Figure 2: Event processing blocks

strong relationship between its semantics and nonde-
terministic, concurrent behaviour of asynchronous sys-
tems (Martin 1986, Brunv. 1989).

To support the design of AMULET1, a methodology
for using occam, a CSP based parallel language that
supports synchronous, unbuffered interprocess com-
munication, for building Register Transter Level exe-
cutable models of asynchronous architectures has been
developed (Theodor. 1994a) Using this methodology,
an asynchronous architecture is modeled as a set of
concurrent communicating occam processes. The pro-
cesses are entirely data-driven, and self scheduled. Two
channels are used for the synchronization of communi-
cating processes, one for Request/data and one for the
Acknowledge signal. To describe the nondeterminis-
tic behaviour of arbiters, the occam ALT statement is
used.

TIMING ISSUES

The distributed nature of occam introduces a problem
typical in distributed simulations, namely the prob-
lem of enforcing and maintaining strict temporal pre-
cision so that preemptions are avoided and causality



constrains are not violated.

Since processes are data-driven, time is not required for
synchronization and the correct operation of the occam
simulation model (Theodor. 1994a). However time is
still needed if the simulation model is to be used for a
performance evaluation of the architecture; in order to
get accurate performance results preemptions should
not be allowed to occur.

In distributed simulations, preemptions occur if merge
modules consume and process input messages from dif-
ferent channels in nonincreasing timestamp order. In
a micropipelined architecture, micropipelines may be
merged in one of the following ways:

e Synchronous merge. A functional module has
to wait for all input data to become available be-
fore it starts its operation. This is the case when
a Muller-C element is used for the corresponding
request events. In the simulation model, the oc-
cam process has to wait for all input channels to
“fire” and therefore no preemptions occur.

e Data dependent merge. The functionality of
the system dictates the order in which messages
from different source processes should be con-
sumed and processed. This situation is imple-
mented in hardware using a combination of a se-
lect and a call or xor. The process in this case
behaves as a single input module, hence causality
is not violated.

e Arbitrated merge. The order of arrival defines
the order of consumption. If events from two mi-
cropipelines arrive at the same time, an arbitrary
choice is made (arbiters); generally, this order will
be different that the order in which the occam
channels in the corresponding ALT fire and thus
preemptions occur in this case.

The solutions that have been devised to deal with
time modeling problems in distributed simulations fall
into two categories, namely optimistic and conservative
(Fujim. 1990). Conservative approaches will not let a
process consume an event unless it is guaranteed that
such a consumption will not cause any preemptions.
This philosophy leads to deadlock situations. Three
main techniques have been suggested to overcome this
problem.

Deadlock Detection and Recovery techniques (Chandy
1981) allow the simulation to deadlock and then use a
separate mechanism to detect if a deadlock situation
has occurred and break it.

Synchronous approaches are based on global synchro-
nization techniques in which periodically a global syn-
chronization function is performed to enable the pro-
cesses decide which events are safe to process.

Deadlock Avoidance methods (Chandy 1979) make use
of Null messages to avoid deadlock situations. These
techniques require that whenever a process finishes pro-
cessing an event it sends a Null message to all its output
links to inform its peers of its current clock value.

From the three aforementioned main conservative tech-
niques, deadlock avoidance has the highest degree of
compatibility with the modeling philosophy which ex-
ploits the relationship between the occam semantics
and the behaviour of asynchronous architectures.

The Synchronous techniques require global synchro-
nization which is neither easily implementable nor ef-
ficient on asynchronous distributed memory machines.

The Deadlock Detection and Recovery algorithms, like
the optimistic approaches would increase the complex-
ity of the occam simulation model forcing it to depart
from the modeling philosophy described in previous
sections.

The Deadlock Avoidance approach is quite simple to
implement and does not require any modification of
the structure of the simulation model; the model still
maps the asynchronous architecture and no extra pro-
cesses or links are needed except from some additional
functionality to deal with Null messages.

Null messages are used only for synchronization pur-
poses and do not carry any useful information. Their
existence imposes a communication overhead in the
network which may severely reduce the performance of
the simulation. Asynchronous architectures in particu-
lar are communication bound systems and therefore the
communication efficiency plays a crucial role in the per-
formance of their simulation. To reduce the overhead
due to Null messages, several variations of the Dead-
lock Avoidance technique have been suggested whereby
Null messages are sent on a demand basis (Nicol 1984).

Asynchronous architectures are a special case of sys-
tems with certain characteristics and behaviour. The
Program Driven Approach (PDA) proposed in this
paper is a conservative deadlock avoidance technique
which exploits this behaviour to achieve the minimiza-
tion of the Null messages required. The following sec-
tions describe this approach.

The Program Driven Approach

Von Neumann computer architectures, synchronous or
asynchronous, are deterministic systems: they accept
as input instructions which they execute sequentially
in a specific and predefined order. Each instruction
defines the steps that are required for its execution as
well as the behaviour of each functional module of the
architecture. Consequently, the kind and sequence of
events that occur in the system are determined at any
time by the executing instructions. This ability to pre-
dict events in the architecture based on the information
provided by the program under execution, forms the
basis of the program driven approach; by looking at the
instructions being executed the processes of the simula-
tion model can decide whether an event is expected on
a particular input link and thus whether their block-
ing upon this link would result to a deadlock. The
key concept in the Program Driven philosophy is the
“Instruction Lookahead Set”:

Definition 1. The Instruction Lookahead Set of
a link X\ is the set of instructions whose execution will
potentially result to an event occurring on X:

ILS) = {Instruction 1: 1 generates an event on link

AL

As already mentioned, preemptions may occur only in
arbiter processes and therefore it is only these that need
to make decisions as to whether it is safe to accept an
event. Based on the Instruction Lookahead Set defined
above, the behaviour of arbiter processes with regard
to message consumption may be specified as follows:

Rule 1. An arbiter process I1 is allowed to block and



Figure 4: Mapping of the OCCARM onto the T-Rack

mechanism (the lock fifo (Paver 1994){ to deal with
synchronization problems caused by the lack of a global
clock.

The system used to host the simulation model is the
ParSifal T-Rack, a reconfigurable 64-Transputer? ma-
chine, which has been developed at the University of
Manchester. Two of the four links from each trans-
puter of the T-Rack are permanently hardwired to
form a processor chain known as the necklace. The
off-necklace links may be connected by means of a
crossbar switch which is built using twenty six INMOS
C004 switch chips. Taking into account the restrictions
imposed by the T-Rack and aiming at a) maximizing
processor utilization and b) balancing communications,
OCCARM has been distributed on the T-Rack as de-
picted in figure 4 yielding a speedup of 1.7 (Theodor.
1994a).

2Transputer is a registered trademark of INMOS Group of
Companies



Figure 5: OCCARM: The Address Interface model

APPLYING PDA ON OCCARM

The Program Driven Approach has been applied to
deal with preemptions in the OCCARM model. Two
arbiters have been incorporated in AMULET1], in the
Address Interface and Write Control units.

The Address Interface

The address Interface model is depicted in figure 5.
One of the arbiter inputs is fed with PC addresses
from the PC pipe. Thus in the simulation model there
will be a continuous, instruction independent flow of
events on the corresponding input link of the arbiter
process(AddC) and therefore blocking on that link can
not cause deadlocks. The other link receives messages
from either the ALU or memory via the Write Control
process. The ILS of this link is:

ILS sqac—wrictri={B, BL, SWI, LDR, STR, LDM,
STM, Data Processing with PC as Dest. Reg.}

AddC is an example of an arbiter process which has
no direct knowledge regarding the executing instruc-
tions. An address produced by AddC is sent to Mem-
ory following the path: AddC = M ARegister =
DatalInt = Memory. If it is an instruction address,
the instruction message from memory is sent to De-
codel through the path: Memory = Datalnt =
Decodel. AddC is not in the path followed by the in-
struction and therefore has no information as to which
instructions have entered the system; in order to ap-
ply PDA a mechanism needs to be devised to provide
AddC with this information. Such a mechanism should
be simple to implement and, more importantly, should
not add extra communication overhead to the simula-
tor.

Any attempt to use the second path above to inform
AddC of the instruction currently in the path would
involve an extra link connecting the path to AddC as
well as extra messages. A neat and efficient solution
is to take advantage of the hidden links in the above
paths: the contra flow of the Acknowledge messages.
Acknowledge messages are sent from register to regis-
ter through control processes in the model. In the first
path above, an address message produced by AddC
will propagate to memory and from there to Datlnt;
DatInt will generate an Acknowledge message which
will follow the opposite direction back to AddC. This
Acknowledge message can be used to carry the corre-

sponding instruction to AddC; no communication over-
head is generated as the Acknowledge messages would
be sent anyway.

The information required by AddC for making use
of PDA is kept in a circular buffer, namely the
“Instruction Lookahead Table” (ILT). Each instruc-
tion I received by the AddC is decoded and if T €
ILS Aqic—wrtctr1 @ new entry is appended in the ILT.
Events arriving from PC pipe are let through for as long
as ILT is empty; if ILT is non empty AddC blocks and
waits for the corresponding message to arrive. There
are two cases where an expected message will not ar-
rive: a) If the condition codes of the instruction fail
in the ALU; in this case a Null message is sent by the
ALU to prevent deadlock, and b) If the instruction fol-
lows a branch; no Null messages are needed in this case
since AddC gets informed whenever a branch is taken
(a new address arriving from the ALU as a result of
a branch will carry a new PCpar with it). Each time
a branch is taken, the entries in the ILT correspond-
ing to invalid prefetched addresses are removed. Any
further instructions which subsequently arrive at the
AddC and which are going to be discarded are just
ignored.

The Write Control

Here, the application of PDA is straightforward. An
event (datasJ will occur on Datlnt-WrtCtrl link as a

result of an event (data address) occurring on Decode3-
WrtCtrl (see figure 3):

ILSpuirni—wriciri={LDR,LDM}

WrtCtrl will continuously read messages arriving on
Decode3-WrtCtrl, if it encounters a data address mes-
sage, then it blocks and wait for the corresponding
data on the DatInt-WrtCtrl link. This message will
always arrive so there is no need for Null messages.
Similarly to AddC, an Instruction Lookahead Table is
maintained by WrtCtrl.

IMPROVING PERFORMANCE: THE LA-
TENCY LOOKAHEAD

The application of PDA on OCCARM has resulted
to a 20% decrease of the performance of the simula-
tor achieved when arbiters are modeled by ALT state-
ments and no attempt is made to prevent preemp-
tions (which is the maximum possible performance):
Performancepps = 0.8Per formancearr.

This figure can be improved by allowing PDA to ex-
ploit the concurrency of the system. As soon as it is
informed that an instruction being executed is in the
ILS,, of one of its input links Ay, an arbiter process
will stop accepting any messages arriving on its other
input link A, until the expected event on A; occurs.
As a consequence of this behaviour, all the processes
that are part of the path that leads to A\, will block and
wait, and the pipelines at the output side of the arbiter
process will starve. Thus large parts of the simulator
will remain idle for substantial periods of time.

A solution to this problem is to provide arbiter pro-
cesses with some indication as to when in the simulated
future a message they expect will actually arrive. This
information would enable them to consume a number
of events occurring on A, link before they block on
A1 increasing thus the concurrency of the simulation



model.

This information can be obtained by taking into ac-
count the propagation delays of the pipeline stages in
the architecture. An event generated by an instruction
will propagate through a number of pipeline stages be-
fore it reaches an arbiter. The path followed by the
event is completely defined by its parent instruction;
the latency of the path however is not deterministic
but depends on the number of elements in the mi-
cropipelines of the path at any particular time. Thus
it is impossible to know in advance the exact time re-
quired for an event to propagate down a path. This
is due to the asynchronous, delay insensitive nature of
the architecture. However, there is a lower bound to
this time, namely the latency of the path when its mi-
cropipelines are empty.

Based on this information, the prediction regarding the
occurrence of the event on a link is straightforward:

Definition 2. The The Minimum Latency Looka-
head of a link A\ during the execution of instruction I
MLL) ;, is defined as the total propagation delay of
the path leading to N\, when the pipelines of the path
are empty:

MLL) ; = Y Delay;, Delay, = Propagation Delay of
the i-th Pipeline Stage in the Path®

The path may be chosen so that it makes the calcula-
tion of the MLL easier. For example, in the case of
OCCARM, for the calculation of MLLW’rtCTTI—AddC,Ia
the “Memory = DatInt = Decodel = Decode2 =
Decode3 = WrtCtrl = AddC” path is consid-
ered, while for the calculation of MLL patrnt—wrtCtri
“WrtCtrl = DatInt = Memory = Datint =
WrtCtrl” is taken into account.

Preliminary experiments with OCCARM have indi-
cated that by exploiting the Latency Lookahead of
AMULET1 a performance improvement of 10% can be
achieved.

CONCLUDING REMARKS

This paper has described a technique for maintaining
temporal precision in distributed simulation models of
asynchronous computer architectures, namely the Pro-
gram Driven Approach. This is a conservative, dead-
lock avoidance approach that exploits the characteris-
tics of asynchronous architectures to achieve efficiency
and high performance. It is program driven in the sense
that the behaviour of the processes in the model with
regard to message consumption is determined by the
instructions that are executed in the system at any
particular moment.

The application of this approach depends on the ex-
ploitation of the instruction lookahead properties of the
system which might not always be possible or efficient.
Whenever the characteristics of the architecture per-
mit such an exploitation however, PDA will provide
the theoretical framework for the development of sim-
ple, efficient and fast deadlock avoidance algorithms.

References

Brunvand, E.; and R.Sproull. 1989. “Translating Concurrent
Communicating Programs into delay-Insensitive Circuits”, Tech-

3The inclusion of I in the definition indicates that the MLL
is instruction dependent.

nical Report CMU-CS-89-126, Department of Computer Science,
Carnegie Mellon University (Apr.).

Chandy, K. M.; and J.Misra. 1979. “Distributed Simulation:
A Case Study in the Design and Verification of Distributed Pro-
grams”, IEEE Trans. on Soft. Eng., SE-5, no. 5 (May): 440-452.

Chandy, K.; and J.Misra. 1981.“Asynchronous Distributed Sim-
ulation via a Sequence of Parallel Computations”, Communica-
tions of the ACM 24, no. 4 (Apr.): 198-206.

Fujimoto, R. 1990. “Parallel Discrete Event Simulation”, Com-
munications of the ACM 33, no. 10, (Oct.): 31-53.

Furber, S.; P.Day; J.Garside; N.C.Paver; and J.V.Woods. 1994.
“A Micropipelined ARM” | In Proceedings of the VLSI’93 Con-
ference, (Grenoble, France, Sept. 6-10), 5.4.1-5.4.10.

Gopalakrishnan, G.; and P.Jain. 1990. “Some Recent Asyn-
chronous System Design Methodologies”. Technical Report UU-
CS-TR-90-016. Department of Computer Science, University of
Utah (Oct.).

Hauck, S. 1993. “Asynchronous Design Methodologies: An
Overview”. Technical Report UW-CSE-93-05-07. Department
of Computer Science, University of Washington (Apr.).

Jefferson, D. 1985. “Fast Concurrent Simulation using the Time
Warp Mechanism”, In Proceedings of the 1985 Conference on
Distributed Simulation , Society for Computer Simulation (Jan).

Martin, A.J. 1986. “Compiling Communicating Processes into
Delay-Insensitive VLSI Circuits”, Distributed Computing 1, no.
4 (Apr.): 226-234.

Nicol, D. M.; and P.F.Reynolds.1984. “Problem Oriented Pro-
tocol Design”, In Proceedings of 1984 Winter Simulation Con-
ference, (Dec.), 471-474.

Paver, N.C. 1994. “The Design and Implementation of an Asyn-
chronous Microprocessor”, PhD Thesis, Department of Com-
puter Science, University of Manchester.

Seitz, C.L. 1980. “System Timing”. In Introduction to VLSI
Circuits, C.Mead and L.Conway, eds. Addison Wesley, chapter
7.

Sutherland, I. 1989. “Micropipelines”, Communications of the
ACM 32, no. 6 (Jun.): 720-738.

Theodoropoulos, G; J.V. Woods. 1994. “Building Parallel Dis-
tributed Models for Asynchronous Computer Architectures”; to
be presented at the World Transputer Congress 1994, (Italy,
Sept. 5-7).

Theodoropoulos, G. 1994. “An occam model of the AMULET1”
In Proceeding of the AMULET Modeling Workshop, (Winder-
mere, Cumbria, England, Jul. 18-22).

Udding, J. T. 1991. “Formal Models”, In Proceedings of the
Workshop on the Design and Implementation of Asynchronous
Circuits, (Amsterdam, Nov.), 12-16.

BIOGRAPHY

George Theodoropoulos received the Diploma degree in
Computer Engineering from the University of Patras,
Greece, in 1989 and the M.Sc degree in Computer Sci-
ence from the University of Manchester, U.K., in 1991.
He is currently working towards a PhD in Computer
Science with the AMULET group at the University of
Manchester, U.K. His research interests are in the ar-
eas of parallel processing, asynchronous systems and
networks.



