
Combining the strengths of UMIST and
The Victoria University of Manchester 1

JikesNODE and PearColator:
A Jikes RVM Operating
System and Legacy Code
Execution Environment

Dr. Ian Rogers and Dr. Chris Kirkham

The JAMAICA Project

The Advanced Processor Technologies group

http://www.cs.manchester.ac.uk/apt

Combining the strengths of UMIST and
The Victoria University of Manchester 2

Presentation outline:

• Motivation

– virtualization

– the JAMAICA architecture

• The Jikes RVM optimizing compiler

• JikesNODE – Jikes RVM based OS

– structure

– status

• PearColator – Jikes RVM based DBT

– structure

– performance

– future work

• Summary

Combining the strengths of UMIST and
The Victoria University of Manchester 3

Virtualization

• Platform independence

– Operating system virtualization

• Run multiple operating systems simultaneously on virtualized hardware

– Application virtualization

• Standard application formats such as ELF can run on a multitude of operating
systems as binary format and system call interface are standardized.

• Wine allows windows applications to run on FreeBSD, Linux and Solaris

– Instruction set virtualization

• Dynamic binary translators …

• Hardware flexibility

– Transmeta - 4-way VLIW TM3000 and TM5000 processors, 8-way VLIW TM8000
processor all run IA32 code

• New compiler optimizations

– e.g. dynamic parallelization (ECOOP-POOSC presentation from yesterday)

Combining the strengths of UMIST and
The Victoria University of Manchester 4

SMT and CMP Architectures

• Simultaneous MultiThreading (SMT):

– performance gap between processor and memory is growing

– threads can be scheduled on cache misses to hide memory access time

• Chip MultiProcessors (CMP):

– instruction level parallelism reaching limits

– reduce design complexity

– local clocks aid clock distribution

• Threaded code necessary to expose parallelism

• New mechanisms to help expose threaded parallelism

– thread scheduling and work distribution

– speculative threading (transactional commit mechanism)

• Need to expose maximum amount of code to these mechanisms, hopefully in
a flexible manner

Combining the strengths of UMIST and
The Victoria University of Manchester 5

Overview of the JAMAICA architecture

Combining the strengths of UMIST and
The Victoria University of Manchester 6

Some more detail

4

/32 /32/1

IRPC

M
U
X

A
D
D NPC

/32

/32

Instruction Cache

BR_Offset_EX
BR_Offset_ID
BR_EX
BR_ID

/32
/32
/1
/1

ICACHE_MISS

M
U
X

M
U
X

/1/32
Stall
Inst.

CTX_ACCEPT
CTX_SEND
TIU_BUSY

DCACHE_MISS

LAZY_ALLOC
LOAD_DELAY
FILLSPILLTH

M
U
X

sx

sx

/32

/32
/32 Sx

/1
/1
/3
/1
/1
/1
/1

disp16 [0..15] /16

disp21 [0..20] /21

IR

bit12 [12] /1

rc* [0..4]

ra* [21..25]

rb* [16..20]

/5

/5

/5

/8imm [13..2]

opcode2 [5.. 11] /7

opcode [26..31] /6

Context
Table

rc

ra

rb

M
U
X

Load/FS
/2

dest/8

/8

/8

/8

Control
Logic

Register
File

/32Va

/32
Vb

M
U
X Vb

A
D
D

NPC

/32

Branch
/1

<<2
-ve

/1
Comparitor

Stall
PC

/1

Insert
Inst.

Stall Stall
LOAD_DELAY/1

M
U
X

EXCEPTION_ANNUL/13

/13
/13 Op

JAMAICA DATAPATH DIAGRAM

IF/ID ID/EX

M
U
X

M
U
X

Va

zero

ra'rb'

ra'

rb'

EX/MEM

ALUout /32

/13 Op

dest
NPC/32

Vb /32

Va /32 M
U
X

/32

Sx

A
L
U

Register/Other

/1 func.

ALUout

Cond?

Branch
Type

dest/8

Va/32

/1

/2

/4

BR_EX /1

M
U
X

EXCEPTION_ANNUL/13

/13
/13 Op

MEM/WB
Control
Logic

Control
Logic

/13 Op

Op$TIU/2

/32 ALUout

Va/32

M/32

DCACHE_MISS /1

M
U
X

EXCEPTION_ANNUL/13

/13
/13 Op

dest/8

Data Cache

Control
Logic

/13 Op

M
U
X

/32 ALUout

/1
Load/{LoadImm,Reg}

ra
rb

wb_res
dest
wen

/1
wen

LAZY_ALLOC/1

FILLSPILL/3

/3FST

/128
/128

/8FSTwin

M
U
X

Va

M
U
X

Spill Area

Vb

base
count

FillSpill
/1

<<5

/1

spill_en
sp_reg

/1

spill_en

sf2/1

fill_en

SPILL_OVERFLOW/1 SPILL_OVERFLOW/1

wb_res

A
D
D

quTm

1

CTX_SWITCH /1 CTX_SWITCH/1

ICACHE_MISS/1

ICACHE_MISS_EX/1ICACHE_MISS_EX /1

ICACHE_MISS/1

fill_en

sf2

M
U
X

M
U
X

Token

Rec'd Sent

Token

Trq/1

Trq/1

trq tok

Tok_Gaine d/1

Token Poo l

/1 /1

/1 Insert
Token

Context[/1,/4]

dctx

Fill/Spill/
THB/
Handler

TIU_BUSY/1

CTX_ACCEPT/1
CTX_SEND/1

CTX_ACCEPT /1

Token

CTX_SEND /1

CTX_SEND

/1

Heap allocated registers
and context management

Alpha based
instruction set

5 stage
MIPS based

pipeline
(without TLB

stages)

Token ring
interface

Combining the strengths of UMIST and
The Victoria University of Manchester 7

• Idle threads distribute tokens on a
token ring bus

• Executing context on a core
requests to ship work to an idle
context or core and context

• Taking a token from ring grants the
use of a particular context

• Shipping of work between cores
occurs over data bus

• Gives lightweight thread creation

• When token is redistributed, work
has been completed

• Thread unit monitors for
completion of forked work

Work distribution

Th
rea

d Re
qu

est

Thread dies

token

TIU

Core

L1 $

token

token

Token Pool

TIUTIU

Token Distribution Ring

Core

L1 $

Core

L1 $

Combining the strengths of UMIST and
The Victoria University of Manchester 8

Software support for the JAMAICA architecture

• Tools

– C compiler – based on Princeton’s LCC

– jtrans – Java class file to assembler

– javar – modified to generate jtrans parallel constructs

– sim-idbg – interactive debugger and simulator in C

– SIMPA – threaded, interactive, cycle accurate and fast simulator in Java

– Jikes RVM – JAMAICA back-end and runtime

Combining the strengths of UMIST and
The Victoria University of Manchester 9

The Jikes RVM

• JVM written in
Java

• Support for IA32,
PowerPC and
JAMAICA

• Baseline (quick)
and optimizing
compilers

• Adaptive
optimization and
feedback system

• Extended array
SSA form sub-
stages in HIR and
LIR optimization

Machine description
and parameters

Profile information

BURS
grammar

Hardware
parameters

HIR = High-level Intermediate Representation
LIR =Low-level Intermediate Representation
MIR =Machine-specific Intermediate Representation

BURS =Bottom-Up Rewrite System

Binary Code

FinalAssembly

Optimization of MIR

Optimized MIR

MIR

Optimized LIR

LIRto MIR

Optimization of LIR

LIR

Back End

HIRto LIR

Front End

Optimization of HIR

Bytecode to HIR

HIR

Optimized HIR

Jikes RVM
optimizing compiler

Combining the strengths of UMIST and
The Victoria University of Manchester 10

JikesNODE structure

Combining the strengths of UMIST and
The Victoria University of Manchester 11

Status

• System boots under bochs and JAMAICA simulators

• Layer under MMTk handles memory management of
pages

• Work on devices and JNODE system continues

• JAMAICA simulator having emulated device support
added to match bochs

Combining the strengths of UMIST and
The Victoria University of Manchester 12

PearColator

Combining the strengths of UMIST and
The Victoria University of Manchester 13

PearColator – Instruction decoders

• Each instruction has an instruction decoder with a disassemble, interpret and
translate method

• Object-oriented dispatch enables profile guided re-optimization to
approximate threaded interpreter. i.e.:

Class AddDecoder extends InstructionDecoder {

void interpret (ProcessSpace ps) {

// interpret instruction – decoded fields held in process space

return getInstructionDecoder(getNextInstructionAddress())

}

Inlinable calls to superclass

Combining the strengths of UMIST and
The Victoria University of Manchester 14

PearColator – trace generation

• Monitor branches and try to construct call graph

• Global and local (within a procedure) graphs created

• Return instructions turned into branches or switches, which can be eliminated
by constant propagation of the link register value

Combining the strengths of UMIST and
The Victoria University of Manchester 15

PearColator – lazy evaluation

• Instructions in trace are recorded for
backward branch patch up

• Key to translated instruction is a
combination of address and ‘lazy’
state

• Lazy state used to avoid evaluation
of all flag values in common
compare-branch cases or to avoid
sub-register recombination on X86
(ala FX!32)

Combining the strengths of UMIST and
The Victoria University of Manchester 16

PearColator – memory model

• Object-oriented structure with multiple different mechanisms for paging,
endian transformation

• On stack replacement allows policy for memory model to be changed on the
fly at the expense of throwing away translations

• Examples:

– Can use 1gb segment as a Java array, if memory above 1gb is needed
switch to paged mechanism (costs 1 load per load or store)

– Can pre-swap integers on file/device accesses to avoid byteswap
instructions. If majority of memory accesses are from file/device alter
policy so that byteswapping is done in translation

• JAMAICA has separated address spaces for translated instructions and the
data address space. Pages can be marked as containing a translation to
detect self-modifying code. Mechanisms appear similar to ones patented by
Transmeta.

Combining the strengths of UMIST and
The Victoria University of Manchester 17

PearColator - performance

Combining the strengths of UMIST and
The Victoria University of Manchester 18

Future work

• Full machine emulation

– Addition of devices and supervisor instructions to PearColator to allow full
PowerPC hardware to be emulated and boot an operating system

• Support for user mode execution of 32bit X86 applications

• Tidy up and moving out of Jikes RVM code tree to allow creation of its own open
source project

Combining the strengths of UMIST and
The Victoria University of Manchester 19

Future work

• Speculative execution

– Range of speculative and non-speculative execution states

• tree rooted at non-speculative state with branches for every spawned
speculative context

• speculative contexts may spawn more speculative contexts

– If speculation goes wrong squash speculative state

• throw away values in cache or a buffer

– Detect speculation problems:

• in software: when a value isn’t that expected explicitly squash

• in hardware: when an address is loaded by a speculative context, ensure
that stores to the same address from a less speculative context cause a
squash

– Problems with creating speculative threads and avoiding excessive squashing

– Mechanism may aid virtual machines, e.g. handling of unaligned memory
accesses

Combining the strengths of UMIST and
The Victoria University of Manchester 20

Summary

• We have presented a Java operating system implemented on the Jikes RVM
that exposes a greater amount of bytecode to the adaptive compilation and
optimization system

• We have presented a dynamic binary translator that can be incorporated with
the operating system to allow migration to new computer architectures like
JAMAICA

• Operating system needs work on device drivers and on JNODE to become
more complete. JAMAICA and X86 builds being worked upon.

• DBT performance is already on a par with comparable DBTs

• Virtualization of the instruction set has been demonstrated to allow for
hardware migration and new compiler optimizations, in particular
parallelization

Combining the strengths of UMIST and
The Victoria University of Manchester 21

Thanks!

• … and any questions?

