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Figure 1: Model of a neuron 
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Abstract: We present an implementation of an N-of-M code based sparse distributed memory using an 
Altera Excalibur device. Unlike a conventional memory, a sparse distributed memory responds not only to an 
exact input match, but also to any input within a specified Hamming distance of a particular input code. 
Therefore, it is very robust in noisy environments. The success of this prototype proves the feasibility of 
realising an N-of-M Kanerva memory in a system-on-a-programmable-chip, which is a good starting point 
for our research. In addition, it provides us with valuable design experience with the Altera Excalibur device. 

1.  Introduction 

In this section, we present our research objectives and general background information on basic 
artificial neural networks and the neural model we implemented. 

1.1  Neural model 

     A biological neuron can be simulated by a device 
with many weighted inputs and a single output 
(figure 1).  If the sum of the weighted inputs 
exceeds the threshold, the neuron will fire. The 
equation of a neural network is given as: 

              sj = fj ( ∑
i

wij · ai  - θj )  

Here ai is the ith input, wij is the synaptic weight connecting the ith input to the jth neuron, θj is 
the threshold of the jth neuron, fj is the activation function and sj is the output of the jth neuron. 
When a neuron is learning a particular input pattern, corresponding weights will be adjusted. 

1.2  Project Objective 

Our ultimate objective is to make a scalable neural network with billions of neurons in 
hardware. The network may be across many chips that communicate with each other. Prototyping 
a small-scale neural network in an FPGA at an early stage is an important step towards this goal. 
The implementation presented in this paper is an N-of-M coded Sparse Distributed Memory 
(SDM), which is based on ideas proposed in [1] developed earlier at the University of Manchester. 

1.3 Kanerva’s sparse distributed memory  

Kanerva’s SDM [2] is based on a high-dimensional binary space {0,1}n. It stores and retrieves 
data by transforming a logical address into many physical addresses within a specified Hamming 
distance of that address. This is why the memory is ‘distributed’. When a value is read, these 
physical addresses converge on the original stored data by applying a threshold to the sum 
resulting from an input address within a Hamming distance of the address that is used to store the 
data. When the memory is sparse and the binary space is high-dimensional, Kanerva shows that 
each location is far from most of the other locations, which allows a nearly-correct location to be 
much closer to the correct locations than to the wrong locations. Distribution and sparseness make 
the SDM nondeterministic and robust. 
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1.4 An N-of-M coded sparse memory  

An N-of-M code is a possible representation of infor-
mation when bundles of associated neurons cooperate to 
convey information, where N neurons in a bundle of M 
neurons fire at approximately the same time. The infor-
mation content is defined by the selection of the N firing 
neurons. Using N-of-M codes in neural coding has many 
good properties, such as error recovery, power efficiency, 
self timing and a relatively high representational 
capability.  

 The N-of-M Kanerva memory proposed in [1] is a 
refinement to Kanerva’s SDM. It replaces his counters 
with simple binary weights and applies N-of-M codes to the weights and vectors of neural 
fascicles, making the original SDM simpler and immune to noise. As shown in figure 2, the N-of-
M based SDM comprises two neural layers: an address decoder neuron layer and a data memory 
neuron layer. The input address and input data could be viewed as artificial layers that are external 
to the memory. N-of-M codes (possibly of different sizes) are employed in all neural layers 
(including input layers) and the distribution of weights in the address decoder layer.  

The N-of-M Kanerva memory operates in either a recall or a learning mode, similar to the way 
that a conventional memory operates in a read or a write operation. The weights between the input 
address and the address decoder layers are initialised to a random a-of-A code, while the weights 
between the address decoder and the data memory layers are initialised to zeroes. In the learning 
mode, an address input, in the form of an i-of-A code, and a data input, in the form of a d-of-D 
code, are presented to the memory. Then the connections between the fired address decoder 
neurons and the activated data memory neurons are established, with the connection weights 
setting to ‘1’s.  In the recall mode, only an input address is presented to the memory, in the form of 
an i-of-A code. Processing these inputs causes w address decoder neurons (whose activation levels 
reach or exceed a given threshold) to fire; in turn these firing address decoder neurons make some 
data memory neurons fire, if there are at least some connections between the address decoder and 
the data memory neuron layers. The d data memory neurons with the highest activation levels are 
selected as output.  

In our implementation, the inputs, outputs and the input weights employ 11-of-256 codes. 
There are 1024 address decoder neurons (W); on average the number of firing address decoder 
neurons (w) is around 90. The threshold for all address decoder neurons is fixed as 2.  

2.  Implementation platform 

 The Altera Excalibur EPXA1 development kit includes a development board (figure 3) and 
software support. The development board is shipped with an EPXA1 device, 8 Mbytes of flash 
memory, 32 Mbytes of SDRAM, an Ethernet MAC/PHY, two UART port connections, a JTAG 
connector, etc. The EPXA1 device is an FPGA or PLD (Programmable Logic Device) based SoC

address i-of-A write data d-of-D 

word lines 
w-of-W 

address 
decoder 
(a-of-A) 

data 
memory 

read data d-of-D 

Figure 2: N-of-M Kanerva memory



platform; its architecture is shown in figure 4. As can be seen, the embedded stripe contains an 
ARM922TTM processor core, a memory subsystem and peripherals. The bus architecture is dual 
AMBATM AHB buses. Interfaces between the embedded stripe and the PLD are the AHB2 bus, the 
Dual-Port RAM (DPRAM) and some General-Purpose I/Os (GPIOs). The device has 484 pins to 
communicate with off-chip devices, such as the SDRAM and the flash memory.  

The system boots from the off-chip flash memory, which is programmed with an executable 
image using either the JTAG port or via Ethernet. Communication between the host and the 
embedded processor in the EPXA1 device is through a RS-232 serial port or Telnet via Ethernet.  

3.  Design Implementation  

In this section, we present the design flow and 
the design implementation, focusing on the 
hardware neural-processing-element design. 

3.1  Design flow 

Based on the fact that the neural processing task 
is simple and highly repetitive, our partition 
strategy is to implement the neural processing task 
in hardware, while other parts of the system are 
implemented in software. The hardware design that 
does the neural processing task is known as a 
Neural Processing Element (NPE). As shown in 
figure 5, after partitioning, the system flow is 
divided into PLD and embedded software design flows.  They are combined to generate a single 
slave binary file (.sbi file) for downloading to the EPXA1 device on the board. GNU tools are 
used to develop system and application software. The system runs the Redhat eCos operating 
system. Interaction between the host and the embedded software on the development board is via a 
custom command shell. As can be seen, the PLD design flow follows a block-based design 
methodology; it starts from design entry and ends with place and route, with verification 
throughout each design stage. Quartus® II software is an integrated tool environment for the 
complete design flow.  It provides not only integrated tools for each stage in the PLD design flow, 
but also interfaces with a range of third party tools. A .sbi file can be generated after a full 
compilation. In the NPE design, Verilog HDL was used for design entry; both the integrated 
simulation tool and ModelSim (version 5.7a) were used for verification (functional and timing 
simulation); for the synthesis and place and route design stages, only the integrated tools 
(including static timing analysis tool) were used.  

3.2  System architecture  

Figure 6 shows the architecture of the N-of-M Kanerva 
memory at system level. As can be seen, software 
maintains a neural data structure for all neurons. Each 
neuron in the structure has an ID (neural number), a type 
(input address, input data and address decoder), a 
threshold (only for address decoder neurons), an 
activation level (only for address decoder and data 
memory neurons) and an output connection list (only for 
input address and address decoder neurons). The output 
connection list is a number of the IDs of the next-layer 
neurons that the current neuron connects to. Input weights 
in the neural data structure must be initialised. Before any 
recall session, learning is required to establish some connections between address decoder and data 
memory neurons. Then an input address can be written to an event queue (needs to be initialised) 
and the system can start processing the events in it. Each event is an ID of a neuron that fires; if it 

                PLD and embedded  
                software design flows 

Figure 6:  System architecture 

Figure 5: 

Initialisation

Learning

Recall

Neural data
structure

ID

threshold
activation level

type

connection list

NPE interfaceEvent

Neuron list

NPE1 NPE2 NPEn

Queue

HDL Source 
Files

Synthesis

Place & Route

C header Files Custom Library
Peripheral Drivers

Download

eCos 
Operating
System

GDB

PLD Design Flow Embedded software 
design flow

V
er

if
ic

at
io

n

C Souce Files

GNU Tools

Altera Devices



connects to a list of neurons, each output neurons in the list will increase its activation level by 1 
for the binary-weight implementation. Additions of the connection weights and the activation 
levels of the output neurons are accomplished by the hardware NPE(s), while the rest of the 
system is implemented in software. As shown in the figure, the event queue and the NPE interface 
delimit the software and hardware functions in the system. The hardware NPE(s) accesses the 
neural data structure directly; it reads the structure before processing and writes to it after 
processing. The updated activation levels are written back to the data structure; the neurons’ IDs 
will be written to the event queue if they fire. The events in the event queue are later processed by 
the software and the operation is complete when the event queue is empty. As can be seen, the 
software implements input weight random initialisation, provision of address and data inputs, 
event queue processing, weight setting during learning modes, output-data selection and result-
checking (the results are compared with those from a software-only version). 

3.3  Design of the neural processing element  

The NPE design acts as a hardware function for neural processing. In principle, the number of 
NPEs in the NPE design means that a number of functions get executed in parallel (although this is 
difficult to achieve in practice). In sections 3.3.1 and 3.3.2, we will describe two versions of the 
NPE design with different numbers of NPEs. As there will be millions of neurons implemented in 
one chip in the future, the off-chip SDRAM is used to store the weights and the neurons’ 
activation levels. We access the SDRAM directly from PLD masters via the AHB2 bus. The event 
queue is implemented in DPRAM, allowing simultaneous access by both software and hardware. 
Signal busy, which shows the state of the NPE, is used as a handshake signal between the software 
and hardware via one of the GPIO lines.   

3.3.1 Single NPE 

Since there is only one neural processing 
element in the single NPE design (figure 7), it is 
relatively simple and small (15% of the total logic 
elements in the PLD). As shown in the figure, the 
processor communicates with the NPE through 
buses and the shared DPRAM. The software starts 
to write to the NPE the weight and the SDRAM 
address of the output neuron’s parameters 
(activation level, threshold and neural ID) to the 
slave register file via the Stripe-to-PLD Bridge 
and the single-transaction slave interface. Then a 
signal (start_read_trans) will be generated to 
request the neuron’s parameters (the address has 
been presented to both the single-read and the 
single-write interfaces). Once retrieved, the NPE 
starts computing. It adds the weight and the 
activation level, compares the result with the 
threshold to decide its firing state, writes the new activation level to the SDRAM, and writes the 
neuron’s ID to the event queue if the neuron fires.  

The event queue controller manages event-writing process (to the DPRAM). These events will 
later be read and processed by the software. Handshake signals between the NPE and the event 
queue controller, and between the NPE and the read and write interface, are used to control the 
read and write transactions. There are two bus master interfaces in the design: a single-read 
interface and a single-write interface. We chose single rather than burst mode for read and write 
transactions out of efficiency as well as making the design generic, because the connections 
between the input address and address decoder neurons are sparse (therefore the corresponding 
neurons’ IDs are very likely incontiguous). Although the read and write interfaces do not operate 
simultaneously, we stick to arbitrating these interfaces instead of multiplexing them in order to 
improve reusability.  

Figure 7:  Single NPE block diagram 
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3.3.2 Multiple NPEs 

Multiple neural processing elements are 
used in this NPE design (figure 8). The order 
of input executions in these NPEs is not 
important as the inputs to the memory are 
orthogonal. Due to the increased complexity, 
an 8-NPE design costs about 58% of the total 
logic elements in the PLD; for a 16-NPE 
design, it costs 85%.  

The multiple NPEs design has a similar 
structure to the single NPE version. It is 
triggered by software via a start address 
(start_address[31:0]) and a number (length-
[3:0]) that indicates how many processes are 
required in this session. The start address 
points to a value which encodes the weight 
and the address of the output neuron’s 
activation level, threshold and ID. On 
triggering, the multiple NPEs design retrieves 
all the weights and the addresses using the 
given length in a burst-read operation; then, 
using these addresses, it again retrieves the 
neuron’s parameters from the SDRAM in a 
series of single-read operations.  

A dedicated control circuit is used to control 
the data retrieval from the SDRAM and the 
data writing to the SDRAM and DPRAM 
(indirectly). As shown in figure 9, there are 
four mains states in the state machine of the 
control circuit: wait_phase, burst_read, 
single_read and single_write, each with 0 to 4 
sub-states. A single counter is used in all states 
except the wait_phase to control the number of 
read or write transactions.  

The burst read interface accepts both burst 
read and single read transactions, controlled by 
the controller. A master register file is required 
to store the weights and the addresses of the 
activation levels temporarily; the addresses are 
needed later to retrieve the associated neurons’ 
parameters.  To save memory resources, parameters corresponding to each neuron are allocated to 
a NPE directly on retrieval. 

3.4  Results 

Table 1 shows the performance of different versions of the NPE designs. It records the times it 
takes for both software and hardware versions of the design given the same task. The hardware 
version has three variants: single NPE, 8 NPEs and 16 NPEs; each runs across a range of clock 
frequencies. The software version has two cases recorded in terms of the state of the cache.  

As can be seen, performance does not improve much as the number of NPEs increases. There 
are a number of reasons. Firstly, although there is parallel hardware, SDRAM access is still serial. 
The single-read and single-write transactions are inefficient – although initially a burst-read 
transaction is used to retrieve the weights and the addresses of the output neuron’s parameters, the 
inefficiency caused by the single-read and single-write transactions outranks the benefits brought 
by the burst-read operation. Secondly, the single NPE design runs at up to 80MHz, while the

 
Figure 9:  FSM of the control circuit 
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Table 1:   NPE design performance 

Hardware versions (cache on) 
Clock Speed (MHz) 25 40 50 55 60 70 80 

1_NPE (ms) 236* 244* 223* 251* 225* 191 185
8_NPEs (ms) 266 219 208 202 196 - - 
16_NPEs (ms) 257 211 197 193 - - - 

Software versions 
Cache On (ms) 172 
Cache Off (ms) 1645 

 

8-NPE version of the design can only run up to 60MHz, and the 16-NPE version, 55MHz. This 
results from fitting a design with increased complexity to a target device with limited resources 
(especially routing resources). Thirdly, the multiple NPEs versions have the overhead of a burst 
read to retrieve connection weights and addresses (they access the SDRAM three times in an add-
compare operation; while only two single accesses are needed for the single NPE version). Lastly, 
more tasks are accommodated in software in the multiple NPEs versions, in order to avoid the 1k-
address-boundary violations specified in the AMBA bus protocol. As a result, the single NPE 
design, running at 80MHz, has the best performance among different versions of the hardware 
NPE design. 

When the cache is enabled, the software version of the system performs about 7% better than 
the fastest hardware version (172 vs. 185ms). The reasons are as follows. Firstly, the software runs 
at 160MHz, twice the clock speed of the hardware design in the PLD. Secondly, the software runs 
in an ARM922TTM processor; its cache system (64-way set associative Harvard cache architecture, 
allowing simultaneous instruction and data access) dramatically improves the performance (nearly 
10 times). Lastly, the software and hardware in the system run serially instead of concurrently; this 
results from software/hardware partition and will be solved naturally as more functions are 
implemented in hardware. 

4.  Conclusions  

An implementation of an N-of-M sparse distributed memory in an Altera Excalibur device has 
been presented. Although the performance is just comparable with the software version, the 
success of the system proves the feasibility of realising a digital neural network in a system-on-a-
programmable-chip. As more functions are shifted to hardware, the system can be optimised as a 
whole (compared to an isolated NPE design) due to the possibility of a full mapping between 
system functions and available resources. As can be seen from the multiple NPEs design, system 
performance will not be improved noticeably by just increasing the number of NPEs. In order to 
achieve a better performance, memory bandwidth must be increased (by utilising burst-read and 
burst-write operations) to enable parallelism and pipelining in hardware.  

The neural research project provides us valuable opportunities to use the Altera Excalibur 
device. Although considerable time has been spent on familiarisation with the device and the tools, 
once done, the design process is quite straightforward. 
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Note:  Data marked with a ‘*’ are measured with an added 
instruction to the software.  The content of the instruction is 
not important; while the delay it brings to the software 
matters. The software needs to be delayed at the point of 
triggering the NPE design, before checking the value of the 
busy bit; since the bridges and clock synchronisation
between the AHB2 and the PLD logic introduce delays 
between the software writing to hardware and hardware 
asserting the busy bit.  


