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Abstract

This paper discusses the time modelling problem in RTL distributed simulation models of
asynchronous architectures written in occam. The results presented in the paper confirm that
even if preemptions are allowed to occur, the timing error is not significant and it is acceptable
at this level of simulation.

1. INTRODUCTION

As VLSI technology advances and systems become larger, faster and more complex, timing
problems in synchronous systems become increasingly severe and account for more and more of
the design and debugging expense. Increased clock speeds make on-chip clock skew significant
and interchip skew a major problem. In order to address those problems recently there has been
a resurgence of interest in asynchronous design techniques which eliminate the need for global
clocking. An asynchronous system may be designed as a set of functional modules each operating
at its own rate and cooperating through communication. The synchronization of the functional
modules is performed by means of the communication protocol which allows data to be shared
between them. There exist many different approaches for designing asynchronous systems [3].
Sutherland’s “Micropipelines” [5] use bundled data with an event-signaled handshake protocol
for synchromization; the control circuits are implemented by means of a set of event control
blocks, which include the Muller-C, Select, Call, Toggle, Xor and the Arbiter blocks. Following
Sutherland’s approach, the AMULET group at the University of Manchester have designed and
implemented AMULET1, an asynchronous version of the ARM RISC processor [2].

2. MODELLING ASYNCHRONOUS ARCHITECTURES WITH OCCAM

The recent research activity in the area of asynchronous systems has pointed to the need
for suitable techniques for modelling and simulating them. Several notations and techniques
have been suggested for this purpose [3]. CSP [4] in particular has attracted the interest of
many researchers due to the strong relationship between its semantics (synchronous, unbuffered
interprocess communication) and the behaviour of asynchronous systems.

To support the design of AMULET1, a methodology for using occam, a CSP based pro-
gramming language, to build executable models of asynchronous architectures at the Register
Transfer Level has been developed [8]. Using this methodology, an asynchronous architecture
is modelled as a set of concurrent communicating occam processes which may be executed on a
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Figure 1: Occarm Top Level Process Graph

network of Transputers. The processes are entirely data-driven, and self scheduled. Two chan-
nels are used for the synchronization of communicating processes, one for Request /data and one
for the Acknowledgement signal. To describe the nondeterministic behaviour of arbiters, the
occam ALT construct is used.

2.1. Timing issues

The distributed nature of occam introduces a problem typical in distributed simulations,
namely the problem of enforcing and maintaining strict temporal precision so that preemptions
are avoided and causality constrains are not violated. In distributed simulations, preemptions
occur if merge modules consume and process input messages from different channels in nonin-
creasing timestamp order. In a micropipelined architecture, micropipelines may be merged in
one of the following ways:

e Synchronous merge. A functional module has to wait for all input data to become
available before it starts its operation. This is the case when a Muller-C element is used
for the corresponding request events. In the simulation model, the occam process has to
wait for all input channels to “fire” and therefore no preemptions occur.

e Data dependent merge. The functionality of the system dictates the order in which
messages from different source processes should be consumed and processed. This situation
is implemented in hardware using a combination of a Select and a Call or Xor. The
process in this case behaves as a single input module, hence causality is not violated.

e Arbitrated merge. The order of arrival defines the order of consumption. If events
from two micropipelines arrive at the same time, an arbitrary choice is made (arbiters);
generally, this order will be different that the order in which the occam channels in the
corresponding ALT fire and thus preemptions occur in this case.



Figure 2: The Address Interface

Several techniques have been devised to address the preemption problem in distributed sim-
ulations [1]; these techniques include the Program Driven Synchronization Protocol which has
been developed as part of the work of the AMULET group and is targeted at occam models of
asynchronous architectures [7]. These attempts to enforce synchronization in order to maintain
absolute timing precision, increase the complexity of the simulation model and reduce its per-
formance. Since the simulated architectures are asynchronous, time is not required for the the
correct operation of the occam model; the very presence of an arbiter in the design implies that
the order of message consumption may be arbitrary. Time is needed only as a quantifier to pro-
vide the means for a performance evaluation of the architecture. In [6] is was argued that even
if no attempt is made to enforce timing precision in the arbiter processes, the characteristics of
the the simulated systems will not allow the timing error to become significant; the fundamental
nature of asynchronous architectures will balance the throughput of the distributed processes
preventing thus the local clocks from becoming too skewed. Consequently, the performance
results produced by the simulation model will maintain their reliability.

Recent quantitative results, which are presented in the following sections, confirm this claim.
The results have been obtained using occarm, an occam simulation model of AMULET1 [8].

3. THE OCCARM SIMULATION MODEL

Occarm has been implemented as a hierarchy of occam processes, with each process modelling
a different functional module of AMULET1. Its top level process structure graph is depicted in
figure 1. AddInt and DatInt processes model AMULET1’s address and data interface to memory
respectively. The datapath is modelled by four processes, namely Decodel, Decode2, Decode3
and RegBank. Decodel describes the primary decode unit while Decode2 and Decode3d model the
execution unit of the processor. RegBank process incorporates the functionality of the register
bank. WrtCtrl models the operation of AMULET1’s write bus control logic. Occarm makes use
of three arbiter processes, which are included in AddInt, Decodel and WrtCtrl. Decodel arbiter
allows the PCcol signal to interrupt the flow of instructions from Memory (Instr channel) while
WrtCtrl arbiter permits data arriving from memory (Din) and the execution unit (DPch) to
access the write bus (see figure 1). AddInt, which is depicted in figure 2, employs arbitration
(AddC process) to allow addresses arriving from the datapath on the Wch channel to break the
PC loop (AddC, MAReg, Incrementer, PC Holding Latches, PCO register of PC Pipe) and gain



Figure 3: The Arbiter Process

access to the MAReg. The arbiter processes of occarm have been modelled by means of the occam
ALT construct. Input messages are consumed and processed as soon as the corresponding input
channels fire and no attemt is made to prevent preemptions; the calculation of the timestamps
of the output messages is illustrated in figure 3.

4. THE TIMING ERROR IN OCCARM

The accuracy of occarm has been evaluated by comparing the results produced by occarm
with those obtained from a different, sequential discrete event simulator of AMULET1 written
in Asim, the ARM’s in-house simulation language. The results which have been produced
by the execution of the Dhrystone benchmark [9] are those that are typically used for the
performance evaluation of AMULET1, namely the Dhrystone number, as well as the occupancy
and stall periods of the AMULET1 pipelines; since the calculation of these values is based
on the simulated time, they are particularly suitable to be used as a means for measuring
the degree of timing accuracy of occarm. Like all synthetic benchmarks, Dhrystone tries to
match the average behaviour of a large set of real program, therefore the results obtained may
be considered representative of the average behaviour of occarm too. The Dhrystone number
denotes the number of times that the loop which constitutes the body of the benchmark is
executed during the period of one second, thus providing an indication of the performance of
the simulated architecture. This number is calculated by sampling the current clock value before
(The fore) and after (T, s, ) the execution of the loop and employing the formula:

10 * Number.O f.Runs
Tafter - Tbefore

Dhrystone. Number =

Table 1 illustrates the clock values Ty for. and T f¢., of the Dhrystone program as produced by
occarm, while table 2 presents the Dhrystone number obtained from the aforementioned values.
As shown in table 2, the timing error with regard to Dhrystone number is 19.72% ; this value
may be considered reasonable and indeed acceptable at this level of simulation and at the early
stages of the design process. The same applies for the values obtained regarding the pipeline



Table 1
Occarm Timestamp Drift (1 Dhrystone Loop)
Tbefore (IIS) Tafter (IIS)
Value Drift Error (%) Value Drift Error (%)
39036 10313 26.4 114432 28834 25.1

Asim Tje fope= 4934915
Asim Tg 4., = 143266ns

Table 2

Occarm Dhrystone Number (1 Dhrystone Loop)

Dhrystone Number Error (%)
13263.30 19.72

Asim Dhrystone Number= 10647.69

occupancy and stall periods (which are not included in this paper); the timing error with regard
to those values ranges from 0% to about 10% [8] which also is considered acceptable.

In order to examine how preemptions are distributed over time, the number of times that a
preemption was detected (the preemption count) and the corresponding accumulated preemption
magnitude (in nanoseconds) for each arbiter process have been sampled in regular intervals of
10000ns. The results which are presented in figure 4, indicate that preemptions take place at
a low frequency, with the corresponding preemption magnitude being relatively small (ranging
from less than 25ns to 475ns). Most of the preemptions occur in AddInt process; this may be
explained by the fact that the activity of the address interface (i.e number of messages arriving
on the input channels of AddC process) is higher, thus increasing the probability of preemptions.

5. CONCLUSIONS

Asynchronous logic promises to provide a solution to global clocking related problems and the
means to meet the lower power requirements of VLSI systems. Occam is particularly suitable
for rapidly implementing distributed simulation models of asynchronous systems at the Register
Transfer Level but its distributed nature introduces time modelling problems. This paper has
discussed these problems in connection with the AMULET1 architecture, confirming that they
may be ignored since the timing error introduced in the model is insignificant.
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