
SCALP’s potential for power saving is still unknown.
The current implementation’s performance is limited by two
factors: as with all superscalar processors the branch latency
is significant yet SCALP does not have branch prediction.
This problem is easy enough to remedy. More seriously
SCALP allows each result to be used by only one following
instruction; to use a result more than once an explicit dupli-
cate operation is required.

SCALP’s instruction issuer is simpler than it would
have to be for a conventional instruction set, yet it is still
complex. This complexity derives from the need to decode
and issue several instructions in parallel and from SCALP’s
variable length instruction format.

A number of small programs have been written in
SCALP assembly language to evaluate the potential of the
explicit forwarding instruction set. In straight-line code the
model works well, but the presence of branches can cause
problems. The results in tables 1 and 2 show that it is very
common for it to be possible to discard a result quite soon
after it has been computed. Unfortunately these values do
not allow for the possibility of an intervening branch - it may
be the case that a value is needed later in the program only
if a particular branch is taken.

The SCALP processor will be discussed further in [6].

9. Conclusion

Using asynchronous logic for general purpose proces-
sor design has several potential benefits, yet conventional
instruction sets do not allow these benefits to be fully
exploited. By considering execution models other than the
conventional global register bank model architectures that
are better suited to asynchronous implementation can be
developed. One such alternative is the idea of explicit for-
warding, implemented in the SCALP processor.

The SCALP implementation has shown that by using
explicit forwarding an efficient asynchronous implementa-
tion is possible. On the other hand the usefulness of the
explicit forwarding model for programming remains
unproven; further work such as the development of a com-
piler is required to understand its potential.

10. References

[1] K. van Berkel, R. Burgess, J. Kessels, A. Peeters, M.
Ronken, F. Schalij, R. van de Weil, “A Single-Rail Re-
implementation of a DCC Error Detector Using a Generic
Standard-Cell Library”, Proceedings of the Second Working
Conference on Asynchronous Design Methodologies, Lon-
don, U.K., 1995, pps 72-79.

[2] J. Bunda, W. C. Athas, D. Fussell, “Evaluating Power
Implications of CMOS Microprocessor Design Decisions”,
Proceedings of the 1994 International Workshop on Low
Power Design, Napa, California, pps 147-152.

[3] E. Brunvand, “The NSR Processor”, Proceeding of the
26th Annual Hawaii International Conference on System
Sciences, pps 428-435, Maui, Hawaii, 1993.

[4] H. Corporaal, “Evaluating Transport Triggered Archi-
tectures for scalar applications”, Microprocessing and
Microprogramming, No 38, pps 45-52, 1993.http://
einstein.et.tudelft.nl/~heco/documents/
documents.html

[5] P. B. Endecott, “Processor Architectures for Power Effi-
ciency and Asynchronous Implementation”, M.Sc. thesis,
University of Manchester, U.K., 1993.http://
www.cs.man.ac.uk/amulet/publications/
thesis/endecott93_msc.html

[6] P. B. Endecott, “SCALP: A Superscalar Asynchronous
Low-Power Processor”, Ph.D. thesis, University of Man-
chester, U.K., 1995, to be submitted.http://
www.cs.man.ac.uk/~endecotp/research/

[7] J. Kessels, “VLSI Programming of a Low-Power Asyn-
chronous Reed-Solomon Decoder for the DCC Player”,
Proceedings of the Second Working Conference on Asyn-
chronous Design Methodologies, London, U.K., 1995, pps
44-52.

[8] R. F. Lyon, “Cost Power and Parallelism in Speech
Signal Processing”, Proceedings of the IEEE 1993 Custom
Integrated Circuits Conference, San Diego, California.

[9] S. V. Morton, S. S. Appleton, M. J. Liebelt, “ECSTAC:
A Fast Asynchronous Microprocessor”, Proceedings of the
Second Working Conference on Asynchronous Design
Methodologies, London, U.K., 1995, pps 180-189.

[10] N. C. Paver, “The Design and Implementation of an
Asynchronous Microprocessor”, Ph.D. Thesis, Department
of Computer Science, University of Manchester, U.K.,
1994. http://www.cs.man.ac.uk/amulet/pub-
lications/thesis/paver94_phd.html

[11] D. Pountain, “Transport-Triggered Architectures”,
Byte, February 1995, pps 151-152.

[12] W. F. Richardson, E. Brunvand, “The NSR Processor
Prototype”, Technical Report UUCS-92-029, University of
Utah, 1992. ftp://ftp.cs.utah.edu/techre-
ports/1995/UUCS-92-029.ps.Z

[13] W. F. Richardson, E. Brunvand, “Fred: An Architec-
ture for a Self-Timed Decoupled Computer”, Technical
Report UUCS-95-008, University of Utah, 1995.ftp://
ftp.cs.utah.edu/techreports/1995/UUCS-
95-008.ps.Z

[14] R. F. Sproull, I. E. Sutherland, C. E. Molnar, “Counter-
flow Pipeline Processor Architecture”, IEEE Design and
Test of Computers, Volume 11, No 3, 1994. Also as Sun
Microsystems Laboratories Inc. Technical Report SMLI
TR-94-25.

nous implementation of conventional instruction sets
difficult. The idea of explicit forwarding can be used to
overcome this problem.

In a superscalar processor explicit forwarding can have
other benefits. A significant proportion of the complexity of
the instruction decoding and issuing logic is concerned with
comparing register specifiers to detect dependencies
between instructions, activating forwarding paths, and
delaying execution until operands are available. With
explicit forwarding this complexity can be significantly
reduced.

Figure 8 shows the structure of an asynchronous super-
scalar processor with explicit forwarding. There is one
explicit forwarding queue associated with each operand
input to each functional unit. All operands are provided by
explicit forwarding; there is no global register bank. Func-
tional units are activated when an instruction and the
appropriate operands have arrived at its input. Information
about where instruction results should be sent is indicated
explicitly in the instructions. The role of the instruction
issuer is consequently significantly simplified: it merely dis-
tributes instructions from the input stream to the appropriate
functional units’ instruction queues.

This architecture has significant similarities to the idea
of transport triggered architectures (TTAs) [4] [11]. TTAs
are synchronous processors whose instructions specify
move operations from functional unit outputs to functional

Figure 8: A Superscalar Processor with Explicit
Forwarding

Result QueuesFunctional

Units

Instruction and Operand

Queues

Result Router

In
st

ru
ct

io
n

Is
su

er

Instruction

Fetch
Memory

unit inputs. Functional units are activated when operands
are moved to their “trigger” inputs. These authors have
developed a “C” compiler for their processor and report
encouraging results.

8. SCALP

Many of the ideas presented here are embodied in an
asynchronous processor design undertaken by the author
called SCALP. SCALP stands for “Superscalar Asynchro-
nous Low-Power Processor”. The principal objective of the
SCALP design is high power efficiency. SCALP derives
high power efficiency from four main architectural ideas:

• Asynchronous implementation. Asynchronous logic
is believed to be more power efficient than
synchronous logic because asynchronous circuits can
waste fewer signal transitions than equivalent
synchronous circuits. Furthermore asynchronous
logic is better suited to operation in variable demand
systems and in systems with dynamic supply voltage
scaling. A good example of the power saving that
can be obtained through the use of asynchronous
logic is given in [1] and [7].

• Parallelism. In CMOS, power consumption is
proportional to the square of the supply voltage
whereas performance is directly proportional to the
supply voltage. If performance is kept constant by
increasing the parallelism in the processor as the
supply voltage is reduced, the power consumption
will decrease as parallelism is increased. [8]

• High code density. A significant proportion of the
power consumption in a processor is proportional to
the instruction fetch bandwidth, and by increasing
the code density the amount of instruction fetch
traffic per unit of computation performed is reduced.
[2] [5]

• Variable width datapath operations. Many of the
values operated on by a processor are small numbers
or characters, yet in conventional systems the whole
of the 32 bit datapath is always activated. SCALP
provides narrower operations that activate only as
much of the datapath as is necessary.

Explicit forwarding aids the first three of these require-
ments. Preceding sections have explained how explicit
forwarding helps asynchronous implementation by permit-
ting forwarding and helps superscalar implementation by
simplifying the superscalar instruction issuer. Code density
is improved because the explicit forwarding information
requires fewer bits than the register specifiers of conven-
tional instruction sets.

placed into the forwarding path and when read from the
value is read from the forwarding path.

The limitation of this scheme is that each value may be
read only once. This can be overcome by allowing reads
from the forwarding paths to optionally leave a copy of the
value they have read in place for a subsequent instruction to
read.

To allow greater freedom in the use of the mechanism,
fifo queue stages may be added to the forwarding path to
provide storage for several values. It is also possible to
incorporate more than one such path that can be accessed
using different register identifiers.

When extended in this way it seems possible that the
storage in the forwarding paths could become the main form
of short-term storage, with the register bank simplified to a
single ported memory accessed only by a subset of the
instructions and used for medium term storage. The organi-
sation of this sort of processor is shown in figure 7.

Number of uses Proportion of results

0 17 %

1 64 %

2 11 %

3 4 %

4 2 %

>4 2 %

Table 1: Number of times each instruction result is
subsequently used

Interval / instructions Proportion of results

1 45 %

2 10 %

3 8 %

4 3 %

>4 34 %

Table 2: Interval before the last use of the result of an
instruction

One interesting property of this type of processor is that
incorrect code can cause the processor to deadlock by read-
ing from a queue which is empty or by writing to a queue
which is full. It may be desirable to use a watchdog timer or
similar to reset the processor after some significant period of
inactivity indicating internal deadlock. This may seem dra-
matic but it is the author’s opinion that faulty code is easier
to debug when it stops in this way than when it continues to
execute beyond the point of error without indicating a
problem.

7. Superscalar Parallelism

Pipelining is an attractive form of parallelism because
introducing pipelining to a datapath has a relatively low
hardware cost. Unfortunately the concurrency that can be
obtained using pipelining is limited and at some point other
more expensive forms of concurrency must be considered.
Superscalar parallelism is one example.

A superscalar processor has several functional units and
provides concurrency by having instructions in some stage
of execution in more than one functional unit at a time. The
amount of concurrency available is often limited by the
processor’s ability to find independent instructions that may
be executed in parallel. To extend this limit complex tech-
niques including out of order issue and register renaming
must be employed. This results in significant complexity in
the processor’s instruction issuer.

In one way superscalar parallelism is more attractive to
asynchronous implementation than pipelining. In an asyn-
chronous pipeline the throughput is limited by the speed of
the slowest stage; however when the stages are arranged in
parallel the typical throughput is determined by the typical
speed. All synchronous systems are limited by the slowest
stage’s worst-case speed.

Superscalar processors must employ forwarding both
within and between the functional units. As with pipelining
the presence of forwarding can make the efficient asynchro-

Figure 7: Processor Organisation with Explicit
Forwarding

Processing Pipeline

Forwarding Queues

The Counterflow Pipeline Processor [14] uses a second
pipeline flowing in the opposite direction to the main
instruction pipeline to carry results from earlier instructions
to be used as operands by later instructions. This solution is
very general but relies on large numbers of register specifier
comparators to detect values to be used as operands and
complex synchronisation between the two pipelines.

5. Conditional Forwarding

Operands provided via forwarding paths are not always
used by the stages to which they are sent. Typically the
receiving stage uses a multiplexor to select between the for-
warded value and a value received from the previous stage.
This multiplexor is controlled by a bit generated during
instruction decode that indicates whether forwarding should
be used.

In principle this conditional nature of forwarding could
be used to improve the performance of asynchronous for-
warding pipelines. When forwarding is not to be used no
additional synchronisation is carried out and performance is
similar to that of a simple asynchronous pipeline. When for-
warding is required temporary additional synchronisation
can be introduced to allow the forwarded data to be
transferred.

Such a scheme could be implemented as shown in
figure 6: the instruction decode generates two bits for each
instruction, one (USE_FWD) indicating that the instruction
must use a forwarded value produced by a preceding instruc-
tion and another (GEN_FWD) indicating that the instruction
must send its result to be used by a following instruction. At
the pipeline stage where the forwarded data is used a “con-
ditional pipeline merge” (CPM) element synchronises with
forwarded data only when the USE_FWD bit is asserted. At
the pipeline stage where the forwarded value is created a
“conditional pipeline fork” (CPF) element sends the for-
warded value only when the GEN_FWD bit is asserted.

The flaw with this proposal is that with conventional
instruction sets it is impossible for the instruction decoder to

Figure 6: An Asynchronous Pipeline with Conditional
Forwarding

LC
D

LC
D

C
P
M

L LCL CLL CL L CL

LC
D

LC
D

USE_FWD

C
P
F

GEN_FWD

generate the GEN_FWD bit. If a record of previously issued
instructions is maintained the USE_FWD bit can be com-
puted by comparing the operands of the current instruction
with the results of the previous instructions - this technique
is used by synchronous forwarding mechanisms. To com-
pute the GEN_FWD bit it would be necessary to know the
operand registers of future instructions before they are
issued.

6. Explicit Forwarding

One solution to this problem is to change the nature of
the instruction set so that the need to forward a value can be
detected by the instruction decoder. This may be done by
giving more information about the way in which a result will
be used in the instruction that produces that result. This
technique is referred to here as “explicit forwarding”.

A number of simple instruction set extensions have
been considered to permit explicit forwarding. In the sim-
plest case an additional bit is associated with each
destination register specifier indicating whether this value
should be forwarded. The pipeline structure needed is sim-
ilar to that shown in figure 6, but the GEN_FWD bit is read
directly from the instruction.

When branch instructions occur between instructions
producing results and those consuming them, with this
simple scheme the GEN_FWD bit can be thought of as a
“forwarding prediction” bit. If GEN_FWD is asserted but a
subsequent branch means that the forwarded value is not
actually needed, no harm is done except that some additional
unnecessary synchronisation has been performed. On the
other hand if a branch means that a value that could have
been forwarded has not been, the value can be read from the
register bank with a small performance penalty.

More complex proposals take the idea further. A signif-
icant proportion of the results computed by a processor are
used only by instructions that follow closely after. This
property has been measured for SPARC code in [5] and is
summarised in tables 1 and 2. When the result of an instruc-
tion is used only by means of forwarding there is no need to
write that result into the register bank at all, and hence no
need for a register specifier. This forms the basis for another
form of explicit forwarding: a special register identifier is set
aside for explicit forwarding. When written to the value is

speed can match the actual delay in that case. A
synchronous pipeline must always allow for the
worst case delay.

• When the delays in the different pipeline stages are
unequal the pipeline’s latency is limited by the sum
of the individual stage delays. A synchronous
pipeline is limited by the delay in the slowest stage
multiplied by the number of stages.

• The clock speed in a synchronous system must be
chosen to allow for the worst case supply voltage,
temperature, process variation, and clock skew
conditions. In an asynchronous system the
performance obtained at a particular time will match
the conditions in that system at that time.

3. Pipelines in Processors

The simple pipeline described above is common in
applications such as digital signal processing. On the other
hand in general purpose processors pipelines are made more
complex by the presence of “forwarding” paths. Forward-
ing paths allow results to be used by closely following
instructions without having to pass through the entire pipe-
line. The synchronous implementation of forwarding is
shown in figure 4.

Figure 2: A Simple Asynchronous Pipeline with
Matched Delays

Figure 3: A Simple Asynchronous Pipeline with
Completion Detection

Figure 4: A Synchronous Pipeline with Forwarding

LC
D

Req

Ack

LC
D

Req

Ack

LC
D

Req

Ack

L CL L CL L CL L CL

LC
D

go done go done go done go done

L CL L CL L CL L CL

LC LC

Req

Ack

LC

Req

Ack

LC

Req

Ack

L CL L CL

CLK

L LCL CL

In figure 4, stage 2 uses as inputs the results of stages 1
and 3. Because all latches are synchronised the data from
stages 1 and 3 are available simultaneously at the input to
stage 2.

In an asynchronous pipeline this simple scheme cannot
be used because the results of stages 1 and 3 are not gener-
ally available at the same time. Additional timing logic is
required as shown in figure 51. A Muller C element2 is used
to combine the requests from stages 1 and 3. The acknowl-
edge from stage 2 is sent to both stage 1 and stage 3. Stage
3 must combine the acknowledge signals from both stages 4
and 2 using a second Muller C element.

The additional timing constraints in this circuit make it
adopt a form of locally synchronous behaviour, constraining
the progress of instructions along the pipeline. This leads to
a reduction in performance compared with the simple asyn-
chronous pipeline.

4. Forwarding in Other Asynchronous
Processors

The problems with forwarding lead to a number of
interesting solutions in existing asynchronous processors.
AMULET1 [10], NSR [3] [12], Fred [13] and ECSTAC [9]
all detect data dependencies during instruction decoding and
stall the pipeline until the required result has been written
back to the register bank. This leads to significant perform-
ance degradation as data dependencies between closely
adjacent instructions are common.

AMULET2 provides a single forwarding path around
the ALU. Because this path is around only one pipeline
stage the timing issues are somewhat simplified.
AMULET2 also provides more complex conditional syn-
chronisation on the result of the last load instruction.

1. Some additional logic is required to ensure correct initialisation.

2. A Muller C element behaves as follows: when both inputs are
high, the output becomes high. When both inputs are low, the
output becomes low. When the inputs differ the output retains its
previous level.

Figure 5: An Asynchronous Pipeline with Forwarding

LC
D

LC
DC

C

L LCL CLL CL L CL

LC
D

LC
D

Abstract

This paper considers the implementation of pipelining
and superscalar parallelism in asynchronous processors.
The performance of simple pipelines and superscalar
structures is improved by asynchronous implementation.
The organisation of general purpose processors is more
complex: they include forwarding paths joining non-adja-
cent pipeline stages. Unfortunately the additional
synchronisation required by forwarding paths is detrimen-
tal to performance, yet not having forwarding is also
detrimental. A solution called conditional forwarding is
proposed but it is found that conventional instruction sets
do not permit conditional forwarding. To allow this tech-
nique to be used an alternative programming model called
explicit forwarding is introduced. In a processor with
explicit forwarding the destination to which the result of
an instruction must be sent is indicated explicitly by the
instruction; in contrast in a conventional instruction set
the routing of the result of an instruction is deduced from
the register specifiers of adjacent instructions. The paper
concludes by describing an experimental processor called
SCALP (Superscalar Asynchronous Low-Power Proces-
sor) which uses explicit forwarding.

1. Introduction

The work described in this paper was motivated by the
following observation: many of the fundamental architec-
tural features of conventional instruction sets are based
solidly on the expectation that their implementation will be
synchronous. Despite this, most recent asynchronous proc-
essor designs choose to implement a conventional
instruction set: the AMULET processor [10] implements the
ARM instruction set, the Counterflow Pipeline Processor
[14] implements the SPARC instruction set, and others
implement similar “RISC” instruction sets.

This paper sets out to re-evaluate some architectural
structures with a view to asynchronous implementation.

Many areas deserve attention, but the specific focus here is
on two familiar forms of concurrency, pipelining and super-
scalar parallelism.

2. Simple Pipelining

Figure 1 shows the familiar structure of a synchronous
pipeline with latches (L) and combinational logic blocks
(CL). All latches are controlled by a single global clock
signal and so operate simultaneously.

This form of pipeline is readily implemented asynchro-
nously as shown in figures 2 and 3. The latches (L) and
combinational logic blocks (CL) are the same as in the syn-
chronous pipeline but the timing is controlled quite
differently. Each latch has an associated latch control circuit
(LC). The latch control circuit opens and closes the latch in
response to request (Req) signals from the previous stage
and acknowledge (Ack) signals from the following stage.

The request signal from the latch control circuit must be
delayed by an amount greater than the corresponding data
delay in the combinational logic. This may be done either
using a matched path delay element (D) as shown in figure
2 or by using some form of completion detection as shown
in figure 3.

The asynchronous pipeline’s performance can poten-
tially exceed that of the synchronous pipeline. This is a
result of at least three effects:

• When delays are data dependent, as in the case of an
adder for example, the asynchronous pipeline’s

Figure 1: A Simple Synchronous Pipeline

L CL L CL L CL L CL

CLK

Parallel Structures for Asynchronous
Microprocessors

Philip B. Endecott

Department of Computer Science, University of Manchester, U.K.

pbe@cs.man.ac.uk

