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Presentation outline:

• Motivation

– virtualization

– the JAMAICA architecture

• The Jikes RVM optimizing compiler

• JikesNODE – Jikes RVM based OS

– structure

– status

• PearColator – Jikes RVM based DBT

– structure

– performance

– future work

• Summary
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Virtualization

• Platform independence

– Operating system virtualization

• Run multiple operating systems simultaneously on virtualized hardware

– Application virtualization

• Standard application formats such as ELF can run on a multitude of operating 
systems as binary format and system call interface are standardized.

• Wine allows windows applications to run on FreeBSD, Linux and Solaris

– Instruction set virtualization

• Dynamic binary translators …

• Hardware flexibility

– Transmeta - 4-way VLIW TM3000 and TM5000 processors, 8-way VLIW TM8000 
processor all run IA32 code

• New compiler optimizations

– e.g. dynamic parallelization (ECOOP-POOSC presentation from yesterday)
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SMT and CMP Architectures

• Simultaneous MultiThreading (SMT):

– performance gap between processor and memory is growing

– threads can be scheduled on cache misses to hide memory access time

• Chip MultiProcessors (CMP):

– instruction level parallelism reaching limits

– reduce design complexity

– local clocks aid clock distribution

• Threaded code necessary to expose parallelism

• New mechanisms to help expose threaded parallelism

– thread scheduling and work distribution

– speculative threading (transactional commit mechanism)

• Need to expose maximum amount of code to these mechanisms, hopefully in 
a flexible manner
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Overview of the JAMAICA architecture
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Some more detail
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• Idle threads distribute tokens on a 
token ring bus

• Executing context on a core 
requests to ship work to an idle 
context or core and context

• Taking a token from ring grants the 
use of a particular context

• Shipping of work between cores 
occurs over data bus

• Gives lightweight thread creation

• When token is redistributed, work 
has been completed

• Thread unit monitors for 
completion of forked work

Work distribution
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Software support for the JAMAICA architecture

• Tools

– C compiler – based on Princeton’s LCC

– jtrans – Java class file to assembler

– javar – modified to generate jtrans parallel constructs

– sim-idbg – interactive debugger and simulator in C

– SIMPA – threaded, interactive, cycle accurate and fast simulator in Java

– Jikes RVM – JAMAICA back-end and runtime



Combining the strengths of UMIST and
The Victoria University of Manchester 9

The Jikes RVM

• JVM written in 
Java

• Support for IA32, 
PowerPC and 
JAMAICA

• Baseline (quick) 
and optimizing 
compilers

• Adaptive 
optimization and 
feedback system

• Extended array 
SSA form sub-
stages in HIR and 
LIR optimization
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and parameters
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JikesNODE structure
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Status

• System boots under bochs and JAMAICA simulators

• Layer under MMTk handles memory management of 
pages

• Work on devices and JNODE system continues

• JAMAICA simulator having emulated device support 
added to match bochs
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PearColator
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PearColator – Instruction decoders

• Each instruction has an instruction decoder with a disassemble, interpret and 
translate method

• Object-oriented dispatch enables profile guided re-optimization to 
approximate threaded interpreter. i.e.:

Class AddDecoder extends InstructionDecoder {

void interpret (ProcessSpace ps) {

// interpret instruction – decoded fields held in process space

return getInstructionDecoder(getNextInstructionAddress())

}

Inlinable calls to superclass
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PearColator – trace generation

• Monitor branches and try to construct call graph

• Global and local (within a procedure) graphs created

• Return instructions turned into branches or switches, which can be eliminated 
by constant propagation of the link register value
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PearColator – lazy evaluation

• Instructions in trace are recorded for 
backward branch patch up

• Key to translated instruction is a 
combination of address and ‘lazy’ 
state

• Lazy state used to avoid evaluation 
of all flag values in common 
compare-branch cases or to avoid 
sub-register recombination on X86 
(ala FX!32)
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PearColator – memory model

• Object-oriented structure with multiple different mechanisms for paging, 
endian transformation

• On stack replacement allows policy for memory model to be changed on the 
fly at the expense of throwing away translations

• Examples:

– Can use 1gb segment as a Java array, if memory above 1gb is needed 
switch to paged mechanism (costs 1 load per load or store)

– Can pre-swap integers on file/device accesses to avoid byteswap
instructions. If majority of memory accesses are from file/device alter 
policy so that byteswapping is done in translation

• JAMAICA has separated address spaces for translated instructions and the 
data address space. Pages can be marked as containing a translation to 
detect self-modifying code. Mechanisms appear similar to ones patented by 
Transmeta.
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PearColator - performance
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Future work

• Full machine emulation

– Addition of devices and supervisor instructions to PearColator to allow full 
PowerPC hardware to be emulated and boot an operating system

• Support for user mode execution of 32bit X86 applications

• Tidy up and moving out of Jikes RVM code tree to allow creation of its own open 
source project
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Future work

• Speculative execution

– Range of speculative and non-speculative execution states

• tree rooted at non-speculative state with branches for every spawned 
speculative context

• speculative contexts may spawn more speculative contexts

– If speculation goes wrong squash speculative state

• throw away values in cache or a buffer

– Detect speculation problems:

• in software: when a value isn’t that expected explicitly squash

• in hardware: when an address is loaded by a speculative context, ensure 
that stores to the same address from a less speculative context cause a 
squash

– Problems with creating speculative threads and avoiding excessive squashing

– Mechanism may aid virtual machines, e.g. handling of unaligned memory 
accesses
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Summary

• We have presented a Java operating system implemented on the Jikes RVM 
that exposes a greater amount of bytecode to the adaptive compilation and 
optimization system

• We have presented a dynamic binary translator that can be incorporated with 
the operating system to allow migration to new computer architectures like 
JAMAICA

• Operating system needs work on device drivers and on JNODE to become 
more complete. JAMAICA and X86 builds being worked upon.

• DBT performance is already on a par with comparable DBTs

• Virtualization of the instruction set has been demonstrated to allow for 
hardware migration and new compiler optimizations, in particular
parallelization
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Thanks!

• … and any questions?


