
Exploiting Hardware Resources:
Register Assignment across Method Boundaries

Ian Rogers, Alasdair Rawsthorne, Jason Souloglou
The University of Manchester, England

{Ian.Rogers,Alasdair.Rawsthorne,Jason.Souloglou}@cs.man.ac.uk

Abstract
Current microprocessor families present dramatically
different numbers of programmer-visible register
resources. For example, the Intel IA32 Instruction Set
provides 8 general-purpose visible registers, most of
which have special-purpose restrictions, while the IA64
architecture provides 128 registers. It is a challenge for
existing code generators, particularly operating within
the constraints of a just-in-time dynamic compiler, to
use these varying resources across a number of
architectures with uniform algorithms. This paper
describes an implementation of Java using Dynamite, an
existing Dynamic Binary Translation tool. Since one
design goal of Dynamite is to keep semantic knowledge
of its subject machine localized to a front-end module,
the Dynamite code generator ignores method boundaries
when allocating registers, allowing it to fully exploit all
hardware register resources across the hot spots of a
Java program, regardless of the control graphs
represented.

1. Introduction
Current microprocessor families present dramatically

different numbers of programmer-visible register
resources. For example, the Intel IA32 Instruction Set
[1] provides 8 general-purpose visible registers, most of
which have special-purpose restrictions, while the IA64
architecture [2] provides 128 registers. In the former
case, register renaming and out-of-order issue is used in
the microarchitecture to exploit a richer resource set than
indicated by the instruction set, but the paucity of the
visible instruction set remains a severe constraint on a
just-in-time code-generator. In particular, it is difficult to
pass method parameters efficiently in registers in x86
implementations, since register pressure ensures that the
lifetimes of values in registers are so short.

In the case of RISC, and particularly EPIC [3]
architectures, the visible instruction set more closely
models the register hardware resources provided in an
implementation. Register assignment becomes viable
using a conventional approach, such as defining a
method calling sequence, involving caller-saved, callee-
saved and parameter registers, and allocating local

variable and temporary registers within individual
methods.

In the distant future, it is possible that unconventional
CPU architectures may provide extremely high levels of
performance without any significant number of registers.

This disparity of hardware resources has been
addressed by designers of current Java Virtual Machines
by providing different register allocation algorithms for
(e.g.) IA32 and RISC machines. In this paper, we
describe a single register allocator appropriate to
register-rich and register-poor architectures, and we
explain how this allows us to set optimization boundaries
independently of method boundaries, giving performance
advantages.

Conventional static compilers, and existing JIT
compilers, use method-inlining, more or less
aggressively, to uncover a number of optimization
possibilities, with register assignment among them.
Inlining may have its limitations, however, and we have
found a number of cases where inlining (particularly
leaf-method inlining) does not completely address hot
regions of an application.

In this paper, we present some techniques we use to
run Java byte-coded programs on Dynamite, our existing
dynamic binary translation environment. As will be
described below, our techniques rely on optimizing
regions of code without reference to the semantic
boundaries of methods. Broadly, we claim to gain the
performance benefits of inlining, without its limitations.

We describe the Dynamite binary translation system,
its interfaces and its approach to optimization. In section
4, we show how Java programs are implemented using
the Dynamite facilities, and section 5 discusses our
preliminary results. Previous work in register
assignment for Java programs is introduced in section 6.

2. Dynamite
Dynamite is a reconfigurable Dynamic Binary

Translation system, whose aims are to extend the “Write
Once, Run Anywhere” paradigm to existing binary
applications, written and compiled for any binary
platform. To enable the quick configuration of a
particular translator, Dynamite is constructed as a three-
module system, as shown in figure 1.

The function of the major components is almost self-
explanatory: the Front End transforms a binary input
program into an intermediate representation (IR), which
is optimized by the Kernel, and the Back End generates
and executes a binary version on the target processor.
The Front End interface supports a number of
abstractions convenient for efficient Front End
implementation, such as the “abstract register”, which
holds intermediate representations of the effects of
subject instructions. This interface is configured by an
individual Front End module, since different subject
architectures require different numbers of registers.

Two features of this front end interface are relevant to
the current discussion: firstly, the interface resembles a
RISC-like Register Transfer Language, containing no
peculiarities (such as condition codes or side-effects)
adapted for particular subject architectures. Secondly,
procedure (method) calling is achieved at a primitive
level, typically by having the front end create IR to
compose a link value in subject state space, and then
branching or jumping to the callee. Return from a
procedure is similarly implemented by having the Front
End create IR which causes a jump to be made to the
return address. Parameter passing and stack-frame
management is implemented by having the Front End
create the appropriate IR to model the subject
architecture’s requirements.

The Kernel contains about 80% of the complexity of
the translator system. It creates and optimizes IR in
response to Front End calls, and invokes the Back End to
code generate and execute blocks of target code.
Register assignment for the target machine code
generator currently takes place within the Kernel, again
using a Back End interface that is parameterized for
specific target architecture. Optimization is performed
adaptively at a number of different levels, starting with
initial translation as described below.

To achieve its performance goals, Dynamite operates
in an entirely lazy manner. An instruction is never
translated until that instruction must be executed, either
because it is a control (jump, branch, exception or call)

target, or because the immediately preceding branch has
fallen through. As instructions are decoded by the Front
End, their IR is combined until a control transfer is
encountered. During this process, the kernel performs
optimizations such as value forwarding and dead code
elimination. When the block of IR is complete, it is code
generated, executed by the back end, and cached for
subsequent reuse. After a block of target code is
executed, its successor location may either be found
within the cache, or may need translation using the same
actions.

In efficiency terms, target code blocks generated
using this initial scheme leave something to be desired.
The benefit is that the initial translation is quick, taking
only a few thousand instructions per subject instruction.
Register usage is determined by an individual Back End,
largely as a result of the method calling sequence
mandated by the static compiler used to compile
Dynamite. Target registers are used to store temporary
results within the block, but existing Back Ends preserve
all subject register values in target memory at the
boundary of basic blocks.

More optimization and higher quality code generation
are triggered when an individual target block is executed
more frequently than a dynamic execution threshold.
This event causes the kernel to create a group containing
this and related blocks in a hot region, and to optimize
this Group Block as a single entity. Group Blocks may
span arbitrary boundaries in the subject machine:
indeed, in other applications, Dynamite optimizes across
programs and their procedures, static and dynamically-
linked libraries, OS Kernels, and across different virtual
machines.

Within a Group Block, the Dynamite kernel examines
the existing control flow of the region, identifying certain
blocks as entry and exit blocks, and performing value
propagation and dead-code elimination across the entire
group. The control flow is used to straighten the
conditional branches and eliminate jumps within the
group, so that frequent cases fall through, minimizing
taken branches and maximizing I-cache utilization.

Code generation for a Group Block occurs next. To
avoid the expense of an iterative algorithm, a very simple
incremental register allocation algorithm is used.
Starting with the target block, operands are allocated to
registers (if the target machine architecture requires), and
operation results are allocated to registers if they are to
be reused. As the register set is exhausted, spill code is
generated to relinquish previously allocated registers for
new operations. Register allocations are carried across
basic block boundaries, and the act of code generating
from the most- to the least-frequently executed blocks
within the group ensures that spills are minimized.

We emphasize that during this code generation
process, all abstract registers and target registers are
treated symmetrically. We do not distinguish between

KernelKernelFront
End

Front
End

Back
End

Back
End

Subject
Software
Subject

Software
Target
CPU

Target
CPU

Dynamite

Figure 1. Dynamite Structure

registers used to pass parameters, those used to carry
visible results, and those used to hold temporary values.
In this way, we can code generate a region containing
multiple procedure call and returns as efficiently as one
containing just a portion of a large procedure.

The final stage of code generation is to generate stubs
for the entry and exit blocks, which need to load abstract
register values into target registers and compute and store
exit values from the group block.

This group-block creation phase can be invoked and
re-invoked any number of times during program
execution, creating larger and smaller groups of basic
blocks, always independent of method boundaries, as the
subject program proceeds through its execution.

3. Implementing Java
The critical design decisions when implementing

Java using Dynamite are the mapping of JVM registers,
local variables, and the stack to the relevant Dynamite
objects, namely abstract registers .

To allow Dynamite to optimize across different Java
methods, we need to map multiple stack frames
simultaneously to different abstract registers. Two
schemes were considered for doing this.

3.1 Sliding frame
On entering a method the front-end would create a

frame within the abstract registers. The arguments to the
method (stored at JVM local variable 0 upwards) become
the base for the frame. After the local variables the return
address is held in the next available abstract register. The
JVM stack is held at the end of the frame. However,
studies [4] show that the stack is usually empty on basic
block boundaries. The purpose of the stack in the frame
is therefore to hold onto stack values that occasionally
span basic blocks and to pass arguments to called
methods. The arguments could become part of the next
frame by overlapping the stack part of the caller’s frame
and the local variable part of the callee frame.

Unfortunately, the problem with this scheme is that
the IR for an individual method needs to refer to specific
abstract registers. This fixes its translation to a particular
stack depth. If the same method is called at a different
stack depth, we need to re-translate it for this new depth.
This is particularly expensive for recursive methods. We
could possibly generate special case translations for
recursive methods and fall back on a scheme that saves
the frame to memory on a method call. Otherwise, for
methods that are called from multiple stack locations we
could avoid re-translation if the method’s frame is at a
greater abstract register location than the current frame.
We would, however, still have to copy the arguments to
the method from the caller’s frame to that of the callee.

Our research has shown that around 90% of
execution time is spent in methods called from more than

16 call sites. These methods are typically utility
functions which are prime candidates for optimization.
Expensive optimizations would be prohibitive for these
methods as the optimization would need repeating many
times.

We conclude that using a sliding frame is therefore
undesirable.

3.2 Fixed frame
The drawback with the “sliding-frame” scheme is

that it is necessary to recompile methods called with
different frame base pointer values. If we fix the address
where a method’s frame lives in abstract registers we
remove this problem. To do this, we allocate a new,
unique frame from a large pool of abstract registers the
first time a particular method is invoked.

We do, however, still need to pass arguments to the
called method from the stack of the calling method. On
encountering a method call, the arguments to the method
are held in intermediate representation ready to be
written to registers. At this point, they can be written
directly to the called method’s local variables avoiding
any copy operation.

The first penalty for this scheme is that we need to
retranslate these abstract register assignments for
different methods called from the same call site. A study
using Harissa [5] shows that at least 40% of method calls
can be accurately statically predicted for 100% of the
time, and dynamic statistics are even better than this.

As in the “sliding-frame” design, recursion needs to
be handled differently, as two invocations of a method
cannot share a single frame. A simple scheme to handle
recursion is to save a frame to memory before using it, if
it is active, and to restore it on exit. Alternatively, we
may find some circumstances in which it is advantageous
to generate special-cased versions of recursive methods,
each of which uses a different frame of abstract registers.
This special-casing will be triggered by a heuristic
monitored by code planted in the initial translation of a
(potentially recursive) method.

Finally, assigning unique abstract registers to every
method presents a problem when the static pool is
exhausted. For programs studied to date, fewer than 8000
abstract registers would be sufficient. If greater numbers
were required, the front-end could start re-using frames.
For example, all leaf methods can share the same frame,
and more generally, methods that occur only on disjoint
subtrees of the call graph can share frames. In the
pathological case, frames of abstract registers can be
reused by planting code that spills a number of frames to
memory and refills them when necessary.

4. Discussion
To evaluate this scheme before its implementation,

we carried out a number of experiments by instrumenting

Kaffe [6] to log information about the dynamic
behaviour of Java applications. We keep sufficient
information to create the dynamic method call tree of the
application. We create a call tree, in which methods
appear once for each call site, to assess our
implementation alternatives. For each method
occurrence, we keep the number of byte codes executed
in this invocation, and its local variable requirement,
including parameters.

To estimate the number of target registers needed in
optimization regions of different sizes, we identify hot
spots on this call tree (methods with high contributions to
overall instruction counts), and successively add them to
optimization regions, counting the total number of local
variables required at each step. This approximates to
code generating by hottest method first, then by
successively cooler region. As each successive method
is added to the optimization region, we require more
local variables. This gives us the characteristics we show
below. For these experiments, we monitored “javac”, the
Java compiler in Java, since it is the largest Java
application we can find.

0%

20%

40%

60%

80%

100%

1 10 100 1000

Local Variables

In
st

ru
ct

io
n

C
ou

nt

In figure 2, we show how a straightforward “hottest first”
selection algorithm can use varying numbers of target
registers to code generate “spill-free” regions of different
sizes. As we intuitively expect, as we allocate more and
more local variables into target registers, we can
encompass larger and larger regions, contributing to ever
increasing fractions of total instruction count. For
example, with 5 target registers, we can code generate a
region that contributes 22% to total execution count, and
with 26 registers, 46% of execution count.

In Figure 3, we use a slightly different heuristic to
select methods to include within our selection region.
Here, we select methods based on their run-time
contribution per local variable. That is, comparing
methods with similar run-time contributions, we

���

�����

� ���

� ���

�����

	 �
���

1 10 100 1000

Local Variables

In
st

ru
ct

io
n

C
ou

nt

preferentially select the method with the smaller
requirement for local variables. This gives better results
when there are fewer target registers available: for
example with 8 registers, we can cover 30% of total
instruction count, and with 25 registers, we can cover
54% of the instructions.

5. Previous Work
The success of Java has resulted in many JVM

implementations. Some implementations such as Harissa
[5], and J2C translate Java to C code. They then rely on a
C compiler to perform register allocation within and over
method call boundaries. Register mappings within C
programs are beyond the scope of this paper.

In this section we examine how other JVM
implementations perform register mapping and allocation
and compare these to Dynamite.

5.1 Register allocation
Cacao [4] initially maps the JVM stack and local

variables to pseudo-registers, which are then allocated to
CPU registers. Each mapping and allocation begins at the
start of a basic block and builds on the mappings and
allocations of previous basic blocks. When CPU registers
are exhausted a register is spilled to memory and filled
by a pseudo register.

On method call boundaries Cacao pre-allocates
registers. It uses CPU registers to pass arguments and to
receive return values. On machines without register
windows pre-allocation of arguments is only possible for
leaf methods.

Pre-allocation can tie in with existing compiler
method call conventions: for example, in the DAISY
JVM [7] arguments and return values are passed and
received using the Power PC’s C compiler calling
conventions, which uses standard registers for passing
arguments.

Figure 2. Instruction Count against
 Local Variables

Figure 3. Instruction Count against
 Local Variables

5.2 Comparison with Dynamite
Method invocation creates a new frame on a call

stack. Cacao avoids unnecessary accesses to this frame
by pre-allocation, utilizing register windows or
potentially by using the machine’s standard calling
convention. However, these static mappings take no
account of run-time information on register usage.
Therefore registers could be allocated and then
subsequently unused. Cacao would also calculate any
parameters even if they were unused. Cacao would also
have to copy from one register to another if it repackaged
arguments to another method. Dynamite on the other
hand can avoid this by value forwarding and dead code
elimination within a group block.

Also, when registers are spilled only the surrounding
and previous basic blocks are considered. This means
that a pseudo register could be spilled in one basic block
and then filled back again in the next, and Cacao
wouldn’t know it could spill different registers which are
unused in subsequent basic blocks. Dynamite’s runtime
information about register usage can provide a better
register allocation in this case.

6. Conclusion
In this paper, we have introduced Dynamite, an

environment for creating dynamic binary translators. We
have shown how the run-time concepts of the Java
Virtual Machine are mapped onto the Dynamite front end
interface and its internal register allocation algorithms.
This mapping necessarily discards the concepts of
methods and their local variables.

Preliminary investigations show that “method-free”
register allocation shows promise for efficient code
generation across architectures providing wide ranges of
hardware register resources. We look forward to
presenting more definitive numerical results at the
workshop in October.

7. References
[1] Intel Corporation, “Intel Architecture Software Developer’s

Manual, Volume 1: Basic Architecture,” Order Number
243190, 1999.

[2] Intel Corporation, “IA-64 Application Developer’s
Architecture Guide,” Order Number 245188, 1999.

[3] Trimaran consortium, “Trimaran Project Homepage,”
http://www.trimaran.org

[4] Andreas Krall, “Efficient JavaVM Just-in-Time
Compilation,” International Conference on Parallel
Architecture and Compilation Techniques (PACT98), Paris,
France, October 13-17, 1998.

[5] G. Muller, B. Moura, F. Bellard, C. Consel, “Harissa: A
Flexible and Efficient Java Environment Mixing Bytecode
and Compiled Code,” Third USENIX Conference on
Object-Oriented Technologies (COOTS-97), Portland,
Oregon, June 16-20 1997.

[6] Transvirtual Technologies Inc., “Kaffe Product
Architecture,”
http://www.transvirtual.com/products/architec
ture.html

[7] K. Ebcioglu, E.R. Altman, E. Hokenek, “A JAVA ILP
Machine Based on Fast Dynamic Compilation”, IEEE
MASCOTS International Workshop on Security and
Efficiency Aspects of Java, Eilat, Israel, January 9-10, 1997.

	sylvie.pdf
	A Case for Using Active Memory to Support Garbage ...
	Sylvia Dieckmann and Urs Hölzle
	University of California, Santa Barbara {sylvie,ur...
	Abstract
	Most modern programming languages require efficien...
	To date, Active Memory has been studied only with ...
	1. Motivation
	2. Active Memory
	2.1�� ARAM
	Figure�1.�� ARAM Architecture

	2.2�� Programming Model

	3. Why GC is Likely to Profit From Active Memory
	4. References
	[1] A. Acharya, M. Uysal, and J. Saltz. Active Dis...
	[2] R. Barua, W. Lee, S. Amarasinghe, and A. Agarw...
	[3] N. Bowman, N. Cardwell, C. Kozyrakis, C. Romer...
	[4] D. Burger, J. Goodman, and A. Kagi. Quantifyin...
	[5] B. Calder, C. Krintz, S. John, and T. Austin. ...
	[6] J. Carter et al. Impulse: Building a smarter m...
	[7] T. Endo, K. Taura, and A. Yonezawa. A scalable...
	[8] M. Gonçalves. Cache Performance of Programs wi...
	[9] M. Gonçalves and A. Appel. Cache performance o...
	[10] R. Jones and R. Lins. Garbage Collection: Alg...
	[11] T. Kamada, S. Matsuoka, and A. Yonezawa. Effi...
	[12] K. Keeton, D. Patterson, and J. Hellerstein. ...
	[13] C. Kozyrakis and D. Patterson. A new directio...
	[14] C. Kozyrakis at al. Scalable processors in th...
	[15] S. Nettles and J. O’Toole. Real-time replicat...
	[16] M. Oskin, F. Chong, and T. Sherwood. Active P...
	[17] D. Patterson et al. A case for intelligent RA...
	[18] D. Patterson et al. Intelligent RAM (IRAM): T...
	[19] D. Patterson and J. Hennessy. Computer Organi...
	[20] M. Reinhold. Cache performance of garbage-col...
	[21] K. Taura and A. Yonezawa. An efficient garbag...
	[22] M. Uysal, A. Acharya, and J. Saltz. An evalua...
	[23] E. Waingold, M. Taylor, D. Srikrishna, V. Sar...
	[24] W. Wulf and S. McKee. Hitting the memory wall...
	[25] B. Zorn. The effect of garbage collection in ...

	watson.pdf
	VLSI Architecture Using Lightweight Threads (VAULT) - Choosing the Instruction Set Architecture
	1. Introduction
	2. Project Principles
	1. Parallelism through multiple simple CPUs rather than exploiting ILP etc.
	2. Processor structure optimized for support of (dynamically) compiled Java and multiple thread s...
	3. Inter processor communication at register and cache level via special bus structures.
	4. Processor support for multi-media applications.
	5. Dynamic compilation (for parallelism).

	3. Choosing the VAULT CPU ISA
	Table 1: Benchmark Programs

	Figure 1. Dynamic instruction mix.
	Figure 2. Relative instruction counts
	4. Register and Window Usage

	Figure 3. Cumulative percentage of register usage
	Figure 4. Call depth distribution
	Table 2. Relative Call Depth
	Figure 5. Window miss ratios
	5. Conclusions
	6. References

