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for an Asynchronous SoC Interconnect
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Abstract—Asynchronous design offers a solution to the intercon-
nect problems faced by system-on-chip (SoC) designers, but their
adoption has been held back by a lack of methodology and support
for post-fabrication testing. This paper first addresses the problem
of testing C-elements, an important building block of asynchronous
circuits. A simple method for generating test patterns is described
which is shown to be applicable for a wide range of implementa-
tions. Based on the C-element testability, a partial scan technique
was developed that achieves a test coverage of over 99.5% when
applied to an asynchronous, network-on-chip, interconnect fabric.
Test patterns are automatically generated by a custom program,
given the interconnect topology. Area savings of at least 60% are
noted, in comparison to standard, asynchronous, full-scan level-
sensitive scan devices (LSSD) methods.

Index Terms—Asynchronous circuits, ATPG, globally-asyn-
chronous, locally-synchronous (GALS), scan-testing, stuck-at
fault testing.

I. INTRODUCTION

HE ITRS road-map predicts a widespread adoption of

globally-asynchronous, locally-synchronous (GALS)
systems to solve the increasingly difficult task of distributing
a single clock signal on a chip. Consequently, it is expected
that asynchronous circuits will start to make their way into
mainstream, commercial integrated circuits (ICs). One bar-
rier to widespread acceptance of asynchronous technology is
an appropriate test methodology. Techniques for integrating
testability into synchronous system design are not directly
applicable to asynchronous systems. Problems arise from
redundant logic inserted to deal with hazards and races, the
distributed nature of self-timed control, multiple feedback
loops and the extensive use of state-holding gates such as
C-elements. The major problem is the absence of a global clock
making it difficult to single-step through a sequence of states.
Traditionally, feedback loops are broken with scan latches; in
the context of an asynchronous system, this technique may
lead to an excessive area overhead and to an adverse impact on
performance.

Manuscript received December 7, 2004; revised August 22, 2005. This work
was supported in part by the European Union (EU) through the IST-2002-37796
ASPIDA project. CHAIN, an asynchronous interconnect fabric, was created
with support from EPSRC and Theseus Logic Inc.

A. Efthymiou is with the School of Informatics, University of Edinburgh,
Edinburgh EH9 3JZ, UK. (e-mail: aefthymi@inf.ed.ac.uk).

J. Bainbridge is with the Silistix Ltd., Armstrong House, Manchester Tech-
nology Centre, Manchester M1 7ED, U.K. (e-mail: jbainbridge @ieee.org).

D. Edwards is with the School of Computer Science, University of Man-
chester, Manchester M13 9PL, U.K. (e-mail:doug @cs.man.ac.uk).

Digital Object Identifier 10.1109/TVLSI.2005.862722

One of the major contributions of the presented work, which
enabled the above high fault coverage, is the development of a
new method for generating test sequences for C-elements and
other circuits with one feedback loop. We show that, at least for
a 2-input C-element, the produced test sequence is the shortest
possible, that it avoids introducing hazards into the test sequence
and that it is applicable to a wide range of possible implemen-
tations.

The second contribution of this paper is a novel de-
sign-for-testability and test-pattern generation technique
developed to produce a fully-testable version of CHAIN, an
asynchronous interconnect fabric [1] which is particularly
well-suited for GALS systems-on-chip. By identifying pipeline
structures and distinguishing between global signal routes and
local paths, the number of test patterns can be greatly reduced
by applying a common set of global patterns. As a practical
outcome of this work, a computer program has been developed
which, given the topology of a CHAIN interconnect, produces
a sequence of test patterns that achieves 99.5% fault coverage,
under the standard single stuck-at fault model.

Even in deep-sub-micron technologies, the stuck-at fault
model is still considered the de facto fault model. Acceptable
coverage rates vary according to the production volume and the
intended market, but a coverage rate of over 99% is not untyp-
ical for commercial synchronous products. For asynchronous
circuits such a high coverage is still considered a challenge.
Thus this work deals with bridging the gap in testability for
asynchronous circuits; achieving high fault coverage for more
advanced fault models is left as a future challenge.

In particular, delay faults can be an issue in asynchronous
circuits, for example when they break timing assumptions, such
as isochronic forks. This work does not consider delay faults,
in general; they are also left for future work. However, since
a delay insensitive protocol is employed, there are few timing
assumptions in CHAIN interconnects, so we do not expect such
faults to be significant.

The rest of the paper is organized in three main parts. An
overview of asynchronous circuit testing, including relevant past
work and our overall methodology is given in Section II. Our
work on generating test-pattern sequences for C-elements is de-
scribed in Section III. The third part discusses design-for-testa-
bility and test-pattern generation for the CHAIN interconnect.
Section IV introduces the CHAIN interconnection fabric and
discusses our test strategy. Sections V and VI describe the proce-
dure for testing the basic components of the interconnect, while
Section VII describes the pattern generation program. The eval-
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uation of the area impact of our method in comparison to stan-
dard full-scan is presented in Section VIII. Finally, Section IX
concludes the paper.

II. TESTING ASYNCHRONOUS CIRCUITS

A variety of methods have been proposed for testing asyn-
chronous circuits. The interested reader is referred to [2] for a
survey of classic past work on such methods. We only mention
work directly relevant to our research here.

One of the most unconventional methods is self-checking [3],
[4] (or self-diagnostic [5]), where faults are detected because
they cause the asynchronous circuit to halt when a handshake
protocol is violated. Although this method can be applied to
a large class of asynchronous circuits, Brzozowski and Raa-
hemifar [6] have shown that it ignores internal faults in some
asynchronous building blocks, such as the C-element.

C-elements are effectively a special form of set-reset latches,
e.g., a 2-input C-element waits (its output remains unchanged)
until both its inputs assume the same logic value, then sets its
output to that value. When constructing a C-element from basic
logic gates, such as those present in a common standard-cell li-
brary, it has been shown that approximately 50% of the possible
internal stuck-at faults do not actually cause an asynchronous
circuit to halt [6]. Thus the self-checking technique does not
offer a high fault coverage for the conventional (input) stuck-at
fault model when internal faults are also considered.

Conventional, scan-based methods have also been proposed
[7]-[11]. We discuss the differences of our approach to most
of these methods below. Our approach builds upon the work by
Philips Research [9], [12], [13] which is briefly explained below.

A. Feedback Loop Scanning

Asynchronous circuits can be viewed as combinational cir-
cuits with feedback loops. The feedback loops are “broken,” in
one of many possible ways, with level-sensitive scan devices
(LSSD) [14], as shown in Fig. 1. It is essential that level-sen-
sitive latches are used so that the original, asynchronous, op-
erating mode of the circuit is still available by keeping both
latches transparent; this would not be possible with the common
edge-triggered flip-flops.

In test mode, the asynchronous circuit operates synchro-
nously: after a pattern has been scanned in, it is applied to the
circuit and the outputs are latched and scanned out; as the loops
are broken, the asynchronous FSMs are single-stepped. This
greatly simplifies the generation and application of test patterns
and the overall method can be easily automated.

B. Partial-Scan Testing

Although the above method does solve the testability problem
for most asynchronous circuits, inserting scan latches at every
feedback path present in the circuit incurs a very significant area
overhead. Typically, the number of sequential elements in an
asynchronous circuit is much higher than the number of state
flops in a synchronous circuit. Thus partial-scan techniques [15]
should be employed to keep the testing area overhead to a min-
imum.
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Fig. 1. Scanlatch insertion in asynchronous circuits. (a) Asynchronous circuit.
(b) “Scanned equivalent.”

Unfortunately, there is no known general way of selecting
which feedback loops to scan. This tends to depend on the
specific topology of each circuit. The few publications on par-
tial-scan testing of asynchronous circuits for stuck-at faults [7],
[16] make assumptions about how the circuits are constructed
and thus can only work for the specific design methodologies
and tools. In particular, the methodology in [16] was developed
specifically for the Tangram design environment [17] although
it could be extended for use in other asynchronous synthesis
environments. Difficult to control state elements are identified
and the Tangram source code is manually edited to enable them
to be scanned.

Khoche and Brunvand [7] introduce a scan-based approach
for a specific macromodule-based design methodology where
they scan all Select, Toggle, and most Call macromodules. The
method achieves very good results but it can only be applied
in their specific design methodology. In addition they modify
every C-element in the system to include an OR gate and two
extra inputs. Although this is not as expensive as adding a scan
latch, it still increases the DfT area overhead considerably.

Some of the ideas underlying our solution for adding testa-
bility in the CHAIN interconnect were first proposed in [8],
where a partial-scan delay fault testing methodology is pre-
sented for asynchronous circuits. Similarly to our approach,
they differentiate between two types of feedback loops (defined
below) and only scan the global ones. Our approach uses a
different fault model (stuck-at) and the regular structure of
CHALIN leads to a significantly simpler solution to test pattern
generation.

C. Proposed Approach

Asynchronous feedback paths can be categorized as local and
global depending on whether the path is internal to an asyn-
chronous sequential gate (C-element, SR-latch, etc.), or span-
ning a number of asynchronous gates [8]. This paper expands
on our preliminary work [18], [19] where partial-scan LSSD is
employed in such a way as to only scan global feedback loops
(GFLs), rather than every asynchronous sequential gate.

In order to test an asynchronous circuit it is essential to be
able to observe and control the global feedback loops by adding
scan latches. For correctly designed asynchronous sequential
gates, a single change in the inputs can only cause a single
(output) state transition, if at all; for another transition to occur,
at least one of the inputs must change again. If the GFLs in the
circuit are not “broken” in test mode by scan latches, state transi-
tions could make their way through some GFL back to a sequen-
tial gate’s input, thus causing further output transitions with only
one change in the primary inputs of the circuit. Thus scanning
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Fig. 2. Scan latch design.

all the GFLs is essential to solving one of the major problems of
testing asynchronous circuits which is that state transitions are
not easily controllable.

Since not all state-holding gates are scanned, the generation
of appropriate values in internal nodes to test for faults re-
quires sequential patterns, which tend to depend on the circuit
topology. In this work we exploit the regular topology of
CHAIN interconnect circuits and a useful property of the test
patterns of C-elements to produce an elegant solution to test
pattern generation.

For sequential testing, the values held in the “unscanned”
state-holding elements must not change from the application of
one pattern to the next. This is easy to achieve in synchronous
circuits, as the unscanned latches are held opaque by the clock
and any values appearing at the circuit inputs do not affect the
state stored in them. On the contrary, changes at the inputs of
asynchronous circuits can modify the values held in unscanned
state-storing elements. Therefore, we must not allow any
changes at the inputs while new values are being scanned in
and this is reflected in the design of the scan latches shown in
Fig. 2. Compared to standard LSSD, a second, parallel, slave
latch is added which keeps data_out unchanged while patterns
are being scanned in.

Compared to standard LSSD scan latches used in asyn-
chronous circuits [9], the dual-slave latches that we employ
are approximately 50% larger. This is the price paid for using
a partial scan approach, but it is justified by the lower total
number of scan-latches required compared to the full-scan
approach as will become apparent in Section VIII.

The use of scan latches introduces three global phase signals:
¢1, P2, ¢3, and a scan-enable signal, sen. Five operating modes
(based on [9]) are defined.

e Asynchronous: sen = ¢o = 0, ¢p1 = ¢35 = 1. This is the
normal operating mode of the circuit.

e Flush: sen = 1, ¢3 = 0, ¢p1 = ¢po = 1. This mode can be
used to quickly test the scan-path.

* Scan: sen = 1, ¢3 = 0, 2-phase nonoverlapping clocking
for ¢1,¢po. This mode is used for scanning in and out
values captured on the scan latches.

e Evaluation: sen = 0, ¢3 = 1, ¢p1 = ¢ = 0. This
mode applies the value previously loaded in the scan latch
to the asynchronous circuit. Note that the feedback loop
is disconnected during evaluation; otherwise there might
be multiple state changes in an asynchronous circuit with
global feedback loops.

e Load: sen = 0, ¢1 = 1, ¢po = ¢3 = 0. Loads the output
of the asynchronous circuit onto the scan latch. Changing
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Q2

C-element

Fig. 3. An implementation of the C-element by adding a feedback path to a
majority gate.

from evaluation to load must make sure that ¢, and ¢3 are
never high at the same time.

To apply a pattern, the scan mode is used for a number of
cycles to load the scan latches with the pattern values. This is
followed by the evaluation and then the load operations. Finally
the results are scanned out while new patterns are being scanned
in.

III. TESTING MULLER C-ELEMENTS

Muller C-elements [20] are an important building block in
asynchronous circuits, so their testability is of key importance.
Unfortunately, standard ATPG tools are unable to generate pat-
terns for circuits that retain state through the presence of local
feedback loops. Experiments we performed using commercial
ATPG tools to automatically generate patterns for C-elements
implemented using standard cells of the UMC/VST 0.18 pm
library showed that the highest achievable test coverage was
88.9%, even when manually adding extra test signals and/or
gates.

A. Proposed Pattern Generation Method

Fig. 3 shows an implementation of a C-element using two
complex gates from a standard cell library. The implementation
is essentially a majority gate, highlighted in grey in the figure,
with the output connected back to one of the inputs. The key
observation here is that if the feedback loop is removed, the
sequential C-element is transformed into a combinational cir-
cuit for which ATPG programs can trivially produce patterns to
cover all faults, assuming the circuit is irredundant.

Theorem 1: For a 2-input C-element constructed by adding
a feedback path from the output of a 3-input majority gate to
one of its inputs (as in Fig. 3), all faults in the C-element domi-
nate those of the majority gate. Moreover, we can produce a test
sequence directly derived from the patterns used to test the un-
derlying majority gate.

Proof: Let 1,4 be a test, i.e., a set of test patterns, that
detects all single, stuck-at faults in the majority gate (MG). T}, 4
will be a set of binary vectors of the form abq’, corresponding
to the values of the input ports A, B, Q' of MG. As MG is a
combinational circuit, the order in which the patterns are applied
is not important.

As can be seen in Fig. 3, the addition of the feedback line
introduces only two new faults, at points Q and Q2, with Q1
representing the MG output. Assuming that input patterns can
be found to drive node @’ to any value (as shown below), any
faults at Q2 are equivalent to faults at )/, which are already
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covered by T),,. Similarly, any fault at Q is detected with the
same patterns that test the equivalent fault at Q1, again already
covered by T5,.

The only remaining issue is how to set )’ to a desired value,
as it now depends on the C-element output Q, while it is an
independent input in MG for which T},,, was generated. This
is solved by taking advantage of the fact that the specification
of all C-elements includes an input combination that sets their
output to 1 (or 0) regardless of the previous value of their output.

The new test 1" for the (sequential) C-element will be com-
posed of patterns of the form ab corresponding to the values on
inputs A, B of the circuit. The sequence of patterns for testing
the (sequential) C-element is now important. T can be gener-
ated from T,,,, so that every pattern in T,,,, of the form abg’
produces the sequence: ¢’'q’, ab in T'. The first pattern in the
sequence generates the required ¢’ value using the input com-
bination that does not depend on the previous output; next the
actual pattern is applied. ]

The above method can be easily extended to C-elements with
more than 2 inputs, asymmetric C-elements, and C-elements
with set/reset inputs (for initialization). It can also be used for
other sequential gates with one feedback loop. For example, we
have used the above method for SR-latches build from cross-
coupled NAND or NOR gates.

The pattern generation process described thus far produces
a test T' that fully tests the C-element, but contains double
the number of patterns of 75,,4. For example, the two patterns
abqg’ = 101, 011 for the majority gate would produce the
sequence 11, 10, 11, 01 for the C-element. Instead of setting
the output of the C-element to the appropriate value for every
pattern in 7},,,, the patterns of 7T,,, can be ordered in a se-
quence so that each one re-uses the value of ¢’ generated by the
previous pattern. This will reduce the number of patterns for 7’
considerably; in the above example, the final sequence would
be 11, 10, O1.

This process of finding a valid sequence of patterns should
take into account the following considerations.

* A sequence of two patterns that normally leave the output
unchanged could be causing a hazard if, while changing
from one to the other, it is possible for the output to change
value. For example, in a 2-input C-element with its output
previously set to 0, the sequence AB = 10, AB = 01
can cause a hazard because as the inputs change values
they could briefly become AB = 11, which would change
the output to 1. Thus such sequences must be avoided
and sometimes extra patterns have to be inserted to pre-
vent such hazards. Unfortunately, the extra patterns do not
exercise any further faults. Such hazards would not be a
problem if the C-element inputs changed simultaneously,
but in asynchronous systems simultaneity cannot be guar-
anteed, therefore pattern generation must be conservative
and avoid potentially hazardous sequences.

* Sometimes, in order to complete the test sequence for
a C-element, a pattern that sets the circuit output (Q in
Fig. 3) to a specific value is required, but it is not available
because it has already been used. This happens, for ex-
ample, when the remaining patterns of 75,4 to be placed
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TABLE 1
TEST PATTERNS FOR 2-INPUT C-ELEMENT
a 1 1T 0 0 1 0 0 1
b 1 0 0 1 1 1 0 0
q 1 1 0 0 1 1 0 0
B3 *

in the test sequence all have input Q' = v, but the last pat-
tern in the sequence has already set the circuit output to
the opposite value of (—v). In this case an extra pattern is
added which sets the output (Q) to the appropriate value,
so that the test sequence can proceed. Unfortunately, this
extra pattern does not exercise any further faults.

The process of generating a valid sequence of patterns has
been implemented in a program which takes as input ATPG pat-
terns for the majority gate from a standard ATPG tool. Thus the
process of generating test patterns for a C-element can be fully
automated.

Table I illustrates the test vectors for a 2-input C-element.
The entries marked with “x” are the patterns added due to the
considerations explained previously. 100% single stuck-at fault
test coverage is achieved.

B. Universal Application of Patterns

Intuitively, it might seem that different gate implementations
of a specific C-element would require different sets of test pat-
terns. On the contrary, while working on pattern generation for
C-elements, we observed that the same set of patterns was suffi-
cient for all different implementations (gate mappings) of C-el-
ements based on the 3-input majority gate.

Theorem 2: All nonredundant, standard-cell based imple-
mentations of the 3-input majority gate, ¢ = ab + ac + be, can
be tested for single and multiple stuck-at faults using the same
set of six test patterns.

Proof: The proof is based on the following three steps.

¢ In the presence of any stuck-at fault in the majority cir-
cuit, the resulting logic function (called fault function) is
a positive function [6] : it is defined as a sum of products
of uncomplemented variables, or the constants 0, 1.

* By enumerating all the possible fault functions, we show
that six patterns are both necessary and sufficient to detect
all single and multiple stuck-at faults.

e The fault functions that are detectable only by these six
patterns can be caused by at least two, unrelated, single
stuck-at faults on the fanout branches of the circuit inputs.
Such faults can occur in sum of products (e.g., 2-level
NAND), product of sums (2-level NOR) implementations
and also in complex gate implementations.

1) Suppose that, in the presence of a fault, the resulting
logic function of the majority gate is not a positive
function. Assuming that input a is complemented in
the fault function, for some value combination of the
other inputs the output will be —a. Similarly for the
other inputs b, c. Since all inputs go through an even
number (0 or 2) of inverted gates (for both NAND and
NOR implementations, thus any other implementation),
this is not possible. Thus all the resulting fault func-
tions are positive.
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TABLE 1I
POTENTIAL FAULT FUNCTIONS OF 3-INPUT MAJORITY GATE
fault function | NAND impl | NOR impl. | detecting patterns
0 r4, pS, pb
abc p4, p5, p6
ab p4, p5
be pS, p6
ac p4, p6
ab+ac b3/c3 sal bl/c2 sal p4
abtbc a2/c2 sal al/c3 sal pS
ac+bc al/bl sa0 a2/b3 sa0 | p6
a p3, p4
b P2, p5
[ pl, p6
atbe bl/c2 sal b3/c3 sal p3
b+ac al/c3 sal a2/c2 sal p2
ctab a2/b3 sal al/bl sal pl
atb p2, p3
atc pl, p3
b+c pl, p2
atbtc pl, p2, p3
1 pl, p2, p3
al ~ al<
ﬁ o T \ s . ? m/; \/X
a2 N N a2s AN\
c e P P q ¢l o) o )o q
b3 - | bas— 7
c3 /\ > CBZ / >
Fig. 4. NAND and NOR majority gate implementations.

2) Table II shows all the possible fault functions for a
3-input majority gate, the faults in which they corre-
spond for two circuit implementations (shown in Fig. 4
and the patterns (shown in Table III) that can be used to
detect them. It can be seen that six of the functions are
each detectable only by a single, specific pattern, all of
which are distinct. Moreover, all the other fault func-
tions can be detected by two or three of these patterns.
Thus, assuming that these functions can be realized in
the presence of faults, the set of six patterns shown in
Table III is both necessary and sufficient to detect all
faults.

3)  What remains to be proved is that at least the six afore-
mentioned fault-functions of Table II can occur in any
implementation. Fig. 4 shows the majority gate imple-
mentation as a sum of products and as a product of
sums. The second and third columns of Table II show
the faults at the input fan-outs that can result in the fault
functions of interest. Other internal faults can produce
the same fault functions; we are interested in the input
faults because if these are detected, all internal faults
are also detected for circuits without internal fanout
branches [15, Th. 4.1], which is the case for the ma-
jority circuit.

Note from the table that two, different stuck-at faults in the
circuits can produce each fault function. This means that, even
in a complex gate implementation, such as the one in Fig. 3,
where one of the three inputs has no fanout branches, all of the
test patterns are still required. [ |

The above theorem can be used to create a test sequence
for C-elements built with standard-cells. The following test
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TABLE III
TEST PATTERNS FOR 3-INPUT MAJORITY GATE

a b ¢
pl |0 0 1
p2 10 1 0
p3 |1 0 0
p4| 0 1 1
pS| 1 0 1
p6 |1 1 0

sequence of length 8 can be used to test any 2-input C-element:
11(z), 10(1), 00(1), 01(0), 11(0), 01(1), 00(1), 10(0)based
on the following sequence of the six patterns of the corre-
sponding majority gate: -, pS, pl, p2, p6, p4, pl, p3. The values
in brackets represent the third input of the majority gate, i.e.,
the output of the previous pattern. Note that the first pattern is
required to set the output to a known state.

Although the above sequence is longer by one pattern com-
pared to that given by Brzozowski and Raahemifar [6] for their
implementation of the C-element: 11,01,10,00,01,10,11,
their sequence has two potential, hazard-generating pairs. A di-
rect conversion to a hazard free sequence would have produced
nine patterns, one more than the test sequence proposed here.

It is interesting to note that they also made the observation
that the same pattern sequence was able to test many different
implementations of the 2-input C-element. This paper finally ex-
plains why this happens for the majority style implementations,
since we have shown that for all such implementations the same
set of six patterns is required regardless of the exact mapping
into logic gates.

IV. CHAIN ASYNCHRONOUS INTERCONNECTION FABRIC

Delay insensitive communication links use an encoding that
is tolerant of delay variations in the wires, and allows the ab-
sence or presence of valid data to be encoded within their sig-
nalling activity, and detected explicitly by a “completion de-
tecto.” Such links also use a flow control signal (acknowledge)
in the reverse direction to regulate when the sender delivers fur-
ther data.

CHAIN is an architecture for SoC interconnect using delay
insensitive signaling, asynchronous flow control, network com-
ponents (end-point gateways, switches, and pipeline latches)
implemented using self-timed techniques and a message passing
protocol. CHAIN supports connections between network com-
ponents using “L” parallel links (each with its own acknowl-
edge signal), where each link has “G” code groups each using
an M-of-N encoding [21] where a valid code symbol has M as-
serted wires from a group of NV wires. Variationsin L, G, M, N
affect the tradeoff between area, performance, power-consump-
tion [22]. At the time of publication, working silicon exists for
one of the fastest combinations, L. =4, G =1, M =1,N =5
with four-phase (return-to-zero) signalling. All of our examples
in this paper use four-phase signalling, which simplifies the con-
trol logic.

Fig. 5 shows the building blocks of a CHAIN interconnect, all
of which are derived from the delay-insensitive pipeline latch,
highlighted in grey, which stores and forward the transmitted
data.
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Fig. 5. CHAIN interconnect.

The router can divert a packet in one of two possible ways;
the direction is determined by the first symbol of the packet
which is removed as the packet flows through. The merge allows
handshakes from either of its two inputs to be passed to the
output, but requires that only one input link is active at any time.
The arbiter ensures that the merge units requirement of mutual
exclusivity of activity on its input links is enforced. Together
the arbiter and merge act as a self-controlling multiplexer for
complete handshakes.

Completion detection is performed at the blocks labeled “C”
and the completion signal of each stage is used to acknowledge
the previous stage. Long connections between these compo-
nents can be broken into smaller segments using extra pipeline
latches. From here on the term pipeline latch will be used for all
three variations of pipeline latches found in CHAIN.

Using the terminology introduced in Section II-C, in a
CHAIN interconnect there are multiple “local” feedback loops
(in C elements) and some “global” feedback loops (between
each pipeline latch stage and its downstream pipeline latch).
One of the latter, is highlighted using a dotted-loop in Fig. 5.
The blocks marked SL indicate where scan latches are inserted
to break these loops when the circuit is under test.

A. Test Strategy

In test mode, all route combinations from transmitters to re-
ceivers are set up by scanning appropriate values into the scan-
latches of the router and arbiter blocks. For each route, patterns
are transmitted from the source ports, while the output ports and
the scanned acknowledge signals are observed. It is desirable to
test as many routes as possible in parallel—depending on the
interconnection topology—so as to minimize the testing time.
Since some parts of the interconnect are shared among different
end-to-end routes, not all route combinations need to be tested,
as long as every pipeline latch is tested at least once. Our custom

ol g

/

Arbiter

ATPG program, described in Section VII, produces test patterns
taking all these issues into account.

For each route, the interconnection is tested in three phases.
First, patterns are applied to expose stuck-at faults in the C-ele-
ments of the pipeline latches, including those inside router, ar-
biter and merge units. The second phase targets faults in the
completion detection blocks of the pipeline latches. Finally, the
control parts of the routing components are tested.

The first two phases are explained in the following sections
in detail. The test patterns used in the last phase were generated
using conventional ATPG and then arranged in sequence man-
ually for each of the two types of control blocks; they are then
re-used for each instance of router and arbiter blocks. As we
do not yet have a general method for arranging the patterns for
these circuits in sequence, this last phase is not described here
further.

V. TESTING C-ELEMENT NETWORK

For the CHAIN C-element network, we are using the sequen-
tial test patterns produced using the method described in Sec-
tion III. These sequences achieve 100% fault coverage for all
types of C-elements.

Our task is simplified by the regular topology of the circuits.
All parallel C-elements inside a pipeline latch are connected in
the same way: one input (a), separate for each C-element, is
driven from the upstream pipeline latch. The other two (one for
merge units) inputs are common to all elements and are driven
by scan-latches: b for the acknowledge signal, ¢ for route select,
sz or sy. The outputs become the “a-inputs” of the next stage.

In a CHAIN interconnection, three types of C-elements
can be found: 2-input C-elements (CM2), 3-input C-elements
(CM3), and 3-input asymmetric C-elements (CM21). Input c of
CM21, marked with a “+4,” is consulted only for rising output
transitions. We aim to use the same patterns for all parallel
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TABLE IV
C-ELEMENT PATTERNS
CM2 CM3 (CM21)
a blqg|la b ¢ q
I 1T ]1]T1 1 I I
1 o011 O O 1
0O 0|0]0 O O 0 lobal
0 1]0]lo0o 1 1| o |8&°
11 1 1 1 1 1
0 1 1o 1 0 1
0O 0|0]0 O O 0
1 o001 0 1 0
0O 0 0 0 local
1 1 0 0
1 1 1 1
0 0 1| 10)

C-elements in a pipeline latch, testing the same faults in all
C-elements simultaneously. Thus, it is essential that the same
patterns can be used for the CM3 and CM21 gates, which are
simultaneously present in the pipeline latches of routers and
arbiters.

The comparison of the test patterns for these two elements
showed that all faults in CM21 are covered by the patterns gen-
erated for CM3. Table IV, summarizes the test patterns for all
three C-elements. The only difference between CM3 and CM21
is at the last line of the table: pattern {0, 0,1} with a previous
output of 1 generates a 0 for CM21 (c is the "4 input’) while
it remains 1 for CM3. This is a minor difference and because it
happens at the very last pattern, the only action required was to
add an “all-zeros” pattern at the end of the sequence to reset all
the C-element outputs to logic zero.

Although this feature was not exploited here, it is interesting
to notice that the pattern sequence for CM2 is the same as that
of the first part of the CM3 and CM21 (ignoring the third input,
¢) and the output sequence is also the same.

A. Test Patterns for C-Element Network

Many of the C-element patterns have the useful property that
they produce an output value equal to that of their ’independent’
input a. These patterns are important because they can be used to
exercise all the pipeline latches along a route (from an initiator
to a target) simultaneously, since the same values are generated
at the a-inputs of all the C-elements in all the latches along the
route'. This saves a significant amount of test time. In order to
take full advantage of this property, we intentionally selected the
C-element sequences shown in Table IV, which place as many
of these “global patterns” back-to-back as possible.

We call the remaining patterns ’local’, as each pipeline latch
must be tested separately: the upstream latches in the route gen-
erate the appropriate values, while the ones downstream are set
to propagate the results to the end of the route.

Generating the needed a-input values for the pipeline latch
under test is simple: If a value o must be produced at the a inputs
of a pipeline latch, all the upstream latches should have value «
scanned-in to their b and ¢ inputs and the initiator at the source
of the route should also drive its ports to the same value . This

Note that pipeline latches are also used in place of repeaters to improve the
interconnect throughput.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 12, DECEMBER 2005

Fig. 6. Fault propagation through C-elements.

will cause each C-element to change its output to « in a ripple
fashion.

B. Fault Propagation Through C-Elements

Propagating values down a route involves propagation
through a number of consecutive C-elements, which is not
trivial since C-elements are sequential circuits.

In the 2-input C-element of Fig. 6, for example, assume that
a fault upstream sets A = « and this value must be propagated
through the gate for the fault to be detected. To propagate «
from A to the output @, the other input (B) should also be set
to . But if the fault is not present and the inverse value actually
appears at A, it will not be propagated because it is blocked
by the value of the other input. Then the output will remain at
whatever value was stored in the C-element previously which
could be wrongly detected as a fault.

Thus in order to effectively propagate a fault, the previous
value of the C-element output must be taken into consideration.
If the previous C-element output ) and the good machine value
expected at A are equal, then B should be set to the inverse
value; in case of a fault, it will propagate through the C-element,
change the output and thus will be detected. If @ is the inverse
of the expected value at A, then B should be set to the expected
value; if there is a fault, there will not be a change in the output
value and thus the fault will be detected.

The above method also holds for 3-input C-elements and
asymmetric C-elements. When there are multiple C-elements
in series, the above method is applied to each element down to
a primary output.

VI. TESTING COMPLETION-DETECTION BLOCKS

The completion detection block for one-hot (1-of-/V) en-
coding is just an N + 1-input OR gate, usually built from low
fan-in gates. The test patterns applied for the C-elements cover
all faults in this OR gate except for the stuck-at-0 faults at its
inputs. A series of pattern pairs is required to test them: first,
only one of the N 4 1 wires is driven high at any time, followed
by a pattern where all wires are at logic zero. As these patterns
are “global,” all such faults in an end-to-end route are tested
with one set of 2(N + 1) patterns.

The completion detection circuit for the M-of-N encoding
is significantly harder to test since it contains sequential gates.
Not many encodings are useful for the specific application, since
the number of wires cannot be excessive. In practice CHAIN
fabrics with either 3-of-6 or 2-of-7 encoding [22] have been
designed at the time of publication; of these, the completion
detection circuit for 3-of-6 (see Fig. 7) is more complex, as the
encoding is more dense. This circuit is used to illustrate our test
methodology here.
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Fig. 7. Completion detection circuit for 3-of-6 encoding.

As both inputs of the last C-element (C3 in Fig. 7) originate
from other C-elements, it is hard to generate some of the pat-
terns needed for it. For example, the required pattern sequence
{11,10} cannot be applied to the inputs of C3: for C2 to be-
come 0, all primary inputs must be 0, but then the other input of
C3 will also become 0. In order to be able to drive the inputs of
C3 to the values needed, a scan latch in at least one of C1 or C2
should be added to enable us to set their outputs independently.
This would slow down the normal operation of the circuit as the
latch would be in the critical path2. In order to avoid this we
decided to add another input to the circuit, tst/n, and convert in-
verter I1 to a NOR gate. This enables us to set the upper input of
C3 to 1 independently of its other input and provide the pattern
that we need.

Furthermore, the last C-element (C3 in Fig. 7) restricts the
propagation of faults to the single circuit output. In the previous
section we showed a way of propagating faults through C-ele-
ments which could be applied here, but this would mean that
each of the subcircuits leading to the two inputs of C3 would
essentially have to be tested in series. Thus, in order to reduce
the number of patterns needed, we decided to add observation
points at the two inputs of C3. These require the insertion of scan
latches, but since we do not use them to inject input values, they
are simpler than those shown in Fig. 2: the slave latches con-
trolled by ¢3 are removed.

With the above modifications, a sequence of 21 test patterns is
needed to test the 3-of-6 completion-detection block. The pat-
terns in the sequence are ’global’, i.e., in an end to end route
they need to be applied only once for all the pipeline latches in
the route. Thus the extra input needed in each block (tstIn) can
be derived from a single scan-latch for the whole route, so as to
reduce the testing area overhead.

In summary, to test all the pipeline latches in an end to end
route, the following patterns are applied: (a) 5 global patterns,
(b) 3 local for each ’plain’ or merge pipeline latch, or 7 local for
each latch in an arbiter or router, and (c¢) 21 (10 for 1-of-4) global
patterns for testing the completion detection blocks. Since many
links are shared in an interconnection, the local patterns do not
have to be repeated for the parts that are shared by more than
one link.

2Recall that another scan-latch is already added in the acknowledge path to
break the global loop formed between consecutive pipeline latches.
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Fig. 8. Example CHAIN interconnect.

VII. AUTOMATIC PATTERN GENERATION FOR THE
INTERCONNECT

Having determined the sets of test patterns required for the
individual parts of a CHAIN interconnection, it is relatively
straightforward to automate the production of a complete se-
quence of test patterns for a given topology of a CHAIN inter-
connection. Such a program has been implemented and tested
in a number of CHAIN topologies.

It works in a number of phases: first, the maximum number of
parallel routes from CHAIN initiators to targets are identified.
Since these routes are independent they can be tested concur-
rently to save time. When no more routes can be tested in par-
allel, the second phase begins where the remaining, end-to-end
routes are tested one by one. In these two phases, after the
pipeline latches of an end-to-end route have been tested, the con-
trol part of the last untested router in the route is tested. Finally,
in the third phase the control blocks of the arbiters are tested.
These are currently tested one at a time because they require
patterns coming from two initiators at the same time. We are
working on algorithm development to test these blocks in par-
allel, where the interconnect topology allows it.

VIII. EVALUATION

The network topology shown in Fig. 8 was used as a “com-
mand network” in an experimental smart-card chip [23] ; it was
completed before the methodology described here was devel-
oped, so there are no DfT circuits in the fabricated chip. The
topology is used here to evaluate the area impact of the pro-
posed testing method. The interconnect contains a total of nine
ports: the three ports at the top are initiators (masters) and the
six at the bottom are targets (slaves). The ports include two pro-
cessor memory ports (Proc A/B), a test controller port (Test I/F),
four memory ports (RAM, ROM, Flash0/1), a UART connection
port, and an off-chip debugging port (debug).

We have evaluated two implementations of the interconnect
with 1-of-4 and 3-of-6 encoding. They are implemented in the
UMC 0.18 pm process using the VST standard-cell library,
which does not contain any special, asynchronous gates. Since
the added DT circuits are placed locally and the only global
wiring they require is a single scan-chain, the impact of wire
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TABLE V
AREA OVERHEAD COMPARISON

1-of-4 3-0f-6
partial full fip partial full fip
# scan cells 35 99 2.8 67 147 2.2
Total area (upm?) 17225 30755 1.8 28316 45228 1.6
DFT area (um?) 7399  (43%) 20929  (69%) 2.8 12814 (45%) 29726 (66%) 2.3
Boundary area (um?)  +9403  (63%) 49403  (76%) 1.0 | +10940 (61%) +10940 (72%) 1.0

routing to the silicon area is ignored in this evaluation. We be-
lieve this is the worst case comparison, as the area overhead of
the DIT circuits reported here is not amortised over the total
(cells and routing) area of the interconnect.

A total of 35 scan latches are required for the 1-of-4 imple-
mentation; including the “boundary” scan-latches at the input
and output ports raises this number to 89. This represents a DfT
area which is 43% of the total (63% including the boundary
latches). In comparison, using the Philips full-scan approach [9]
would require 99 scan latches (69% of the total area), or 153, in-
cluding boundary scan (76% of total).

For 3-of-6 encoding the absolute number of scan latches is
higher but similar percentage increases are measured. Table V,
summarizes these results and shows the ratio of full-scan vs par-
tial-scan areas (f/p).

It is clear that the proposed partial-scan method provides very
substantial area savings compared to the full-scan approach: the
circuit area with full-scan is over 1.6 times larger. However, our
approach requires 3 latches per scan element, with a cell area of
211 pm?, rather than 2 used for standard LSSD (151 xm?). As
the results show, even with the increased area per scan latch, the
total area overhead imposed by full-scan LSSD is much higher.
Moreover, since for both scan latches the critical path from the
input to the output is through a multiplexer and two latches, the
delay overhead—in normal operating mode—of both methods
is identical.

Our automated pattern generator produced a sequence of pat-
terns which achieves a total fault coverage of over 99.5%. This
coverage includes faults in the boundary scan latches and the
scan chain. In fact, the only faults that are undetected are in
the control blocks of the arbiters, where a metastability filter,
implemented with standard cells [24], requires the use of OR
gates with all inputs tied together, which cannot be tested for
stuck-at-0 faults at their inputs individually.

IX. CONCLUSIONS

Although asynchronous circuits are likely to become more
widespread in the future as part of GALS systems, they have
serious testability issues that need to be addressed. In a GALS
system the interconnect is the component that is most likely to
be asynchronous. This paper presents a partial-scan method-
ology and automatic test pattern generation for the CHAIN
asynchronous interconnect.

Scan-latches are inserted to break GFLs only, thus reducing
the testing area overhead by at least 60% compared to asyn-
chronous full-scan methods, while there is no noticeable dif-
ference in the delay overhead caused by the two methods. Test
pattern generation is fully automated; we developed a program

which reads the topology of the interconnect and the order of
the scan chain and outputs the test pattern sequence. We report
stuck-at fault coverage of over 99.5% for a CHAIN interconnect
with three “initiators” and six “targets.”

One of the major contributions of the paper, which enabled
the above high fault coverage, is the development of a new
method for generating test sequences for C-elements and other
circuits with one feedback loop. We show that, at least for a
2-input C-element, the produced test sequence is the shortest
possible and that it is applicable to a wide range of possible im-
plementations.

Although the presented techniques can currently be applied
only to CHAIN interconnects, we believe that elements of this
work can be the basis for testing a larger class of asynchronous
circuits. Thus in future work we will investigate general ways
of producing test patterns for sequential circuits with multiple
“local” feedback loops expanding on the technique shown here
for C-elements.
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