
A LOW-POWER ASYNCHRONOUS DSP ARCHITECTURE
FOR DIGITAL MOBILE PHONE CHIPSETS
Mike Lewis, Linda Brackenbury *

Abstract
An architecture is presented for a digital signal processor (DSP) intended for use in
digital mobile phones. In this application, it is necessary to balance the requirement of
high processing throughput with the demand of low power for extended battery lifetime.
These requirements are addressed by a multi-level power reduction strategy, involving
the use of a parallel asynchronous architecture, a configurable compressed instruction set,
a large register file, the use of sign-magnitude arithmetic, and reduced support for
interrupts.

1. Introduction
The market for mobile communications devices, particularly mobile phones, has become
huge in recent years and is still growing rapidly. Associated with the growth of this
market has been a vast drop in price for the phones themselves, with a myriad of different
products from various manufacturers competing in the marketplace. The requirement for
extended battery lifetime with reduced battery size makes this a key application for low-
power VLSI design techniques.

Modern digital cellphones, conforming to the European GSM standard, execute complex
control and signal processing functions, to perform filtering, error correction, speech
compression and decompression algorithms (codecs), protocol management, and
increasingly additional functions such as voice recognition or multimedia capability. This
workload means that the digital components of these systems consume a significant
proportion of the total system power. A typical basis for these digital components is a
single chip, containing a microprocessor coupled by an on-chip bus to a DSP core. The
microprocessor performs the control tasks, while the DSP is responsible for the intensive
numerical processing. A study of the literature for one of these systems, produced by an
industrial collaborator, showed that the DSP is responsible for approximately 65% of the
total power consumption when engaged in a call using a half-rate speech codec. It can be
expected that future generations of GSM chipsets will require even greater throughput
from the DSP, to implement advanced low bit-rate codecs and to incorporate additional
user features. This means that the total proportion of the power required by the DSP is
likely to increase.

To tackle this problem a study is underway, as part of the EPSRC/MoD Powerpack
project, investigating the design of an asynchronous digital signal processor to address
the requirements for performance, power consumption and EMC arising from this
application.

* AMULET Group, Department of Computer Science, University of Manchester, Oxford Road, Manchester
M13 9PL. Email {lewism,lbrackenbury}@cs.man.ac.uk

2. Sources of power consumption
Power dissipation in an on-chip processing system as described here can be broken down
into two main areas. The first main area is the power cost associated with accesses to the
program and data memories. This is made up of the power consumed within the RAM
units themselves, and the power required to transmit the data across the large capacitance
of the system buses. Memory accesses can form the largest component of power
consumption in data-dominated applications [2],[3].

The second main area of power consumption comes from the energy dissipated in
performing the actual operations on the data within the processor core. This is made up of
the energy dissipated by transitions within the datapath associated with the data, and the
control overhead required to perform the operations.

3. A new DSP for GSM chipsets
Our collaborator has suggested that the next generation of GSM chipsets will require
more than 100MIPS throughput from the DSP. An initial target for throughput of
160MIPS has been chosen for the new design, which is intended to comfortably meet the
requirements for this application. Should the achieved throughput exceed the
requirements of a given situation, then the supply voltage could be reduced to give
quadratic power reduction. However, if the supply voltage is fixed then the use of
asynchronous design means that excess speed will be converted into power savings
during the idle period at the end of the processing block. Asynchronous circuits
inherently consume virtually no current when idle, due to the lack of a clock, and can go
from idle to full activity instantaneously. Synchronous circuits use clock gating
techniques to stop the clock; however, the idle time at the end of a processing block
would not be sufficient to allow clock gating to be used. The properties of asynchronous
design mean that the challenge can be thought of in terms of minimising the energy
required for the given processing task.

DSPs are traditionally optimised for performing tight numerical processing kernels and
are traditionally less good at control-oriented code. In the proposed application, the DSP
will be working alongside a general purpose processor. The DSP can thus be operated as
a coprocessor, performing tasks as directed by the microprocessor. The reduced control
overhead greatly simplifies design of the DSP, thereby improving power efficiency.

4. Processor architecture
It has been shown that energy-efficient high performance circuits can be produced by
exploiting parallelism [1]. This reduces the switching rate at each functional unit, with
benefits both for power consumption and reduced electromagnetic interference. Silicon
die area can be traded for increased speed, allowing simpler and more efficient circuits to
be used or the supply voltage to be reduced. Silicon area is rapidly becoming less
expensive; indeed, one of the challenges is to actually make effective use of the vast
number of transistors available to the designer. This makes parallelism and replication
very attractive, and for this reason a parallel structure with four independent functional
units has been chosen. Analysis of key DSP algorithms showed that they can be readily
parallelised, and multiple functional units allow algorithmic transformations to exploit
correlation between successive data for reduced power consumption [4],[5]. The
functional units need not be identical, meaning that different units can be substituted for a

particular application. Asynchronous design makes this task easier, as the interfaces
between blocks are defined independent of any global timing constraints. A block
diagram of the architecture is shown in Figure 2.

Figure 1 Block diagram of DSP architecture

4.1. Reducing memory accesses

Having chosen a parallel architecture, a means of distributing instructions to the available
resources is required. In contrast with general-purpose microprocessors, DSP activity can
often be characterised by frequent repetition of a few fixed algorithms. This makes it
possible to store parallel instruction encodings in advance, within configuration
memories internal to the DSP. These configuration words can then be recalled with a
single 32 bit compressed instruction, which allows a throughput of 160MIPS to be
sustained from a system speed of only 40MIPS. A side-effect of the highly compressed
instructions means that it is possible to execute complex DSP algorithms entirely from
within an internal buffer of 32 instructions. The program memory is only accessed for the
first pass through the loop, with subsequent iterations being supplied by the instruction
buffer. This also maintains the loop counter, meaning that subsequent stages see an
entirely flat instruction stream.

The configuration memories are located within the functional units, to minimise the
capacitance of the associated wiring, and consists of two banks of 128 words. The first
bank is the operand memory, which selects the sources and destinations of the data for
each operation. The second bank is the opcode memory, which sets up the operation to be
performed. The memory is partitioned in this way to maximise the reuse of configuration
words. In addition, any component of the operation can be disabled from within the
compressed instruction word, which also helps allow the reuse of the configuration
words. An operation is defined by a particular operand address and a particular opcode
address, used by all of the functional units.

Register Bank
Load-store unit

Instruction
buffer

Instruction
Decode

Index
Registers

Functional
unit

Functional
unit

Functional
unit

Functional
unit

Index register values

Opcode

X/Y mem

P mem

Interrupts

Operand

A similar technique, where complex instructions are stored in a configuration memory,
has been developed for a commercial DSP [6]. However, the authors believe that the
design proposed here is significantly different, being more modular as the configuration
memories are integral to the functional units, and more flexible as individual instruction
components can be enabled and disabled, and few constraints are placed on the design of
the functional units.

Having chosen a parallel structure, the next challenge is to supply data to each functional
unit at a sufficient rate while keeping the power consumption to a minimum. The
memory hierarchy approach works well for DSPs, as many algorithms display strong
locality of reference or work on small blocks of data. For this reason, a large register file
of 256 by 16 bit words was chosen, segmented into two banks labelled X and Y to match
memory. The segmentation is algorithmically convenient in many cases, and also reduces
the number of ports required for each bank.

The large register file allows for a high degree of data reuse, and a large explicit register
file offers a significant advantage over a cache and fewer registers as is common in
traditional DSP architectures. In the programmer’s models of most traditional DSP
architectures, operands are treated as residing within main memory and are accessed by
indirect reference through address registers. These must be wide enough to address the
entire possible data space of the processor, which is 24 bits in this design. After each
operation, it is generally necessary to update these address registers to point to the next
data item, which means that even if the data resides in the cache there is still a significant
power consumption associated with these updates, and this power must be added to the
power consumed by the cache lookup. The total power consumption from these factors is
potentially large, as each functional unit can require up to two operands per operation.

In the new architecture, the address registers are used only for loading or storing data in
bulk to and from the data register file; 32-bit ports to both X and Y memory allow up to 4
registers to be transferred simultaneously. Accesses to the data are then made indirectly
by means of 7-bit index registers, which can be updated much more quickly and at much
lower power cost than the wide address registers.

The combination of the large register file and the compressed instruction buffer can
massively reduce the number of memory accesses: for example, it is possible to perform
a 64-point complex FFT with only a single pass through both the program and data
memory.

4.2. Reducing core power dissipation

Having tackled the power cost associated with memory transfers, the next area of attack
is the power consumed within the processor core. It has been shown that sign-magnitude

should make the real reduction even greater. Also, the extra complexity for sign-
magnitude arithmetic is in minimum-geometry sections of the datapath and should
contribute little to the total power consumption. For these reasons, sign-magnitude
representation of data was chosen for the design of the functional units.

Asynchronous design techniques were chosen for the processor, based on the principle of
micropipelines [7] where each processing stage negotiates the passing of data to its
neighbours by means of request and acknowledge handshake signals. Architecturally,
there is no overriding reason why synchronous design techniques could not have been
chosen, but asynchronous design has a number of compelling advantages. Firstly, the
lack of a clock distribution network eliminates the associated power consumption, and
means that clock gating is unnecessary as mentioned earlier. Secondly, asynchronous
designs emit very much less electromagnetic radiation than synchronous designs, which
is very important for wireless devices. Finally, asynchronous design gives a modular
design style, which allows arbitrarily complex designs to be produced by means of well-
defined interfaces between blocks, without worrying about the problems of global clock
distribution.

5. Conclusions
An overview has been given of an architecture for a low-power asynchronous DSP for
GSM mobile phone chipsets. This demonstrates the need for a multi-level approach to
low power VLSI design, tackling power consumption at all stages from the algorithmic
and architectural down to the circuit level. In the case presented, the characteristics of the
application allow for particularly dramatic reductions in accesses to both the program and
data memories, and the type of data processed allows sign-magnitude numbering to
exploit correlation between data. Schematic design of the processor is currently
underway, with completion expected early next year and layout-level design to follow.

6. Acknowledgements
This work formed part of the EPSRC/MoD Powerpack project, grant number
GR/L27930. The authors wish to express their gratitude for this support.

References
[1]

th

