
A low power embedded dataflow coprocessor

Yijun Liu, Steve Furber
APT group, School of Computer Science

University of Manchester, Oxford Road, Manchester, UK, M13 9PL
yijun.liu@cs.manchester.ac.uk
steve.furber@manchester.ac.uk

Abstract

Power consumption has become one of the most impor-
tant concerns in microprocessor design. However, the po-
tential for further power-saving in microprocessors with a
conventional architecture is limited because of their uni-
fied architectures and mature low-power techniques. An al-
ternative way is proposed in this paper to save power —
embedding a dataflow coprocessor in a conventional RISC
processor. The dataflow coprocessor is designed to execute
short code segments very efficiently. The primary experi-
mental results show that the dataflow coprocessor can in-
crease the power efficiency of a RISC processor by an order
of magnitude.

1 Introduction

Because of its high flexibility, von-Neumann architec-
ture is most commonly used. In a von-Neumann architec-
ture, every single operation of data processing is accom-
panied by at least one instruction fetching and decoding.
So the bandwidth of instructions is much bigger than that
of data, which is referred to as von-Neumann bottleneck.
Fixed-length instruction formats and a load-store architec-
ture used by RISC processors result in an even lower code
density than that of CISC processors. The big instruc-
tion bandwidth means that von-Neumann processors spend
muchmore energy in instruction operations such as fetching
and decoding than data processing. The sequential execu-
tion also makes von-Neumann machines ‘remember’ only
one instruction at one time which means, after the execution
of one instruction, a processor will automatically fetch an-
other instruction and forget the instruction it just executed.
This phenomenon makes conventional microprocessor very
inefficient to execute iterative program segments with few
instructions. Since small loops dominate the actual program
traces of processors [1], the power dissipated by rearrang-
ing a program counter, refetching and decoding instructions

is significantly wasted. As a result, the conventional von-
Neumann microprocessors using a von-Neumann architec-
ture may not be very efficient in terms of power consump-
tion because of their unique architecture.
To improve microprocessors’ power-efficiency, people

either use hardware additions, such as a loop cache, or use
new architectures, like reconfigurable processors. As an al-
ternative, we propose another architecture — embedding a
dataflow coprocessor in a RISC processor.

2 The proposed dataflow architecture

Normally, dataflow machines [2] are built to achieve
high performance by optimizing their hardware for fine-
grained parallel computation. However, in this paper, a
dataflow engine is embedded in a conventional micropro-
cessor (main processor) to specifically improve its power
efficiency. The dataflow engine has no ability to fetch in-
structions and needs the CPU to initialize it. However, after
initialization, the dataflow engine can finish the calculation
independently and send the result(s) back to the CPU. If the
CPU wants to execute the program again, it does not need to
initialize the dataflow coprocessor again. The only thing it
need to do is sending inputs and waiting for outputs, so the
energy used for refetching instructions is greatly reduced.
In a dataflow machine, operations are executed in an or-

der determined by the availability of input data and spaces
to put results. A dataflow operation should satisfy two re-
quirements: (1) Each input port of a function unit should
have a valid data token; (2) Each output port (destination)
of a function unit should be empty, which means that new
results must not overwrite the old ones it generates before if
its consumers are not fast enough.
Figure(a) illustrates a basic dataflow element, which has

two inputs and one output. Once a dataflow element satis-
fies the two requirements mentioned above, the two input
operands will be sent to a function unit. The function unit
will finish the calculation and send the result to input(s)
of other dataflow elements. In real programs, conditional

Proceedings of the IEEE Computer Society Annual Symposium on VLSI
New Frontiers in VLSI Design

0-7695-2365-X/05 $20.00 © 2005 IEEE

OP2

+
Out1 Out2

(b)

OP1

gate−value

OP1 OP2

+

(a)
Out1

3: ?+? out

2: a+? 3

1: exf 3

0: bxc 2
And

I/OXor

Function
block Mem

LocalMatching
store RAM

DMA

(d)(c)

Function Block

Interconnectnetwork

store
Matching

OR

Dataflow Coprocessor

Global
Memory

CPU(e)

Initialization

instructions and branches (which duplicate output results)
are very common. We propose a new basic dataflow ele-
ment as shown in Figure(b). The new dataflow element has
three inputs — two operands and one conditional Boolean
value (gate-value) — and two output branches. Each out-
put branch has a Boolean value. The result is only sent to
the branch(es) having the same Boolean value as gate-value.
The new dataflow element can easily support conditional in-
structions and branches.
Figure(c) shows the primary architecture of the dataflow

engine. It includes two major parts — a matching store
RAM and a function block. The function block contains
several function units, such as adders and multipliers, and
an I/O module through which the dataflow engine commu-
nicates with the outside. The RAM acts as a big switch,
which sends operands to the corresponding function units
and relays results back to the destination addresses inside
the RAM. Each row of the RAM can contain an instruc-
tion. Using this architecture, function units can be used by
any instructions inside the matching store. Figure(d) gives
an example of x = a + (b × c) + (d × e) to show how
this architecture works. If all input operands of an instruc-
tion in the matching store are valid and its destinations are
free, the instruction is ‘fired’. The input operands are sent
to the corresponding function unit. After the execution of
the function unit, the result will be sent to the destination
addresses to ‘fire’ other instructions.
To support data-stream computations, a block of local

memory is included in the dataflow architecture. Appar-
ently, it is very inefficient if every single data item mov-
ing between the local memory and the global memory goes
through the function block and the main CPU. The copro-
cessor controls a DMA to exchange a big block of data be-
tween the local memory and the global memory when nec-
essary. For the CPU, the local memory inside the dataflow
engine is just a part of the global memory and it shares
the address space with other parts of the global memory.
The CPU can access any addresses of the local memory.

Figure(e) illustrates an architecture that implements an effi-
cient communication between the dataflow coprocessor and
a conventional RISC processor. By the new architecture,
the dataflow coprocessor can cope with a big data stream
without the main processor’s assistance.

3 Experimental result

One prototype of 16-bit dataflow engine containing a
matching store of 32 instructions and 8Kb internal data
memory was implemented. Five programs were used as
benchmarks to evaluate the dataflow coprocessor as fol-
lows: SUM =

∑
100

i=1
i; a FIR algorithm; an IIR algorithm;

a FFT algorithm; and an IDEA encryption algorithm. The
prototype is simulated using a 0.18µm technology and a 1.8
volt supply voltage. These benchmarks are also simulated
in an ARM processor — AT91R40008. The comparison
is shown in Table1. The simulation of the dataflow engine
is based on schematic avoiding wire capacitances, we esti-
mate power results based on layout will increase by a factor
of two. Even through, the dataflow engine can improve the
power efficiency of AT91R40008 by an order of magnitude.

Table 1. Power comparison
Benchmark SUM FIR IIR FFT IDEA
ARM (nJ) 292.0 14.6 15.3 21.9 175.9
Coprocessor(nJ) 12.7 0.61 0.67 0.86 8.05
Ratio 23.0 24.1 22.9 25.5 21.9

4 Conclusions

A low power prototype architecture is proposed in this
paper — a dataflow coprocessor embedded in a RISC
processor as a ‘computation engine’ to improve power-
efficiency. The experiments show that the dataflow copro-
cessor may increase the power efficiency of a RISC pro-
cessor by an order of magnitude. The reason for the high
power-efficiency of the dataflow coprocessor is due to its
small size and ability to memorize the most commonly used
programs.

References

[1] L. H. Lee, et al. “Instruction fetch energy reduction us-
ing loop caches for embedded applications with small
tight loops”, ISLPED’99.

[2] A. H. Veen. Dataflowmachine architecture. ACM Com-
puting Surveys (CSUR), Dec. 1986.

Proceedings of the IEEE Computer Society Annual Symposium on VLSI
New Frontiers in VLSI Design

0-7695-2365-X/05 $20.00 © 2005 IEEE

