A Result Forwarding Mechanism for Asynchronous Pipelined Systems

D.A. Gilbert, J.D. Garside

Department of Computer Science, The University of Manchester
Oxford Road, Manchestev13 9PL, U.K.
{gilbertd, jgarside}@cs.man.ac.uk

Abstr act the next cycle before it can be read again. Forwarding can
be used beneficially with or without out of order execution.
Forwarding can be especially useful if particular
instructions take a long time to complete. For an integer
processor the most numerous such operations are memory
transfers which typically require at least one extra cycle
(and possibly more). This imposes a delay inateple-
tion (or “retirement”) of the memory operation which can
delay following instructions even though they operate
entirely within the processaolt is possible to allow subse-
quent, faster instructions to continue and partially overtake
memory operations. However it can be important to ensure
that the instructions complete in the same order as they
Swere placed in the code to ensure that the state of the sys-
tem can be recovered if the memory operation causes an
exception rather than completing as expected. In this case
the memory transfer and any following (speculative)
1. Introduction results must be discarded so that the system state is pre-
served and the aborted operation can later be restarted.
Inter-instruction dependencies can cause severe degra Forwarding can allow a number of instructions with
dation to the performance of a microprocessdost of dependencies (issued in order) to be evaluated whilst a load
these dependencies arise from an instruction needing ainstruction is outstanding. A simple model is illustrated in
operand produced by a closely preceding instructionfigure 1, where the result of the addition, destined for R3,
although the ordering of result production is also impor- may be sped on to the subsequent instruction. Note that in
tant. In the simplest model instructions are delayed until athis figure the writing of the register results has been kept
dependency is resolved, resulting in a loss of overall per-in order
formance. Result forwarding is a method used to alleviate,yjiinout forwarding
the penalty caused by these dependencies.
It is possible to reduce the number of dependencies by-DR Rl addr [read|eval Imem|write

Modern, fast miasprocessors a deeply pipelined to
enhance their performance. Thus they cannot éffor
wait for each instruction to complete befostarting the
next. When intemstruction dependencies errencoun-
tered it is essential that data eforwarded from their
point of poduction to wher they ae needed as rapidly as
possible. This has been aptem in asynclunous poces-
sors because of the lack of syrafisation between the
units poducing and consuming the data. This paper
presents a solution to this gislem. The mechanism
described allows the depth of speculative execution to b
increased, immving memory efficiency by hiding the load
latency yet still allowing pacise exceptions.

reordering instructions to separate dependent instruction/\?° =3 R3, R2 read|eval write .

- . . MWV R4, R3 read| eval |write
as far as is possible. Further improvements can be made
instructions are issuedut of oder [8] although this Time

requires considerable hardware to implement. HoweverWith forwarding

instruction reordering does not usually solve the depend- o R1, addr [read]eval[memlwrite
ency problem completely and it is still beneficial to be able p\pp g3 R3, R2 read|eval write
to reuse results quickly and — in a pipelined system —vov R4, R3 forw | eval |write|
directly at the point of their consumption. This is the proc- . ..

ess of resulforwarding [7] and is typically used to elimi- Figure 1: Performance benefits from
nate the need to write a register in one cycle and wait for simple forwarding

Result forwarding requires some synchronisation performance gain but is limited and only useful for uncon-
between the pipeline stage producing the data and the stacditional results. A similar mechanism is employed in the
requiring them. This problem is easily solved using the glo- Hades processor [3] although this benefits from last result
bal clock in synchronous systems; it is harder to achieve irregisters in each of several functional units. AMULET?2
an asynchronous environment because of the absence @lso supports a load forwarding register which gives a sim-
any interunit timing coherency ilar benefit for loaded data.

This paper presents an implementation ofearder A radically diferent mechanism is used in the counter-
buffer [10], [8] which solves the problem of both result flow pipeline architecture . This sends results ‘back-
ordering and result forwarding in an asynchronous envi-wards’ up the pipeline so that close register dependencies
ronment. Dependency hazards are avoided withoutrapidly meet their operands coming the other .way
recourse to register locking and — in consequence — thiDesigned solely for high performance this mechanism
resulting latency of the circust’ implementation is relies on numerous arbiters and mamigle buses. The size
expected to be reduced significantipe resultant structure of this structure renders it unsuitable for small, low power
will form a key part of the AMULETS3; a third generation processor implementations such as AMULETS3.
asynchronous implementation of the ARM processor [1]. Attempts have also been made to exploit the asynchro-
nous, pipelined environment to avoid register storage and
only forward results. An example is the SCALP architec-
ture [4]. However this relies on a purpose designed instruc-
tion set and is thus not appropriate for implementing a
currently existing commercial architecture.

2. Asynchronousregister forwarding

2.1: Earlier asynchronous dependency avoidance
techniques

In AMULET1 [5] operations are issued in order and 2 2 Asynchronous FIFOs

dependencies resolved by waiting for register updates 1 gate, most asynchronous processors have been engi-
using register locking [9]. Although functional this is slow oqreq using Micropipeline [12] style FIFOs which pass

- produc.:ing.frequent dependgncy stalls — and the lockinEyata from latch to latch (fig. 2). This mechanism is conven-
mechanism increases the register read cycle time. The lon,o ¢ 45 it only requires local connectivity and its control

memory latency is alleviated by causing the memory sys-qgic is simple. The disadvantages are that the latency
tem to produce a fault/rfault response early in the mem- j,creases with the length of the FIFO, power is consumed
ory cycle and proceeding accordingly; a memory operation;, ghfiing values along the pipeline, and that the location

is then allowed to complete out of order as it is known that ot the data — once entered — is unknown until they exit. This

it will complete. The penalty imposed by this is low in a yeclydes any attempt at reading data in the pipeline except
primitive system but increases with the complexity of the ;¢ ihe single exit port.

Memory Management Unit (MMU); lge penalties would

result if, for example, the access caused ‘table-walking’ in r-———-- - - - - - = i
the MMU or if the cycle completion depended on external | __ __ _ |
factors such as waiting for a bus timeout. Loaded data is | |
returned asynchronousiyut of order with the purely inter- =" | > > T
nal operation stream and is multiplexed into the register | = - || —
write stream using an arbitdthis mechanism, and its asso-
ciated non-determinacwas an added source of complica-
tion and required careful design to avoid the possibility of
complex deadlocks. There is also a potential hazard wher aAn alternative FIFO design distributes the input data to
writing to the same register from fiifent sources (a write- 3 set of latches, enabling each in turn, and recovering the

afterwrite hazard) which is only avoided by timing data by multiplexing in a similar manner (fig. 3). This is the
assumptions.

AMULET?2 is basically similar to AMULET1, although r— — — — — — — — — — — — — o

some improvements were made, including removal of the | |
write-afterwrite hazard by a more sophisticated register | |
locking mechanism. It also incorporates limited forwarding | |
measures by employing a “last result” register at the outpul

of the ALU [6]. If the instruction decoder detects that an | Jl -

operation reuses the result from the immediately precedinc L= == - T T ==
instruction the register read is bypassed,; this provides som Figure 3: “Queue” FIFO structure

Figure 2: Simple FIFO structure

familiar “circular bufer”, referred to hereinafter simply as system this allows several results to be outstanding at any
aqueue for convenience. This def's from increased con- time. The location of the queue in a simple processor struc-
trol and wiring complexitybut it has the potential advan- ture is shown in figure 4.
tages of a lower latency from input to output and reduced If evaluation times varycomputations can be parallel-
power consumption because the individual latches makeised because the queue can act as a reordfr. bLifis
fewer transitions. For these reasons sucfebsihave been requires multiple ports into the queue (as shown in figure
proposed for asynchronous systems before [14], [2]. 5) which may operate asynchronously because the alloca-
The queue also has the attractive property that datetion process has guaranteed that write conflicts cannot
remain unalteredfter being copied out until they are over- occut The “tail” process is unaltered and works on an
written by a new input. This lifetime is a fixed number of ordered, serial stream.
input operations (equal to the length of the queue) and is Forwarding is required when an operation ugdarg
independent of the copy out process. Once a location isprocessing requires a recent result whichy not have
allocated it is known that either now or in the near future it been returned to the general register bank. The queue posi-
will contain some particular data. This allows forwarding tion of this result is already known and the operation can
via a request which may need to wait for a result to arriveexamine this location; it may be able to continue at once or
but can never be too late to gather its data. This is a singleit may have to wait until the result is inserted before con-
bounded problem and is easily soluble in an asynchronoutinuing.
environment. The only complication to this mechanism is that not all
A queue acting as a simple FIFO can be described irallocated queue destinations receive valid data. After allo-
terms of a pair of processes. The first (*head”) processcation and issue an instruction may be invalidated due to an
waits for new data to arrive, allocates space and copies thabort, a condition code failure, the discovery that it was
data into that space. The second (“tail”) process seeks datincorrectly fetched following a branch, etc. Thus it is some-
in the queue and copies them out to the subsequent unitimes necessary to mark data in the queue as invalid. As
These processes are unsynchronised and work indepenthese should not be forwarded it is important to have a
ently, subject to the constraint that a queue of size “N” must“default” value.
contain between 0 and N data packets. In this way severe The register bank is always read regardless of any for-
entries may be outstanding at any time, the only provisowarding operation. This provides a value if there is no reg-

being that the head must not “lap” the tail. ister to forward, either because the register is invalid or
because that register is no longer in the queue. As the reg-
2.3. Result Forwarding ister bank updates are asynchronous the value read from

the register bank may be the correct value, a previous value
or even changing when read. However in all cases where
there may be doubt a forwarded value will replace it.

To facilitate forwarding from an asynchronous queue
the simple model described above must be elaborated. Th
“head” process is split into its two components, so that
space is allocated for a result before processing com-
mences, some time before the result arrives. In a pipelinec

ook up—®{Allocat

| I TTT1

—| Registers Processing .
- Arrival

Forward

Writeout

Figure 4: Queue position in processor cycle

Lookup

Allocate

9

Y
5 L
Writeout
Figure 5: Details of queue showing various processes
24.Processmodel _ ~Arrival: Results arriving at the queue carry their own
There are now five distinct processes associated witrqueue address. Although there may be multiple write ports
queue operation (fig. 5): the addresses are guaranteed to be non-conflicting by the

Look up: When an instruction is decoded its source allocation process and, when the data arrive, the previous
registers are examined to see if they are present (or shouldata is known to have been both copied into the register
soon be present) in the queue. This is performed by a smabank and forwarded as required. They may therefore be
CAM (Content Addressable Memory) structure which overwritten and the queue location implicitly marked as
holds a destination register number for each queue. entry“full” for the write process to detect. The result may also be
The resulting bit mask identifies zero or more possible datétagged as invalid at this time if the instruction has been
sources. By increasing the number of CAM comparisons itgbandoned.
is possible to forward several values simultaneously Writeout: The write process copies results back into

Allocation: Once the address mask is obtained thethe register file. It examines queue locations in a cyclic
instructions own destination address(es) can be writtenfashion and waits until the next candidate is “full”. It then
into the CAM, the writing position being allocated cycli- copies the data to the register bank (providing that the loca-
cally. This decouples the CAM from the data. Although the tion is not tagged “invalid” in which case this operation is
instruction may then be geted at a queue location which skipped) and marks the location as “empty” before pro-
it also needs to read it cannot corrupt its own input becaustceeding to the next entrfhis is a relatively simple, free
the input must precede the write. running process. In operation it should normally be fast

Forward: Concurrently with allocation, source regis- enough to maintain the queue in a nearly empty state, stall-
ters previously discovered by the lookup process may being only when waiting for slow memory cycles.
forwarded. The forwarding process examines each candi
date, starting at the most recent, waits until the data are
present and then checks their validialid data are for-
warded, otherwise the process proceeds to the next mos
recent possibilitylf all the possibilities are exhausted the
forwarding is abandoned and the default value from the
register bank is used. Multiple read processes may be use
to forward diferent values to diérent places simultane-
ously

3. ARM requirements

Although general in application, the asynchronous
queue was devised for AMULET3 which imposes some
specific demands and constraints. ARM instructions may
produce zero, one or two results per cycle. (The LDM
instruction may produce up to 17 results, but is subdivided

into a number of cycles.) The instructions can be dividedinput to set the invalid bit in the relevant entry; its cost is
into four categories according to the number and source otherefore low

their results: A final form of “lost” queue entry is produced when a
0 Noresults (e.g. CMP) value is stored to the memorihe store operation is allo-
1 Internal result (e.g. ADD) cated a queue entry to prevent subsequent instructions from
2 External result (e.g. LDR) overtaking it. The store — if it does not abort — returns a null

value which *fills” this location and allows subsequent

state changes to proceed. Fortunately it is possible to econ-
The last category writes back a modified register inter-omise on queue entries by allocating a single “place

nally whilst loading a (usually diérent) register from holder” to an (indivisible) multiple data store (STM) which

memory These operations are initiated in parallel but may is “filled” by the completion of the last memory operation.

complete at arbitrarily diérent times. However all register Measurements on benchmark programmes suggest that

destinations can be supplied down one of these two possithe number of stores vary according to the application, but

ble streams, one for internal calculations the other (slower)account for around 8%-12% of queue slots allocated.

for data from memoryThis implies the need for two inde-

pendent write ports on the result queue in AMULETS3. 3.1. Data Aborts

3 Two results (e.g. stack “pop”)

~ A complication in the ARM instruction set is thaty Data aborts arprecise exceptions and must freeze the
instruction can be conditional.alfing for the conditional processor state so that the faulting instruction can be rerun
dependencies to be determined would result ifimeft i, the future. This is usually due to a page fault — hopefully

use of the pipeline, so queue spaces are allocated to condg rare, if expensive, occurrence — and so a simple mecha-
tional and unconditional instructions alike. If an instruction nism may be employed to recover from this.

fails its condition code test and is thus abandoned it mus The current intention is to mark the aborting instruction

still carry a token through to the queue to indicate that thej, the gueue and send an ‘interrupt’ to the prefetch engine
instruction has been processed. causing it to jump to the relevant exception handisrthe

Invalid queue slots introduce wastage into the queue. Inyrocessor begins to recover the queue drains into the regis-
practice roughly 25% of ARM instructions are conditional. ter pank until the aborting instruction reaches the bottom;
The majority of these are branches which are not allocateghis and subsequent queue entries may then be discarded
queue slots (whilst the Programme Counter (PC) isyntj the new instruction stream arrives.

addressable as a general purpose register it is not imple Ag a final note it is only possible to preserve the state if
mented as such). About 10% of instructions are conditionaly| efiects of the faulting instruction are discarded. A load
operations requiring queue locations allocating and, asyjth an address writeback (e.g. a stack “POP”) has two des-
around 50% of conditional operations are executed, atnations; correct abort response is achieved by ensuring
queue slot will be marked invalid due to a condition code tnat the external memory destination is allocated ‘before’
failure about 5% of the time. the internal writeback destination. Thus the base register is
Unpredicted branches account for about 5% of instruc-not written back to the register bank until the memory cycle
tions. The invalidation mechanism is used to discard resulty 55 completed successfully; the base register can, of
from instructions in the shadow of a branch (i.e. fetched cqyrse, siill be forwarded for use in subsequent instruc-
erroneously after a branch instruction). In AMULET3 only jgns.
the instruction immediately following the branch need be
allocated a queue slot and its result is marked invalid.
The final cause of queue invalidation — data aborts — are
comparatively rare and may be neglected here. Thus abot
10% of queue locations are expected to be lost by invalida:
tion, which gives a respectable 90% utilisation.

3.2. Operational example

To illustrate the foregoing, figure 6 shows the state of
the queue in operation on a (contrived) ARM code frag-
ment. In this example the writeout process has stalled wait-

In AMULET3 it is known whether a value is valid or Ng for the memory to return a result, but execution has

invalid at the bottom of the ALU stage, with the sole excep- continued, including forwarding the R4 result. The STR
tion of data aborts. An optimization here allows abandoned(STore Register) instruction is currently being evaluated
load instructions (whether prefetched in error or failing @nd has been allocated a place in the queue to delay follow-
their condition check) to invalidate their queue places with- INd _instructions from completing in case it aborts. The
out passing through the memory system and incurring &*ND that is just being issued will be able to forward RO
significant, unnecessary deldhis operation is asynchro- Immediately (although the first location examined is
nous to the others and requires a third write port on theinvalid) but must wait for R3 to be loaded before continu-
queue. This extra port need not carry data values, merely a

ing. This instruction will overwrite one of its operands, but

which is the size of the queue. If this maximum is reached

MoV RO, #0 then the allocation is suspended until a queue entry is freed.
aw RO, #1 With a queue of sfitient entries it is unlikely that this will
MOVEQ RO, #99 happen.
VOV R2, #2 The current proposal is simply to pass a token from the
LDR R3, sl ow_menory write process to the allocation process every time a location
ADD R4, RO, R1 is freed. _Each token represents a queue stIk_erTs are
buffered in a FIFO so that a pool of free slots is normally
MoV RS, R4 maintained, which dries out if the write process is stalled
STR R2, sone_addr ess for a significant period.
00 AND R7, RO, R3 The queue can never be “over emptied” since the write
process is suspended if the queue becomes empty
‘pending” . . “Pending” . 4. Context in AMULET3
- waa—p
~ In AMULET3 the register forwarding queue lies
RS R4 IR3|R2 RO between the ALU output and the register baniite port.
The current design has two parallel input channels, one
‘ U leading directly from the ALU, the other delayed by pass-
-5 / 4 ing through the data memory system. At the time of writing
= r 1 i i
= 7| a third port, to b_e use_d for coprocessor result transfers, is
2 Forward _ _ | also under consideration.
- Allocation It is expected that a single port to the register file is suf-
ficient to meet bandwidth requirements; this port will
Figure 6: Queue during operation become stalled when an outstanding memory operation
reaches the bottom of the queue, but should have a higher
only after it has been read. throughput than other parts of the processor so that it is

Assuming it does not abort, when R3 arrives the AND subsequently able to catch up. This is an area where asyn-
instruction will forward its value and continue, and the chronous operation is an advantage. Not being locked to a
writeout process can start to empty the queue furttitbe global clock even slightly faster cycles arefigignt to
load aborts the writeout process will initiate the abort begin emptying the queue once it is freed.
response and discard the queue entries for R3, R4 etc. unt In a similar model to DEG StrongARM [13],
the new instruction stream arrives. In this circumstance theAMULET3 will have three independent read ports on the
AND instruction would detect invalid forwarding informa- register bank and so three forwarding ports will be pro-
tion (from R3), assume the default value from the registervided, one for each register field. Although most instruc-
bank and continue until it had filled its allocated queue slottions require fewer than three operands the cost of the extra
(where it too would be discarded). hardware is deemed economic considering the control sim-

Note in figure 6 that there is not a 1:1 correspondenceplification this yields.
between instructions and queue locations; the latter are
allocated according to need (see below). Therefore the
CMP instruction has no destination whilst some ARM
instructions require more than one destination register

5. Queue Size & Performance

It is difficult to predict the ideal size of the queue, not
least because code can be reordered at the compiler level to
3.3. Operating Constraints optimise for a given implementation. Estimates must there-

In AMULETS3 the queue does not operate in isolation, fore be influenced by coarse measurements and “reasona-
and this fact is used to guarantee correct operation. Théble” assumptions.
major external constraint ensures that the queue never fill. The first measurement which can be made is the per-
beyond its capacitytherefore overwriting earlier results centage of register values which will be forwarded from a
before they can be written back to the register bank. Thisqueue of a specified length. These figures are shown in fig-
requires some interaction between the ‘write’ process ancure 7 for a few benchmark programmes. As the queue must
the ‘allocation’ process which ensures that there is a maxi-have at least two locations (since up to two results can be
mum to the number of results outstanding at any time,produced by a single instruction cycle) it can be seen that

The CAM (Content Addressable Memory) serves a dual

70%- role. Its primary function is to allow rapid association of a
60%- required register address with the current queue contents.
500 o espresso Because the CAM is very small it can be built of static

x C compiler gates, and is thus very fast. The CAMecondary role is to
o dhrystone store the register destination address of a queue, entry
which is used when the result value is copied out.

The full bit indicates that the queue entry contains data
which is waiting to go back to the register bank. This is set
by data arrival and cleared by writeout and so forms a four
phase indicator of the state of the queue location for the

40%-
30%-
20%-
10%-

0%
£ £ ‘L |5 6L> |7 é writeout process. It is not stored explicitly as it forms part
of the control circuitry
Figure 7: Percentage register reuse vs queue The Invalid, Aborted and Abort Colour bits have the

.) same timing characteristics as the data; they are used to

at least ~30% of results will be forwarded from the queue. conirol the writeout and forwarding processes. Invalid is

The queue should be g& enough to accommodate the et if the data should not be forwarded or returned to the
results of any speculative instructions whilst a memory ref- register bank. Abort is set if a result from memory aborted;
erence is outstanding. This size depends on the memorit js trapped by the writeout process and used to initiate
latency a slower memory needing more non-dependenteyception entry The abort colour is used to identify
instructions to fill its “delay slots”. An upper limit is the instryctions following an aborted memory operation; it is
number of instructions which follow a memory operation changed every time an abort is initiated and subsequent
which do not depend upon it. This is relatively small for gperations with the former colour are then discarded.
load operations — benchmark measurements suggest thi * The final bit maintained by the queue is a forward colour
around half of the data values loaded are required by the,it This is used by the forwarding process to indicate
subsequent instruction — but in other cases some perforMyhether a result value has reached the queue. A forwarding
ance benefit may be derived from speculating furtiell yequest carries with it an “expected” value of this colour
_Code r_eorderlng may improve th_|s sllghﬂ'yh_e full beneﬂt_ sent by the lookup process. If the value in the queue
is derived from all store operations, barring those which matches the expected colour it is known that the result has
abort. _arrived (although a validity check is still needed). If there

Most of these factors advocate a long queue whichis 3 mismatch the result is outstanding and the forwarding
would never fill completelyHowever the need for a fast process must wait until the match is made. The local colour
implementation suggests that the queue should be short. g 5 two-phase signal which is changed only when results

compromise is therefore required to determine the shortesgrive in the queue; it is independent of the writeout proc-
queue that rarely becomes full and so does not produce ggg

significant number of stalls. Although studies are ongoing,
a preliminary working size of four entries is being consid-

ered as a reasonable compromise; this should beienf

to avoid limiting performance due to a lack of queue space
except for certain rare cache misses.

6.1. Physical implementation

It is necessary for the forwarding mechanism to be as
rapid as possible to ensure that (potentially frequent) stalls
waiting for a result value are minimised:pically the crit-
ical path will be from data arrival in the queue to forward-

6. Implementation ing it to a following operation. Because the queue is
relatively small (four locations or thereabouts, rather than
Each queue entry comprises the following fields: the 31 entry register bank) it can be constructed of physi-
e 7-bit CAM (4-bit register identifier cally lage latches to provide a fast, high drive output and
& 3-bit operating mode) have a static read mechanism to avoid preghaelays.
» 32-bit data field The control overhead is also relatively small so that the
« Full data should be available in about the time taken to drive the
e Invalid bus through the multiplexers
o Aborted Figure 8 shows a draft of the forwarding mechanism. If

a forwarding request is made it is delayed until the forward-
ing colour (held by the toggle flip-flop and changed by
result arrival) matches the expected value; it is certain that

* Abort colour
* Forward colour

from Retry further queue entries are examined. If all the queue entries
are exhausted the forwarding attempt is abandoned.

The arrival andwriteout logic (fig. 9) is also kept as
simple as possible in order to facilitate rapid operation. An

Forward_req

Expected_colotr input request (Rin) is simply steered to the enable of the
Arrival— ST D"_ Forward relevant queue Iocat_ion. This is n(_)te(_j by the C gate which
acts as a latch, holding the “Full” indicatdihe input can
. then be acknowledged and the input handshake completed.
Invalid The output is a freely running cycle which activates
Retry each location in turn by passing a token from location to
Figure 8: Forwarding validation scheme location (Tin to Tout). A location attempts to drive Rout

when it is both full and has received the token. This causes
the required resulill arrive if it is not already present. a handshake cycle on Rout/Aout, although this is averted if
When the request and the data are both present an outpthe location is invalid. The cycling of the Aout signal
request is generated unless the result has been invalidatecauses the token to shift fronmTo Tout ready for the next
during processing; in the latter case a “retry” is invoked andcycle and removes the Full signal.

_ Rin Ain
Result arrival
choose
queue
from other location

write ports

LatchEnable Full
(& toggle colour bit)
—C +
Tin - C ' @ Tout.
AOut’
e/
Register writeback
Aout. Rout.

Figure 9: Queue write/read controller

The input and output processes are free running so thaand deferring abort handling the memory reference mech-
the queue may be in any state from empty to completelyanism may be streamlined, again reducing the cycle time of
full at a given time. These broad constraints allow consid-a major pipeline stage. Non-dependent instructions may
erable freedom of operation for the other pipeline stagesfollow memory references much more closely than in the
The only external constraint necessary is that, as the queuearlier AMULET processors.
fills, a result is not overwritten before it has been output; The solution is a general one and is applicable to other
this is imposed by the allocation process described in secsituations; the example of forwarding from a memory write
tion 2.4. buffer has already been suggested above. The queue could
also be used as a reorderfbufor result gathering and for-
warding in — for example — a future superscalar and out-of-
order issue asynchronous microprocesSabject to phys-
ical limits the queue can have an arbitrarilg&anumber of
entries, input ports, and forwarding ports. It is also possible
to parallelise the writeout process to a great extent if it is
necessary to increase its output bandwidth.

7. Other queue applications

The queue mechanism described can be used in applice
tions other than register forwarding. An analogous exam-
ple is memory forwarding in a write daf. When a store

operation is initiated the processor may be left to proceec Rapid forwarding of results is an important performance

whilst the store completes in parallel. If the store is slow ; - !
. ; enhancing feature in many high-performance synchronous
(such as in a write-through cache where stores proceed ¢ . . L
microprocessors which has formerly provedfidifit to

external memory speed) a performance increase is availa

. .) . . adapt into an asynchronous environmeng. helieve that
ble if the writes are queued and their cost hidden in paralle| . . .
- the mechanism presented here is another means of closing

with subsequent instructions. If a subsequent instruction is
: . . the performance gap between asynchronous and synchro-
a load it may require some data which may or may not havenous systems

been transferred to memoryhe simplest solution is to
ensure that the write tef has emptied before the load
may proceed, but the cost of this may be unacceptable. Iti9. Acknowledgements
more sensible to wait only if the load refers to a pending
write although potential hazards must then be identified by This work has been partly supported as part of ESPRIT
introducing a tag to the write Haf. If this has been done it project 20452, OMI/DE2 (the Open Microprocessor sys-
is simple to allow the last “N” writes to be forwarded from tems Initiative - Deeply Embedded project 2) and partly by
a queue, ééctively removing the penalty of waiting alto- the EPSRC (grant number 93315548). The authors are
gether This application is under consideration for the grateful for this support. The authors would also like to
AMULETS3 system. thank other members of the AMULET research group at
Manchester University

8. Conclusions
10. References
An implementation of a reorder fef which solves the
twin problems of result forwarding and exception handling [1] ARM Ltd., ARM Achitectue Refeence July 1995.
within an asynchronous pipelined system has been pre[2] van Berkel, K Handshake Ciuits An asynctunous achi-
sented. It is expected that this will form a key component tectue for VLSI pogramming _
in the AMULET3 microprocessofThis unit, thequeue International Series on Parallel Computation 5,
. . . Cambridge University Press, 1993

allows a high degree of flexibility in operation (such as out 3] Elston, C.J., Christi D.B., Findi®A., Steven, G.B

: ; ; : o ston, C.J., Christianson, D.B., Fin ., Steven, G.B.,
of order instruction completion) whilst _avo_|d|ng all clas_ses Hades — wards the design of an Asynchious Supersca-
of dependency hazards; read after write is stalled until the

k " lar Processor Proceedings 2nd &vking Conference on
relevant value appears, whereas the reordering functior Asynchronous Design Methodologies,

ensures write after write hazards are averted. IEEE Comp. Soc. Press, May 1995.
The dependency stalls which were handled by the regis{4] Endecott, B., SCALP: A Superscalar Asyncmous Low-
ter locking mechanism in AMULET1 and AMULET2 are Power Pocessor PhD Thesis, Department of Computer

now deferred to the queue forwarding mechanism. The Science, University of Manchestdg96 .
. . . http://wwwcs.man.ac.uk/amulet/publications/thesis/
cycle time of the decode/register read unit is thus reduced

. . iy endecott96_phd.html
Result forwarding also reduces the distance critical results[s] Furber S.B., Day PGarside J.D., Paver N.C.0ats J.V

have to travel to be reused, reducing the latency imposec A \icropipelined ARMProceedings of VLSI ‘93, Grenoble,
by a dependency stall. France, September 1993.
By allowing data transfer completion to be speculative

[6]

[7]
(8]

9]

[10] Smith,James E. & Pleszkun, Andrew Rmplementing Re-

Furber S.B., Garside, J.D.,emple S. , Liu, J., DayP, [11] Sproull, R.F, Sutherland, I.E., MolnaC.E.,

Paver N.C.,AMULET2e: An Asyncbnous Embedded Con- Counterflow Pipeline Rrcessor Achitectue,

troller Proceedings Async ‘97, IEEE Comp. Soc. Press, Sun Microsystems Laboratories,

April 1997 April 1994 http://wwwsunlabs.com/technicaéports/1994/
HennessyJ.L., Patterson, D.AComputer Achitectue: A smli-tr-94-25.ps

Quantitative Apppach Morgan Kaufmann, 1990. [12] Sutherland |.E.Micropipelines

Johnson, MikeSuperscalar Mianprocessor Design Communications of the ACM.
Prentice Hall Series in Innovativedhnology 1991. 32(6): pp.720-738, January 1989.

ISBN 0-13-875634-1 [13] Turley, Jim,StongArm Punches Up ARM Performance
Paver N.C., Day P, Furbey S.B., Garside, J.D. andoafs, g/lg;grl'soprocessor Reportd/ 9 No. 15 pp.16-19 — Nod3th
JV,

Register Locking in an Asyndmous Micoprocessor [14] YantcheyJ.T, Huang, C.G., Josephs, M.B., NedelgHew.
1992 IEEE International Conference on Computer Design: Low-Latency Asyncbnous FIFO Buffers

VLSI in Computers & Processors. October 1992. Proceedings 2nd @vking Conference on Asynchronous

Design Methodologies,

cise Interrupts in Pipelined Bressors IEEE Comp. Soc. Press, May 1995.

IEEE Transactions on ComputersplVV37, No.5, May 1988,
pp.562-573.

