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Abstract. Recently, there has been a resurgence of interest in asynchronous design
techniques. The research activity in this area has pointed to the need for suitable
techniques for modelling and simulating asynchronous systems. The occam pro-
gramming language allows the rapid development of parallel simulation models of
asynchronous systems but its distributed nature introduces time modelling problems.
This paper presents an approach for dealing with these problems.

1. Introduction

As VLSI technology advances and systems become larger, faster and more complex, timing
problems in synchronous systems become increasingly severe and account for more and more
of the design and debugging expense. Increased clock speeds make on-chip clock skew sig-
nificant and interchip skew a major problem. In order to address those problems recently there
has been a resurgence of interest in asynchronous design techniques which eliminate the need
for global clocking. An asynchronous system may be designed as a set of functional modules
each operating at its own rate and cooperating through communication. The synchronization
of the functional modules is performed by means of the communication protocol which allows
data to be shared between them.

There exist many different approaches for designing asynchronous systems [9]. Suther-
land’s “Micropipelines” [18] use bundled data with an event-signaled handshake protocol for
synchronization (figure 1). The control circuits are implemented by means of a set of event
control blocks, which include the Muller-C, Select, Call, Toggle, Xor and the Arbiter blocks
(figure 2).

Following Sutherland’s approach, the AMULET group at the University of Manchester
have designed and implemented AMULET1, an asynchronous version of the ARM RISC pro-
cessor (figure 3) [7] [8].

2. Modelling Asynchronous Architectures with Occam

The recent research activity in the area of asynchronous systems has pointed to the need for
suitable techniques for modelling and simulating them [24]. Several notations and techniques
have been suggested for this purpose [10]. CSP [11] in particular has attracted the interest
of many researchers due to the strong relationship between its semantics (synchronous, un-
buffered interprocess communication) and the behaviour of asynchronous systems [1] [15].
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Figure 2: Event processing blocks

To support the design of AMULET1, a methodology for using occam [12] to build ex-
ecutable models of asynchronous architectures at the Register Transfer Level has been de-
veloped [20]. Using this methodology, an asynchronous architecture is modelled as a set of
concurrent communicating occam processes. The processes are entirely data-driven, and self
scheduled. Two channels are used for the synchronization of communicating processes, one
for Request/data and one for the Acknowledgement signal. To describe the nondeterministic
behaviour of arbiters, the occam ALT statement is used.

3. Timing Issues

The methodology described above allows the spacial characteristics of the asynchronous ar-
chitecture to map naturally onto the simulation model. However, this does not hold for the
temporal characteristics of the architecture, as the distributed nature of occam introduces a
problem typical in distributed simulations, namely the problem of enforcing and maintaining
strict temporal precision.

All physical systems obey the causality principle which defines the relationships between
the various system states. More specifically, the causality principle requires that the cause
must always precede the effect in time: state transitions that have some effect on some other
transitions must occur before the latter, while state transitions that do not affect each other may
take place in any order.

Thus, the causality principle imposes a partial ordering on the system’s state transitions.
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This ordering of state transitions in the physical system also imposes an equivalent partial
ordering on the corresponding events in the simulation model. In order to ensure that the sim-
ulation model faithfully and accurately reproduces the behaviour of the simulated physical
system, the order in which logical processes receive, process and generate events must be the
same as the order of the corresponding state transitions in the physical system.

In the physical system, causality is tracked using the physical time (real time clock). In
a simulation environment, simulated time is the only means to maintain causality; each event
(which models a state transition) is assigned a timestamp that denotes the point in the simu-
lated time that the event occurs. In a sequential simulation model, wherein the physical time is
modelled by a single global variable, causality is preserved through adherence to the rule that
events are processed in nondecreasing timestamp order [5]; in a distributed setting however,
in which concurrent processing of events in different simulated time is allowed, preservation
of this fundamental monotonicity property associated with causality is not straightforward.

It has been shown (e.g. Lamport [14] and Misra [16]) that a distributed system consist-
ing of processes which operate asynchronously and interact exclusively via timestamped mes-
sages, will adhere to the partial ordering imposed by causality constraints in the physical sys-
tem, if each process consumes and processes events in nondecreasing timestamp order; this
condition is referred to as the local causality constraint [5]. Thus, the problem of guaran-
teeing that a distributed simulation model implements exactly the same global causal prece-
dence relationships of the physical system reduces to ensuring that each process obeys the
local causality constraint and processes messages in nondecreasing timestamp order.

If each process in the distributed model has a single input link (i.e. it receives messages
from just one source process) then adherence to the local causality constraint is straightfor-
ward. Indeed, in single input processes, there is a direct correlation between order of arrival
and order of consumption. Assuming that the timestamps in the input link are ordered in time
then the output timestamps are guaranteed to be crescently monotonic. Thus on any particular
output (and therefore input) link, messages will be issued in nondecreasing timestamp order.

However, most, if not all, practical simulation models include multiple input processes
which receive messages from more than one source process; such processes are usually re-
ferred to as merge processes. In this case, the order in which messages arrive on the different



input links does not adhere strictly to the order in which the corresponding events occur in the
physical system; it merely depends on the relative real time propagation delays of the mes-
sages in the distributed machine and not on the simulated time timestamps that these messages
carry.

Therefore, in the general case, messages will be arriving at the merge processes of the
model in a nonincreasing timestamp order. Consequently, immediate consumption and pro-
cessing of messages by merge processes may result in violation of the local causality con-
straint; the processing of an out of order message (i.e. a message which according to its times-
tamp should have been processed in the simulated past) is referred to as a preemption.

In a micropipelined architecture, micropipelines may be merged in one of the following
ways:

� Synchronous merge. A functional module has to wait for all input data to become avail-
able before it starts its operation. This is the case when a Muller-C element is used for
the corresponding request events. In the simulation model, the occam process has to
wait for all input channels to “fire”. The message with the greatest timestamp is used
to advance the local clock variable of the process and therefore the causality principle
is preserved.

� Data dependent merge. The functionality of the system dictates the order in which mes-
sages from different source processes should be consumed and processed. This situa-
tion is implemented in hardware using a combination of a Select and a Call or Xor. The
process in this case behaves as a single input module, hence causality is not violated.

� Arbitrated merge. The order of arrival defines the order of consumption. If events from
two micropipelines arrive at the same time, an arbitrary choice is made. In the circuit,
Arbiters are used to achieve this behaviour. In the proposed simulation approach, an
arbiter is modeled by the occam ALT command. The order in which the ALT construct
will consume messages in the simulation model does not adhere to the order in which
events arrive at the corresponding arbiter in the physical circuit; it just depends on the
order in which the corresponding input occam channels are selected. Therefore, in the
general case, messages will be consumed by the ALT construct in a nonincreasing times-
tamp order and therefore the causality principle is violated.

4. The Need for Accurate Time Modelling

The violation of the local causality constraint by the arbiter processes in the occam model does
not affect the correct functionality of the model; the very presence of an arbiter in the design
implies that the order of consumption may be arbitrary.

However, in distributed simulations time is not only a synchronizing agent but also a
quantifier, which provides the means for the simulated system’s performance evaluation; thus,
errors in simulated time introduce inaccuracies in the evaluation of the simulated architecture.
In [20] it was argued that the characteristics of the architectures being simulated will not allow
the time error introduced by preemptions in arbiter processes to become significant. Recent
results confirm this claim [22] [23]. Nevertheless, accuracy is still needed if the model is to
serve as a tool for a more extensive and elaborate evaluation of the performance characteristics
of the asynchronous architecture.

The requirement to test the architecture for potential deadlocks by modifying the delays
in the system to achieve different event orderings [20] makes this necessity even more intense.
Indeed, since the simulated time is not the synchronization agent in the simulator, different



event orderings may be achieved by using occam Timers to change the relative scheduling of
the occam processes [20]. The major drawback of this approach is that small delays cannot
guarantee the intended effects and behaviour in the model, as these delays are only approxi-
mate. Furthermore, real time delays have a direct effect on the performance of the simulator.
Thus, large delays that would guarantee the planned process scheduling, would also affect the
performance of the simulator.

Thus, it is extremely desirable to be able to develop accurate models of arbiter processes
that obey the local causality constraint and avoid preemptions.

5. The Need for a New Synchronization Technique

Techniques that have been developed to address the preemption problem in distributed simu-
lations and ensure that the local causality constraint is not violated, are traditionally classified
into two broad categories, namely conservative and optimistic [6].

Conservative techniques [2] allow a logical process to accept and process an event only if
it absolutely safe to do so, thus strictly avoiding the possibility of a preemption ever occurring.
These techniques require that a merge process blocks until there is a message on each of its
input links, and then selects and process the message with the smallest timestamp. However,
deadlocks may occur if a message which is expected by a blocked process will eventually
not be issued; two techniques have been devised to deal with that problem, namely deadlock
detection and correction [4], whereby the simulation proceeds until it deadlocks and when
deadlock is detected it is resolved, and deadlock avoidance [3], whereby timestamped Null
messages are sent over the links of the model to enable merge processes decide if it is safe to
process pending messages.

Optimistic approaches detect and recover from causality errors rather that strictly avoid
them. The most important and influential optimistic mechanism is Time Warp [13]. In Time
Warp, processes consume and process events as they arrive without first deciding whether such
an action is safe or not. When a preemption is detected the process “rolls back” in simulated
time undoing its illegal actions.

The rationale behind using occam for modelling asynchronous architectures, is the ex-
ploitation of the close relationship between the language semantics and the characteristics of
the asynchronous system [20]. Once the occam simulation model is constructed, any attempt
to introduce time accuracy into it should have as its prime objective to preserve this modelling
philosophy.

Furthermore, any complexity that might be added to the model as a result of the synchro-
nization protocol should be kept as low as possible. One of the purposes served by the occam
model is to provide a description of the architecture’s specification and operation; this infor-
mation should not be obscured or hidden by the extra functionality which is related only to
the accurate operation of the model and not to the simulated architecture per se.

Any attempt to employ any of the existing synchronization protocols would change the
personality of the model, forcing it to depart from the modelling philosophy which provided
its original basis. The Program Driven Synchronization Protocol described in this paper aims
to meet the aforementioned requirements. This is a novel conservative protocol which is based
on a combination of the exploitation of the characteristics of the simulated system and the em-
ployment of Null messages to achieve deadlock avoidance while maintaining the philosophy
of the model virtually intact. It seeks to enable the development of accurate arbiter models
involving only the processes required for this purpose. The processes of the model remain
entirely data driven [21].



6. The Program Driven Synchronization Protocol (PDSP)

6.1. The Basis

Von Neumann computer architectures, synchronous or asynchronous, are deterministic sys-
tems: they accept as input instructions which they execute sequentially in a specific and pre-
defined order.

Each instruction defines the steps that are required for its execution as well as the be-
haviour of each functional module of the architecture. Consequently, the kind and sequence
of events that occur in the system are determined at any time by the executing instructions.

This ability to predict events in the architecture based on the information provided by the
program under execution, forms the basis of the Program Driven Synchronization Protocol;
by looking at the instructions being executed the arbiter processes of the simulation model can
decide whether an event is expected on a particular input link and thus whether their blocking
upon this link would result to a deadlock.

The key concept in the Program Driven philosophy is the “Instruction Lookahead Set”
which is defined as follows:

Definition 1 The Instruction Lookahead Set of a link λ is the set of instructions whose ex-
ecution will potentially result to an event occurring on λ:
ILSλ

� �
Instruction I: I generates an event on link λ � .

An instruction I is referred to as an ILSλ instruction if and only if I � ILSλ.
The Instruction Lookahead Set of any particular link in the system is directly defined by

the architecture’s specification and thus, may become available to the arbiter processes of the
simulation model in advance. Based on the ILS of their input links, arbiter processes may
directly make decisions regarding the potential arrival of messages, provided of course that
they are also informed of the instructions being executed in the system.

6.2. The Rules

Based on the Instruction Lookahead Set defined above, the behaviour of arbiter processes with
regard to message consumption may be specified as follows:

Rule 1 An arbiter process Π is allowed to block and wait for an event on its input link λ during
the execution of an instruction I if and only if I � ILSλ.

The above rule ensures that arbiter processes block only for instructions that are likely to gen-
erate the corresponding events. However, depending on the status of the system, during the
instruction’s execution such an event might not occur; in this case Null messages are required
otherwise the arbiter process will become blocked and the simulation model will deadlock.
The following rule is concerned with the production of Null messages:

Rule 2 A Null message will be sent to link λ of the arbiter process Π if and only if Π expects
an event on λ based on the ILSλ, and for the current state of the system the event will not be
generated.

The two rules above, specify the behaviour of arbiter processes and their peers, when their
interaction depends on the executed instructions. However, not all events in an asynchronous
system occur in an instruction dependent fashion. Indeed, certain parts of the system may
operate autonomously, irrespective of which instructions are being executed; the PC loop in
the AMULET1 processor is an example of such an autonomous unit. In this case it is the state
of the simulated system that dictates the behaviour of the arbiter process:



PROC PDSP_Arbiter()
  PROC Select(msg1, msg2)
    SEQ
      IF
        msg2_pending=TRUE
          SEQ
            IF
              timestamp(msg1)<timestamp(msg2)
                SEQ
                  process(msg1)
                  msg1_pending=FALSE
              timestamp(msg1)>timestamp(msg2)
                SEQ
                  process(msg2)
                  msg2_pending=FALSE
              timestamp(msg1)=timestamp(msg2)
                SEQ
                  make_random_selection(msg1,msg2)
        msg2_pending=FALSE
          SEQ
            IF
              msg2_expected=TRUE
                SEQ
                  In2?msg2
                  msg2_pending=TRUE
              msg2_expected=FALSE
                SEQ
                  process(msg1)
                  msg1_pending=FALSE
  :
  WHILE TRUE
    SEQ
      IF
        msg1_pending=TRUE
          SEQ
            Select(msg1,msg2)
        msg2_pending=TRUE
          SEQ
            Select(msg2,msg1)
        TRUE
          SEQ
            ALT
              In1?msg1
                msg1_pending:=TRUE
              In2?msg2
                msg2_pending:=TRUE
:

Figure 4: The PDSP Arbiter Process

Rule 3 An arbiter process Π is allowed to block and wait for an event on its input link λ which
fires in an instruction independent way, if and only if the state of the system guarantees that a
message will be issued on λ.

6.3. The PDSP Arbiter Process

The basic functionality of an arbiter process with regard to the Program Driven Synchroniza-
tion Protocol is depicted in figure 4.

Upon receiving a message on one of its links (e.g. msg1 message on In1) the arbiter in-
vokes the Select process to determine whether the processing of this message would cause a
preemption.

If there is a pending message msg2 already received from the other input, then the mes-
sage with the minimum timestamp is selected to be processed and forwarded to the arbiter
process’ output; if both timestamps have the same value, the selection is made in a random
fashion to emulate the behaviour of the corresponding hardware arbiter.



  PROC Select(msg1, msg2)
    SEQ
      ...
        msg2_expected=TRUE
          SEQ
            IF
              timestamp(msg1)< MLL_timestamp(msg2)
                SEQ
                  process(msg1)
                  msg1_pending=FALSE
              timestamp(msg1) >= MLL_timestamp(msg2)
                SEQ
                  In2?msg2
                  msg2_pending=TRUE
        msg2_expected=FALSE
          SEQ
            process(msg1)
            msg1_pending=FALSE
      ...
  :

Figure 5: PDSP: Taking MLL into Account

If however, no pending message exists, but a positive prediction (based on the Instruction
Lookahead) is made regarding its potential arrival, the arbiter process blocks and waits until
this second message arrives. The arrival of this message provides the arbiter process with the
information required to proceed its operation and enable Select to make a decision, namely
the next timestamp on its other input link.

6.3.1. Improving PDSP Performance

The basic algorithm described in figure 4, enables arbiter processes to receive and process
messages arriving on their input links in increasing timestamp order, always selecting the mes-
sage with the smallest timestamp, thus guaranteeing the accurate, preemption-free operation
of the simulation model.

However, it does not ensure that the concurrency of the simulated system is sufficiently
exploited to increase the potential of the simulation model for high performance.

Indeed, as soon as it predicts that a message is expected on one of its input links In2, the
arbiter process will stop accepting any messages arriving on its other input link In1 until the
expected message on In1 arrives. As a consequence, all the processes that are part of the path
that leads to In1 will block and wait, and the pipelines at the output side of the arbiter process
will starve; during this time, large parts of the simulator will remain idle.

A solution to this problem is to provide arbiter processes with some indication as to when
in the simulated future a message they expect will actually arrive. This information would
enable them to consume a number of events occurring on In1 link before they block on In2
increasing thus the concurrency of the simulation model.

This information can be obtained by taking into account the propagation delays in the
architecture being simulated. An event generated by an instruction will propagate through
a number of pipeline stages before it reaches an arbiter. The path followed by the event is
completely defined by its parent instruction; the latency of the path however at any particular
time, depends on the number of elements in the micropipelines involved and thus, it is non-
deterministic.

Consequently, it is not feasible to know in advance the exact time required for an event
to propagate through a given micropipeline. However, there is a lower bound to this time,
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namely the latency of the micropipeline when, at the moment of the event’s entry, it is empty.
Based on this observation, the Minimum Latency Lookahead, may be defined:

Definition 2 The Minimum Latency Lookahead of a link λ MLLλ, is defined as the total
propagation delay of the path leading to λ, when the pipelines of the path are empty:
MLLλ

� ∑di � di = Propagation Delay of the i-th Pipeline Stage in the path.

The Instruction Lookahead Set of a link informs the corresponding arbiter process whether
a message should be expected on that link; the Minimum Latency Lookahead reveals when
in the simulated future the expected message may arrive. Based on the Minimum Latency
Lookahead, the following rule may be specified:

Rule 4 An arbiter process Π will not process a message µ1 received on its input link λ1 but
instead it will block and wait for a message µ2 expected on its other input link λ2, if and only
if the timestamp of µ2 as predicted by the MLLλ2

is less than or equal to the timestamp of µ1.

Rule 4, combined with the ALT statement in the main loop of the PDSP arbiter process,
will enable arbiter processes to process messages with appropriate timestamps as soon as they
arrive.

Figure 5 depicts the Select process when the MLL is taken into account.

6.4. The Limitations

The Program Driven Approach is based on the exploitation of the Instruction Lookahead prop-
erties of the simulated architecture. Such an exploitation presupposes that arbiter processes



have knowledge as to which instructions are being executed. If this knowledge is not directly
available, then an appropriate mechanism needs to be devised to provide arbiter processes with
this information. Generally the functionality of the architecture being modelled will make the
development of such a mechanism feasible. Otherwise the instruction lookahead properties
of the system can not be exploited and the PDSP rules can not apply; in this case one of the
conventional Deadlock Avoidance algorithms may be applied which however, would require
a substantial modification of the model to deal with the regular flow of Null messages.

7. Applying PDSP to the Occam Simulation Model of AMULET1

In order to demonstrate its applicability, the Program Driven Synchronization Protocol was
employed to develop models of the arbiter processes in occarm, the occam simulation model
of AMULET1 which has been developed as part of the work of the AMULET group at the
University of Manchester [19] [22].

Occarm has been implemented as a hierarchy of occam processes, with each process
modelling a different functional module of AMULET1. Its top level process structure graph
is depicted in figure 6.

AddInt and DatInt processes model AMULET1’s address and data interface respectively.
The datapath is modelled by four processes, namely Decode1, Decode2, Decode3 and Reg-
Bank. Decode1 describes the primary decode unit while Decode2 and Decode3 model the
execution unit of the processor containing the Shifter/Multiplier and the ALU respectively.
RegBank process incorporates the functionality of the register bank. WrtCtrl models the op-
eration of AMULET1’s write bus control logic.

The address interface is responsible for providing all the address information to memory.
It operates as an autonomous unit, issuing sequential instruction addresses to maintain a steady
flow of prefetched instructions to the processor. Instructions arriving from memory through
the data interface, rendezvous with their associated R15 value (PC) extracted from the address
interface (see figure 6) whereupon they enter the datapath for execution.

There are two cases wherein an instruction which has entered the processor will be in-
validated and rejected and as a result, its execution will not eventually take place:

� The instruction fails its condition codes in Decode3. In ARM architecture, all instruc-
tions are conditionally executed. Their execution depends on the outcome of the com-
parison between the Current Processor Status (CPS) arithmetic flags and the condition
field of the instruction word. In AMULET1, the test of the condition flags is performed
in Decode3.

� The colour of the instruction does not match that of the processor. AMULET1 maintains
a “colour” bit (at Decode3) which changes each time the instruction flow changes (e.g.
due to a branch or an exception). Instructions are also “coloured” and if their colour does
not match that of the processor at any particular moment they are discarded. To make
this mechanism more efficient, the new colour is also sent to Decode1 (via the PCcol
signal) to enable the rejection of invalid instructions before they enter the datapath. The
invalidation and rejection of instructions may occur either in Decode1 or in Decode3;
the choice depends on the exact point in time that the PCcol signal from Decode3 is
detected by Decode1, and thus it is nondeterministic.

Occarm makes use of three arbiter processes, which are included in the address interface
(AddInt), primary decode (Decode1) and the write control (WrtCtrl) respectively. The rest of
the paper discusses how the principles introduced by PDSP have been employed to develop
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an accurate, preemption-free model of the address interface; for a detailed description of the
algorithms involved as well as of the use of PDSP to deal with the other two arbiter processes
of occarm, the reader is referred to [22].

8. The Address Interface Arbiter

The Address Interface is depicted in figure 7. Address Interface employs arbitration (AddC
process) to allow addresses arriving from the datapath on the Wch channel to break the PC
loop (consisting of AddC, MAReg, Incrementer, PC Holding Latches, PC0 register of PC
Pipe) and gain access of the MAReg.

8.1. Providing Instruction Lookahead Information

AddC is an example of an arbiter process which has no direct knowledge regarding the ex-
ecuting instructions. An address produced by AddC is sent to Memory following the path
from AddC, through MAReg and DataInt. If it is an instruction address, the instruction mes-
sage from memory enters the processor following the path from Memory through DataInt to
Decode1. AddC is not in the path followed by the instruction and therefore has no direct infor-
mation as to which instructions have entered the system; in order to apply PDSP a mechanism
is required to provide AddC with this information and enable it to make decisions regarding
the potential arrival of messages on its input links.

A neat and efficient solution is to take advantage of the hidden links in the above paths:
the contra flow of the Acknowledgement messages. In the first path above, an address mes-
sage produced by AddC will propagate to MARreg and to Memory and from there to DataInt;
DatInt will generate an Acknowledgement message which will follow the opposite direction
back to AddC. This Acknowledgement message can be used to carry the corresponding in-
struction to AddC; no communication overhead is generated as the Acknowledgement mes-
sages would be sent anyway.

8.2. The PCch Link

The PCch channel carries the Acknowledgement signal from the PC Pipe, which is issued each
time the current circulating PC in the PC loop is latched by the first register of the PC Pipe.
The operation of the PC loop is autonomous and independent from the operation of the rest of
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the processor. Thus, on the PCch channel there will be a continuous, instruction independent
flow of messages.

The role of the PC Pipe is to provide the processor’s datapath with the R15 values re-
quired for the execution of instructions as depicted in figure 8. If, for any reason, the datapath
stalls, instructions will start to backlog and as a result, the PC Pipe will become full and will
remain so for as long as the datapath stalls. During this period no further PC values will be
allowed to enter the PC Pipe and thus no Acknowledgment signal will be issued on the PCch
channel. The datapath may stall in the following cases, as illustrated in figure 9:

� If the datapath fills up; this will occur as a result of Decode3 and WrtCtrl processes
waiting for the aborts and Wlx signals respectively.

� If an ILSWch instruction is followed by register read operations which refer to locked
registers.

� If an ILSWch instruction is followed by instructions which activate the ALUgo signal.

� During the execution of load/store multiple instructions.

In order to avoid deadlock situations, it is essential that AddC be able to decide whether
it should wait for yet another message from PCch or whether the PC Pipe has become full and
thus no more messages will be sent on the PCch link (PDSP Rule 3). In order to do that, AddC
needs to possess information regarding the possible invalidation of instructions that have en-
tered the system. This information is provided by both Decode1 and Decode3 by means of ex-
tra messages sent via dedicated, buffered links that have been introduced in the occarm model.

Decode3 informs AddC of the possible changes in the value of the Current Processor
Status that could result to the rejection of instructions, as illustrated in figure 10a.

The messages issued by Decode1 (figure 10b) aim to inform AddC of the exact time of
arrival of the PCcol signal from Decode3, whereupon instructions may start being rejected in
Decode1.

8.3. The Wch Link

The Instruction Lookahead Set of the Wch channel is:
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�
B, BL, SWI, LDR, STR, LDM, STM, Data Processing with PC as Dest. Reg. �

Messages arriving on Wch channel are primarily sent to AddC from the datapath (through
WrtCtrl) as a result of the execution of ILSW ch instructions and carry either branch target or
data transfer addresses. For data transfer operations whose destination register is R15, a sec-
ond message will be sent over Wch, namely the new value of the Program Counter from mem-
ory. According to the PDSP algorithm (PDSP Rules 1 and 4), when AddC detects an ILSWch
instruction it blocks until it receives the corresponding messages on Wch. If however the
ILSWch instruction will not be executed or the memory fails to respond (i.e. an abort occurs),
the expected messages will never be issued, thus leaving AddC blocked and causing the sim-
ulator to deadlock. There are two reasons why an instruction may not be executed, namely if
its colour does not match that of the processor or if it fails its condition codes.

All the instructions whose execution may change the operating colour of the processor -
either by explicitly writing a new value to the PC (i.e. the branch target address) or by caus-
ing an abort - belong to the Instruction Lookahead Set of the Wch channel. Thus, an ILSWch
instruction will suffer a colour mismatch only if it follows another ILSWch which has changed
the processor’s colour. For instructions that explicitly change the PC, the new colour is pro-
vided to the AddC with the branch target address, making the decision as to whether an ILSWch
instruction will be discarded straightforward. If however the colour changes due to an abort,
AddC has no direct knowledge regarding this change; Decode3 will receive the abort signal
from memory and will change the PCcol rejecting subsequent instructions. In this case a Null
message must be sent by Decode3 to inform AddC of the occurrence of an abort and the colour
change (PDSP Rule 2).

As described in the previous section, AddC is provided by Decode3 with all the CPS-
related information required to predict the fate of subsequent instructions regarding their con-
dition codes; this is performed via the dedicated link and lasts until a result is produced by
Decode3 and forwarded to RReg as illustrated in figure 10a. Thus, for subsequent ILSWch in-
structions that fail their condition codes, Null messages are required to be sent by Decode3 to
inform AddC of this event. Once a Null message is sent to AddC, no more messages of this
kind will be issued for ILSWch instructions subsequently invalidated in Decode3, until a valid
instruction is executed. This pattern will be followed until the next ILSW ch to produce a result
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Figure 10: AddC: The Instruction Dependent Generation of PDSP messages

Model Elapsed Time (minutes)

OccarmALT 1.72
OccarmPDSP 2.15
OccarmPDSP � MLL 1.93

Benchmark: Dhrystone (1 loop)

Table 1: Performance of PDSP (Address Interface)

is encountered, whereupon the production of CPS-related messages to AddC will commence.
This is illustrated in figure 10c where a complete picture of the interaction between Decode3
and AddC is provided.

9. Performance

The incorporation into occarm of a preemption-free model of the address interface based on
the PDSP algorithms described in this paper, has resulted to a 20% decrease of the perfor-



mance of the simulator when no attempt is made to exploit MLL (i.e. using the algorithm
of figure 4). Some preliminary experiments have indicated that by exploiting MLL a perfor-
mance improvement of at least 10% can be achieved (table 1).

10. Conclusions

Asynchronous logic promises to provide solutions to problems such as clock skew, power ef-
ficiency, performance and modularity on VLSI design and is currently experiencing a resur-
gence of interest. Occam is particularly suitable for rapidly implementing distributed simu-
lation models of asynchronous systems at the Register Transfer Level but its distributed na-
ture introduces time modelling problems. This paper has described an approach for dealing
with these problems, namely the Program Driven Synchronization Protocol. PDSP provides a
general theoretical framework for the development of arbiter processes which eliminate pre-
emptions and allow the accurate modelling of time in the simulation model; its philosophy
is conservative aiming at deadlock avoidance. It is program driven in the sense that the be-
haviour of the processes in the model with regard to message consumption is determined by
the instructions that are executed in the system at any particular moment.

The application of this approach depends on the exploitation of the instruction lookahead
properties of the system. The application of the PDSP on the occarm simulation model has
proven that such an exploitation is feasible, even for systems of the AMULET1’s complexity.
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