advanced Re...

