
∑
=

−
M

i
iiaw

1
θ

w1

w2

wM
..
.

a1

a2

aM

x s = f(x)

input weights activation
level

output
signal

summing output function f(·)

Figure 1: Model of a neuron

Prototyping a digital neural network System-on-Chip
using an Altera Excalibur device

Lihua Ren, Peter Marshall and Steve Furber
Advanced Processor Technology Group

Department of Computer Science, The University of Manchester,
Manchester, M13 9PL, UK

{renl, marshall, sfurber}@cs.man.ac.uk

Abstract: We present an implementation of an N-of-M code based sparse distributed memory using an
Altera Excalibur device. Unlike a conventional memory, a sparse distributed memory responds not only to an
exact input match, but also to any input within a specified Hamming distance of a particular input code.
Therefore, it is very robust in noisy environments. The success of this prototype proves the feasibility of
realising an N-of-M Kanerva memory in a system-on-a-programmable-chip, which is a good starting point
for our research. In addition, it provides us with valuable design experience with the Altera Excalibur device.

1. Introduction

In this section, we present our research objectives and general background information on basic
artificial neural networks and the neural model we implemented.

1.1 Neural model

 A biological neuron can be simulated by a device
with many weighted inputs and a single output
(figure 1). If the sum of the weighted inputs
exceeds the threshold, the neuron will fire. The
equation of a neural network is given as:

 sj = fj (∑
i

wij · ai - θj)

Here ai is the ith input, wij is the synaptic weight connecting the ith input to the jth neuron, θj is
the threshold of the jth neuron, fj is the activation function and sj is the output of the jth neuron.
When a neuron is learning a particular input pattern, corresponding weights will be adjusted.

1.2 Project Objective

Our ultimate objective is to make a scalable neural network with billions of neurons in
hardware. The network may be across many chips that communicate with each other. Prototyping
a small-scale neural network in an FPGA at an early stage is an important step towards this goal.
The implementation presented in this paper is an N-of-M coded Sparse Distributed Memory
(SDM), which is based on ideas proposed in [1] developed earlier at the University of Manchester.

1.3 Kanerva’s sparse distributed memory

Kanerva’s SDM [2] is based on a high-dimensional binary space {0,1}n. It stores and retrieves
data by transforming a logical address into many physical addresses within a specified Hamming
distance of that address. This is why the memory is ‘distributed’. When a value is read, these
physical addresses converge on the original stored data by applying a threshold to the sum
resulting from an input address within a Hamming distance of the address that is used to store the
data. When the memory is sparse and the binary space is high-dimensional, Kanerva shows that
each location is far from most of the other locations, which allows a nearly-correct location to be
much closer to the correct locations than to the wrong locations. Distribution and sparseness make
the SDM nondeterministic and robust.

Figure 3: EPXA1 Excalibur device Figure 4: Excalibur device system architecture

Memory
Controller

EBIUART
Dual-Port

SRAM

Interrupt
Controller

Watchdog
Timer

AHB1-2

Bridges

Processor

Stripe-to-PLD

Bridges Bridges

PLD-to-StripeConfiguration
Logic

Timer

Embedded Stripe

PLD Array

SDRAMFlash

AHB1

Single-Port
SRAM

AHB2

1.4 An N-of-M coded sparse memory

An N-of-M code is a possible representation of infor-
mation when bundles of associated neurons cooperate to
convey information, where N neurons in a bundle of M
neurons fire at approximately the same time. The infor-
mation content is defined by the selection of the N firing
neurons. Using N-of-M codes in neural coding has many
good properties, such as error recovery, power efficiency,
self timing and a relatively high representational
capability.

 The N-of-M Kanerva memory proposed in [1] is a
refinement to Kanerva’s SDM. It replaces his counters
with simple binary weights and applies N-of-M codes to the weights and vectors of neural
fascicles, making the original SDM simpler and immune to noise. As shown in figure 2, the N-of-
M based SDM comprises two neural layers: an address decoder neuron layer and a data memory
neuron layer. The input address and input data could be viewed as artificial layers that are external
to the memory. N-of-M codes (possibly of different sizes) are employed in all neural layers
(including input layers) and the distribution of weights in the address decoder layer.

The N-of-M Kanerva memory operates in either a recall or a learning mode, similar to the way
that a conventional memory operates in a read or a write operation. The weights between the input
address and the address decoder layers are initialised to a random a-of-A code, while the weights
between the address decoder and the data memory layers are initialised to zeroes. In the learning
mode, an address input, in the form of an i-of-A code, and a data input, in the form of a d-of-D
code, are presented to the memory. Then the connections between the fired address decoder
neurons and the activated data memory neurons are established, with the connection weights
setting to ‘1’s. In the recall mode, only an input address is presented to the memory, in the form of
an i-of-A code. Processing these inputs causes w address decoder neurons (whose activation levels
reach or exceed a given threshold) to fire; in turn these firing address decoder neurons make some
data memory neurons fire, if there are at least some connections between the address decoder and
the data memory neuron layers. The d data memory neurons with the highest activation levels are
selected as output.

In our implementation, the inputs, outputs and the input weights employ 11-of-256 codes.
There are 1024 address decoder neurons (W); on average the number of firing address decoder
neurons (w) is around 90. The threshold for all address decoder neurons is fixed as 2.

2. Implementation platform

 The Altera Excalibur EPXA1 development kit includes a development board (figure 3) and
software support. The development board is shipped with an EPXA1 device, 8 Mbytes of flash
memory, 32 Mbytes of SDRAM, an Ethernet MAC/PHY, two UART port connections, a JTAG
connector, etc. The EPXA1 device is an FPGA or PLD (Programmable Logic Device) based SoC

address i-of-A write data d-of-D

word lines
w-of-W

address
decoder
(a-of-A)

data
memory

read data d-of-D

Figure 2: N-of-M Kanerva memory

platform; its architecture is shown in figure 4. As can be seen, the embedded stripe contains an
ARM922TTM processor core, a memory subsystem and peripherals. The bus architecture is dual
AMBATM AHB buses. Interfaces between the embedded stripe and the PLD are the AHB2 bus, the
Dual-Port RAM (DPRAM) and some General-Purpose I/Os (GPIOs). The device has 484 pins to
communicate with off-chip devices, such as the SDRAM and the flash memory.

The system boots from the off-chip flash memory, which is programmed with an executable
image using either the JTAG port or via Ethernet. Communication between the host and the
embedded processor in the EPXA1 device is through a RS-232 serial port or Telnet via Ethernet.

3. Design Implementation

In this section, we present the design flow and
the design implementation, focusing on the
hardware neural-processing-element design.

3.1 Design flow

Based on the fact that the neural processing task
is simple and highly repetitive, our partition
strategy is to implement the neural processing task
in hardware, while other parts of the system are
implemented in software. The hardware design that
does the neural processing task is known as a
Neural Processing Element (NPE). As shown in
figure 5, after partitioning, the system flow is
divided into PLD and embedded software design flows. They are combined to generate a single
slave binary file (.sbi file) for downloading to the EPXA1 device on the board. GNU tools are
used to develop system and application software. The system runs the Redhat eCos operating
system. Interaction between the host and the embedded software on the development board is via a
custom command shell. As can be seen, the PLD design flow follows a block-based design
methodology; it starts from design entry and ends with place and route, with verification
throughout each design stage. Quartus® II software is an integrated tool environment for the
complete design flow. It provides not only integrated tools for each stage in the PLD design flow,
but also interfaces with a range of third party tools. A .sbi file can be generated after a full
compilation. In the NPE design, Verilog HDL was used for design entry; both the integrated
simulation tool and ModelSim (version 5.7a) were used for verification (functional and timing
simulation); for the synthesis and place and route design stages, only the integrated tools
(including static timing analysis tool) were used.

3.2 System architecture

Figure 6 shows the architecture of the N-of-M Kanerva
memory at system level. As can be seen, software
maintains a neural data structure for all neurons. Each
neuron in the structure has an ID (neural number), a type
(input address, input data and address decoder), a
threshold (only for address decoder neurons), an
activation level (only for address decoder and data
memory neurons) and an output connection list (only for
input address and address decoder neurons). The output
connection list is a number of the IDs of the next-layer
neurons that the current neuron connects to. Input weights
in the neural data structure must be initialised. Before any
recall session, learning is required to establish some connections between address decoder and data
memory neurons. Then an input address can be written to an event queue (needs to be initialised)
and the system can start processing the events in it. Each event is an ID of a neuron that fires; if it

 PLD and embedded
 software design flows

Figure 6: System architecture

Figure 5:

Initialisation

Learning

Recall

Neural data
structure

ID

threshold
activation level

type

connection list

NPE interfaceEvent

Neuron list

NPE1 NPE2 NPEn

Queue

HDL Source
Files

Synthesis

Place & Route

C header Files Custom Library
Peripheral Drivers

Download

eCos
Operating
System

GDB

PLD Design Flow Embedded software
design flow

V
er

if
ic

at
io

n

C Souce Files

GNU Tools

Altera Devices

connects to a list of neurons, each output neurons in the list will increase its activation level by 1
for the binary-weight implementation. Additions of the connection weights and the activation
levels of the output neurons are accomplished by the hardware NPE(s), while the rest of the
system is implemented in software. As shown in the figure, the event queue and the NPE interface
delimit the software and hardware functions in the system. The hardware NPE(s) accesses the
neural data structure directly; it reads the structure before processing and writes to it after
processing. The updated activation levels are written back to the data structure; the neurons’ IDs
will be written to the event queue if they fire. The events in the event queue are later processed by
the software and the operation is complete when the event queue is empty. As can be seen, the
software implements input weight random initialisation, provision of address and data inputs,
event queue processing, weight setting during learning modes, output-data selection and result-
checking (the results are compared with those from a software-only version).

3.3 Design of the neural processing element

The NPE design acts as a hardware function for neural processing. In principle, the number of
NPEs in the NPE design means that a number of functions get executed in parallel (although this is
difficult to achieve in practice). In sections 3.3.1 and 3.3.2, we will describe two versions of the
NPE design with different numbers of NPEs. As there will be millions of neurons implemented in
one chip in the future, the off-chip SDRAM is used to store the weights and the neurons’
activation levels. We access the SDRAM directly from PLD masters via the AHB2 bus. The event
queue is implemented in DPRAM, allowing simultaneous access by both software and hardware.
Signal busy, which shows the state of the NPE, is used as a handshake signal between the software
and hardware via one of the GPIO lines.

3.3.1 Single NPE

Since there is only one neural processing
element in the single NPE design (figure 7), it is
relatively simple and small (15% of the total logic
elements in the PLD). As shown in the figure, the
processor communicates with the NPE through
buses and the shared DPRAM. The software starts
to write to the NPE the weight and the SDRAM
address of the output neuron’s parameters
(activation level, threshold and neural ID) to the
slave register file via the Stripe-to-PLD Bridge
and the single-transaction slave interface. Then a
signal (start_read_trans) will be generated to
request the neuron’s parameters (the address has
been presented to both the single-read and the
single-write interfaces). Once retrieved, the NPE
starts computing. It adds the weight and the
activation level, compares the result with the
threshold to decide its firing state, writes the new activation level to the SDRAM, and writes the
neuron’s ID to the event queue if the neuron fires.

The event queue controller manages event-writing process (to the DPRAM). These events will
later be read and processed by the software. Handshake signals between the NPE and the event
queue controller, and between the NPE and the read and write interface, are used to control the
read and write transactions. There are two bus master interfaces in the design: a single-read
interface and a single-write interface. We chose single rather than burst mode for read and write
transactions out of efficiency as well as making the design generic, because the connections
between the input address and address decoder neurons are sparse (therefore the corresponding
neurons’ IDs are very likely incontiguous). Although the read and write interfaces do not operate
simultaneously, we stick to arbitrating these interfaces instead of multiplexing them in order to
improve reusability.

Figure 7: Single NPE block diagram

w
rit

e
da

ta
[3

1:
0]

MasterDual Port
RAM MasterSlave

Slave

Single
Transaction

Slave

Single-Write
Master I/F

Slave
Register

File

Event
Queue

Stripe

PLD PLD
re

ad
_d

at
a[

31
:0

]

ne
ur

on
 n

um
be

r[
11

:0
]

st
ar

t_
w

rit
e_

ev
en

t

weight[7:0]

Arbiter

Neural Processing
Element

re
ad

y_
fo

r_
ev

en
t

re
ad

y_
fo

r_
re

ad

w
rit

e_
da

ta
[3

1:
0]

re
ad

y_
fo

r_
w

rit
e

fire

st
ar

t_
w

rit
e_

tr
an

s

ad
dr

es
s_

to
_w

rit
e[

31
:0

]

Single-Read
Master I/F

Stripe

st
ar

t_
re

ad
_t

ra
ns

sl
av

e
re

sp
on

d
si

gn
al

s
an

d
re

ad
 d

at
a[

31
:0

]

Addr &
Ctrl MUX

PLD-to-Stripe Bridge Stripe-to-PLD Bridge

Processor

3.3.2 Multiple NPEs

Multiple neural processing elements are
used in this NPE design (figure 8). The order
of input executions in these NPEs is not
important as the inputs to the memory are
orthogonal. Due to the increased complexity,
an 8-NPE design costs about 58% of the total
logic elements in the PLD; for a 16-NPE
design, it costs 85%.

The multiple NPEs design has a similar
structure to the single NPE version. It is
triggered by software via a start address
(start_address[31:0]) and a number (length-
[3:0]) that indicates how many processes are
required in this session. The start address
points to a value which encodes the weight
and the address of the output neuron’s
activation level, threshold and ID. On
triggering, the multiple NPEs design retrieves
all the weights and the addresses using the
given length in a burst-read operation; then,
using these addresses, it again retrieves the
neuron’s parameters from the SDRAM in a
series of single-read operations.

A dedicated control circuit is used to control
the data retrieval from the SDRAM and the
data writing to the SDRAM and DPRAM
(indirectly). As shown in figure 9, there are
four mains states in the state machine of the
control circuit: wait_phase, burst_read,
single_read and single_write, each with 0 to 4
sub-states. A single counter is used in all states
except the wait_phase to control the number of
read or write transactions.

The burst read interface accepts both burst
read and single read transactions, controlled by
the controller. A master register file is required
to store the weights and the addresses of the
activation levels temporarily; the addresses are
needed later to retrieve the associated neurons’
parameters. To save memory resources, parameters corresponding to each neuron are allocated to
a NPE directly on retrieval.

3.4 Results

Table 1 shows the performance of different versions of the NPE designs. It records the times it
takes for both software and hardware versions of the design given the same task. The hardware
version has three variants: single NPE, 8 NPEs and 16 NPEs; each runs across a range of clock
frequencies. The software version has two cases recorded in terms of the state of the cache.

As can be seen, performance does not improve much as the number of NPEs increases. There
are a number of reasons. Firstly, although there is parallel hardware, SDRAM access is still serial.
The single-read and single-write transactions are inefficient – although initially a burst-read
transaction is used to retrieve the weights and the addresses of the output neuron’s parameters, the
inefficiency caused by the single-read and single-write transactions outranks the benefits brought
by the burst-read operation. Secondly, the single NPE design runs at up to 80MHz, while the

Figure 9: FSM of the control circuit

state_change

waiting for
data

store data

check
counts

start

count == burst_length

assign data

check
counts

start read
transaction

waiting for
data

start read
transaction

count == burst_length

check
counts

start write
transaction

waiting for
data

count == burst_length

reset

single_read

burst_readwait_phase

single_write

clear counter

clear counter

Figure 8: Multiple NPEs block diagram

PLD-to-Stripe Bridge Stripe-to-PLD Bridge

Processor

w
rit

e
da

ta
[3

1:
0]

sl
av

e
re

sp
on

se
 s

ig
na

ls
an

d
re

ad
 d

at
a[

31
:0

]

Single
Transaction

Slave
Burst-Read
Master I/F

Control
Circuit

start

length[3:0]

select
_mode

start_address[31:0]

ad
dr

es
s[

31
:0

]

write_data[31:0]

se
le

ct
_d

at
a[

3:
0]

ad
dr

es
s_

to
_w

rit
e[

31
:0

]fir
e

st
ar

t_
w

rit
e_

ev
en

t

weight[7:0]

fir
e_

in
[1

5:
0]

st
ar

t_
np

e[
4:

0]

w
rit

e_
da

ta
[3

1:
0]

Data MUX

Addr &
Len MUX

Addr &
Ctrl MUX

w
rit

e_
da

ta
[1

1:
0]

re
ad

y_
fo

r_
ev

en
t

start_write_trans

16
w

rit
e_

da
ta

[3
1:

0]

re
ad

_d
at

a[
31

:0
]

Master

Slave

Slave

Master
Dual Port

RAM

Event
Queue

Single-Write
Master I/F

Slave
Register

File

Master
Register

File

Neural Processing
Elements

Decoder

Arbiter

Stripe

PLD

bu
rs

t_
le

ng
th

[3
:0

]

ad
dr

es
s_

to
_r

ea
d[

31
:0

]

le
ng

th
[3

:0
]

Stripe

PLD

16
 x

4’b0

Table 1: NPE design performance

Hardware versions (cache on)
Clock Speed (MHz) 25 40 50 55 60 70 80

1_NPE (ms) 236* 244* 223* 251* 225* 191 185
8_NPEs (ms) 266 219 208 202 196 - -
16_NPEs (ms) 257 211 197 193 - - -

Software versions
Cache On (ms) 172
Cache Off (ms) 1645

8-NPE version of the design can only run up to 60MHz, and the 16-NPE version, 55MHz. This
results from fitting a design with increased complexity to a target device with limited resources
(especially routing resources). Thirdly, the multiple NPEs versions have the overhead of a burst
read to retrieve connection weights and addresses (they access the SDRAM three times in an add-
compare operation; while only two single accesses are needed for the single NPE version). Lastly,
more tasks are accommodated in software in the multiple NPEs versions, in order to avoid the 1k-
address-boundary violations specified in the AMBA bus protocol. As a result, the single NPE
design, running at 80MHz, has the best performance among different versions of the hardware
NPE design.

When the cache is enabled, the software version of the system performs about 7% better than
the fastest hardware version (172 vs. 185ms). The reasons are as follows. Firstly, the software runs
at 160MHz, twice the clock speed of the hardware design in the PLD. Secondly, the software runs
in an ARM922TTM processor; its cache system (64-way set associative Harvard cache architecture,
allowing simultaneous instruction and data access) dramatically improves the performance (nearly
10 times). Lastly, the software and hardware in the system run serially instead of concurrently; this
results from software/hardware partition and will be solved naturally as more functions are
implemented in hardware.

4. Conclusions

An implementation of an N-of-M sparse distributed memory in an Altera Excalibur device has
been presented. Although the performance is just comparable with the software version, the
success of the system proves the feasibility of realising a digital neural network in a system-on-a-
programmable-chip. As more functions are shifted to hardware, the system can be optimised as a
whole (compared to an isolated NPE design) due to the possibility of a full mapping between
system functions and available resources. As can be seen from the multiple NPEs design, system
performance will not be improved noticeably by just increasing the number of NPEs. In order to
achieve a better performance, memory bandwidth must be increased (by utilising burst-read and
burst-write operations) to enable parallelism and pipelining in hardware.

The neural research project provides us valuable opportunities to use the Altera Excalibur
device. Although considerable time has been spent on familiarisation with the device and the tools,
once done, the design process is quite straightforward.

5. Acknowledgements

The authors gratefully acknowledge the funding from Cogniscience Ltd. and the support from
Altera.

6. References

[1] S.B. Furber, W.J. Bainbridge, J.M. Cumpstey and S. Temple, “Sparse Distributed Memory
using N-of-M Codes”, submitted to Neural Networks.

[2] Pentti Kanerva, Sparse Distributed Memory, MIT Press, ISBN 0262111322, 1988

[3] Altera website: http//www.altera.com/

Note: Data marked with a ‘*’ are measured with an added
instruction to the software. The content of the instruction is
not important; while the delay it brings to the software
matters. The software needs to be delayed at the point of
triggering the NPE design, before checking the value of the
busy bit; since the bridges and clock synchronisation
between the AHB2 and the PLD logic introduce delays
between the software writing to hardware and hardware
asserting the busy bit.

