Figure 1: The Bundled Data Interface Protocol

Following Sutherland’s approach, the AMULET
group at the University of Manchester, U.K., have de-
signed and implemented AMULET1, an asynchronous
version of the ARM RISC processor as part of the ES-
PRIT OMI-MAP project (figure 2) [5].

2 Modelling Asynchronous Architec-
tures with Occam

The recent research activity in the area of asyn-
chronous systems has pointed to the need for suitable
techniques for modelling and simulating them. Several
notations and techniques have been suggested for this
purpose [7]. CSP [6] in particular has attracted the in-
terest of many researchers due to the strong relation-
ship between its semantics (synchronous, unbuffered
interprocess communication) and the behaviour of
asynchronous systems [10]. To support the design of
AMULET1, a methodology for using occam [8], a CSP
based, parallel distributed language, for rapidly build-
ing executable models of asynchronous architectures
at the Register Transfer Level has been developed [15]
[16] [17]. Using this methodology, an asynchronous
architecture is modelled as a set of concurrent occam
processes which communicate by exchanging times-
tamped messages. The processes are entirely data-
driven, and self scheduled. Two channels are used for
the synchronization of communicating processes, one
for Request/data and one for the Acknowledgement
signal. To describe the nondeterministic behaviour of
arbiters, the occam ALT statement is used. Follow-
ing this approach, occarm , an occam model of the
AMULET1 processor has been developed. Occarm
consists of a hierarchy of occam processes, has the

Figure 3: Occarm Top Level Process Graph

machine, which has been developed at the University
of Manchester to support the parallel simulation of
computer architectures (figure 4). Two of the four
links from each transputer of the T-Rack (link0 and
link1) are permanently hardwired to form a proces-
sor chain known as the necklace. The off-necklace
links(%nk2 and link3) may be connected by means of
a crossbar switch, into a configuration which is ap-
propriate for the code being executed. The crossbar
switch is built using twenty six INMOS C004 switch
chips housed on two boards (S7 and S2). The T-Rack
is hosted by a Sun 3/160 workstation containing a
Tadpole Transputer Board which acts as the “root”
node of the transputer network. The existence of the
necklace limits the set of processor graphs which may
be implemented to those which possess a Hamiltonean
Cycle [11]; the route taken by the Hamiltonean Cycle
through the network corresponds to the position of the
necklace in the switched network implementation.

5 Monitoring

Monitoring the runtime behaviour of the simulation
model and collecting information regarding the char-
acteristics of the simulated system is one of the main
objectives of the simulation process. Monitoring is es-
sential for the testing and performance evaluation of
the simulated system as well as for the debugging of
both, the simulated system and the simulation model.
The inherent properties of distributed asynchronous
systems, such as occam architectural models, make
monitoring a difficult and complicated issue for which

Figure 5: Event Traces for Debugging

sequential techniques are insufficient; these properties
include the multiple threads of control, the difficulty
to get snapshots of the system, the non-deterministic
behaviour, the intrusiveness of the monitoring system
and the need to cope with a vast amount of monitoring
data generated from multiple sources [12].
5.1 Monitoring Occarm

The simulation of an asynchronous architecture has
two main objectives, namely the testing and debug-
ging of the architecture, and the evaluation of the ar-
chitecture’s performance.

5.1.1 Debugging

For the debugging of the architecture (as well as the
simulation model) it is necessary to monitor both the
flow of control and the flow of data in each of the dif-

ferent occam processes in the model; this is achieved
by collecting traces regarding the execution and data
events of the processes respectively (figure 5a,b). Fur-
thermore, for the detection of deadlocks, it is essential
to know the state of the processes in the system when
the deadlock occurred. For this purpose, the paral-
lelity events need to be monitored (figure 5¢). These
will appear in pairs, one for the sending and one for
the receiving process. The absence of one parallelity
event from a pair in the final trace indicates the oc-
currence of a deadlock.

In occarm, monitoring is performed by means of
a parallel network of occam monitoring processes
(known as reactive processes [12]), one for each of the
top level processes (the active processes) of the oc-
carm model. Monitoring messages are issued to the
reactive processes in an event driven fashion. Probes,
in the form of a procedure call, have been inserted
(manually) in the source occam code of the active pro-
cesses. Each time the procedure that implements the
probe is called, it constructs the corresponding mon-
itoring message and sends it to the monitoring pro-
cess. Since probes will be invoked in different parallel
sections of the active process, several monitoring mes-
sages are issued simultaneously. Thus, for the com-
munication between an active and its reactive process
a channel array is used (monitor, see figure 6). The
monitoring process acts as a multiplexor, employing
an ALT construct to gather the messages issued by
the corresponding active process on the channel array;
in order to reduce the effects of the ALT bottleneck,
the channel array is buffered in order to decouple the
processes involved.

The monitoring data are generated in a copious vol-
ume and their transportation can have a significant
negative impact on both the computational resources
and the communication network of the distributed sys-
tem. Occam monitoring processes support two trans-
port strategies, namely immediate transport, in which
the monitoring data are transported as soon as they
are generated and store and unload, whereby the data
are stored in a buffer before they are transported. The
latter makes use of a circular buffer to store only the
recent history of the active process. If no monitoring
message arrives for a user-defined time interval (i.e. in
the case of deadlock), the monitoring process flushes
the contents of the history buffer. The store and un-
load transport option is particularly useful as in most,
if not all, cases the most recent history of the processes
is sufficient to identify the cause of errors or deadlocks.
Since the monitoring messages do not propagate fur-
ther into the system, the communication overhead of

Figure 7: The Single transputer Environment of Oc-
carm

at the output side). Stall situations refer to the in-
put side of the pipeline. They may be detected by
examining the delay between the sending of a Request
event (R;,) to the pipeline and the issuing of the corre-
sponding Acknowledgement signal (Ack;,) by the first
register of the pipeline: a stall situation has occurred if
timestamp(R;,) < timestamp(Ack;,). The duration
of the stall is timestamp(Ack;,) — timestamp(R;,,);
clearly the minimum stall period is equal to the prop-
agation delay of the first register in the pipeline.

Contrary to the debugging traces which are sent
immediately to the corresponding monitoring process,
the type and quantity of data that concern the perfor-
mance characteristics of the architecture permit active
occarm processes to calculate and store them locally;
this eliminates the extra communication overhead that
their transport would impose. The stored values are
unloaded by the occarm control processes upon ter-
mination of the simulation.

6 The Simulator Environment

The single-transputer simulator environment is de-
picted in figure 7.

The Memory process models the memory control
logic of the processor; the memory itself is imple-
mented as a binary file to achieve compatibility with
the existing ARM development environment [2]. The

Figure 9: Modified Occarm Top Level Process Graph

particular process. Merging two columns together ef-
fectively adds one more level of abstraction to the pro-
cess hierarchy, assigning the corresponding processes
to the same processor and forcing the two channels to
share the same link.

7.1 Balancing the Workload

The criterion adopted for the selection of the level
of the occarm process hierarchy whose each process
has at most four neighbours is the maximization of
processor utilization; namely, to occupy as many pro-
cessors as possible.

Following this criterion the merges presented in fig-
ure 8 have been applied to occarm, deriving as a result
the alternative graph of figure 9; this graph represents
the lowest level in the process hierarchy that satisfies
the four-link-per-transputer limitation.

7.1.1 Balancing the Communication Load

The new top level occarm process graph possesses
more than one Hamiltonean cycle, thus allowing an
equivalent number of possible mappings on the T-
Rack.

For the selection of the appropriate mapping, the
criterion which has been followed is to balance the
communication load. In the T-Rack the communica-
tion performance of a hardwired link is approximately
double that of a switched link (1.72 and 0.87 Mbytes
per second respectively). Consequently,the objectives
of the communication load balancing policy are to use
as few switched links as possible, and to place onto

Figure 10: Occarm Graph Mappings

7.1.3 The Generic Simulator Node

Figure 12 depicts a generic node of the distributed
implementation of the simulator. Typically this will
include a number of active processes together with the
corresponding monitoring modules. Extra multiplex-
ing/demultiplexing processes are included to allow the
sharing of the transputer links; to prevent deadlock
situations (which for example might occur if one of
the transputer links is blocked by a message destined
for a particular process, while this process is blocked
waiting for a message that may follow the former on
the link), extra buffering has been incorporated into
the the demultiplexing modules (i.e. the distributor
process).

Figure 12: The Generic Simulator Node

8 Performance

For the verification and evaluation of both the
AMULET1 processor and the occarm model, the
Dhrystone synthetic benchmark has been used [18].
Within the single transputer configuration (i.e. on a
single 20MHz, T414 transputer), occarm requires on
average 1.72 minutes to execute one Dhrystone loop
when no monitoring traces are generated (table 2);
this figure is smaller than that achieved by an equiva-
lent sequential simulator written in ASIM (the ARM’s
in-house simulation language), by a factor of 1.16,
when the latter executes on an IPX Sun workstation.
This is a reasonable and expected performance, for the
execution of the occarm processes on a single trans-
puter is performed not in a parallel but rather in a time
sharing fashion and the large number of processes in
the model (more than 120) makes the context switch-
ing overhead in the transputer significant.

Table 3 presents the performance of occarm for
both, its single and multiple transputer configura-

| Model | Elapsed Time (minutes) |
Occarm (Single) 1.72
Asim 1.48

Benchmark: Dhrystone (1 loop)

Table 2: Asim versus Occarm (Single Transputer Im-
plementation)

Elapsed Time (minutes)
Transport Policy Occarm Occarm

Single Multi
Tracing Off 1.72 1.02
Store and Unload 4.22 1.87
Immediate Transport 9.75 7.21

Benchmark: Dhrystone (1 loop)

Table 3: Performance of Occarm

tions and for the different policies employed for the
transportation of monitoring data. When no monitor-
ing traces are generated, the distribution of occarm
on to the seven transputers of the T-Rack yields a
speedup of 1.69. The “store and unload” transport
policy allows a speedup of 2.26 to be achieved since
in this mode of operation, the performance of occarm
on a single transputer drops by a factor of 2.45 as
opposed to 1.83 in the multi transputer implementa-
tion. This difference in the performance drop may
be attributed to the fact that the activation of the
monitoring processes severely increases the frequency
and, consequently, the overhead of context switching
on the single transputer. The distribution of the mon-
itoring processes onto multiple transputers alleviates
this phenomenon as the context switching overhead is
also distributed.

When the “immediate transport” policy is em-
ployed, the performance of both the single and mul-
tiple transputer configurations of occarm drops dra-
matically allowing a speedup of only 1.35. This be-
haviour may be attributed to the operation of I/O
process. 1/O process acts as a multiplexor for mes-
sages arriving from both the Memory and the Moni-
toring processes. This introduces a major bottleneck
in the system, which imposes the ultimate limit in
the performance of the simulator. The large number
of monitoring messages generated by the “immediate

transport” policy occupy a large proportion of I/0
process activity, thus reducing the rate that instruc-
tions and data are supplied to the model; as a con-
sequence, the processes of the model remain idle for
substantial periods.

The low speedups achieved by the distribution of
occarm onto the multiple transputers of the T-Rack
may be attributed to a number of factors related to
the characteristics of both, the simulated architecture
and the machine that hosts the simulator.

e Amdahl’s law [1] specifies that the maximum pos-
sible speedup depends on the inherent parallelism
of the executed system which may be potentially
exploited. In the case of AMULET1, the require-
ment for instruction compatibility with the syn-
chronous ARM, has resulted in an asynchronous
design with a very complex pipeline structure
and, indicatively, very limited parallelism. The
performance of AMULET1 itself is only 70% of
the performance of the synchronous ARM.

e Asynchronous architectures are communication
bound systems and therefore the efficiency of the
communication system is crucial. The complex
irregular interconnection pattern of AMULET1’s
functional modules and the extra multiplex-
ing/demultiplexing processes required to cope
with the connectivity constrains of the Trans-
puter and the T-Rack introduce major bottle-
necks in the system that severely reduce the com-
munication efficiency.

9 Conclusions

Asynchronous logic promises to provide solutions to
problems such as clock skew, power efficiency, perfor-
mance and modularity on VLSI design and is currently
experiencing a resurgence of interest. AMULET1, be-
ing the first asynchronous implementation of a com-
plex commercial RISC architecture, has demonstrated
the feasibility and merits of the asynchronous ap-
proach. Occam is particularly suitable for the spec-
ification and description of asynchronous systems. Its
parallel distributed nature offers the potential for high
simulation performance, but introduces a number of
design and implementation problems, common in par-
allel asynchronous programs. This paper has dis-
cussed the solutions and techniques developed to ad-
dress these issues in connection with occarm, the oc-
cam model of AMULET1.

Acknowledgements
For this work Georgios Theodoropoulos has been
supported by the Mpakalas Foundation, Athens,

Greece, under Grant No. 466/21121992.

References
[1] Amdahl, G. M., “Validity of the Single Processor Approach
to Achieving Large Scale Computing Capabilities”, Pro-
ceedings AFIPS 1967 Sping Joint Computer Conference,
Atlantic City, April 1967, pp 483-485.

[2] ARM Ltd, Fulbourn Road, Cherry Hinton, Cambridge,
CB1 4JN, England.

[3] Capon, P.C.,; “ParSiFal: A Parallel Simulation Facility”,
IEE Colloquium: The Transputer: Applications and Case
Studies, IEE Digest, 1986/91.

[4] Brunvand, E. and Sproull, R., “Translating Concurrent
Communicating Programs into delay-Insensitive Circuits”,
Technical Report CMU-CS-89-126, Carnegie Mellon Uni-
versity, April 1989.

[5] Furber, S. B., et al., “A Micropipelined ARM”, Proceed-
ings of VLSI ‘93 (Best Paper Award), September 1993, pp.
5.4.1-5.5.8.

[6] Hoare, C.A.R., “Communicating Sequential Processes”,
Communications of the ACM, Vol. 21, Number 8, August
1978, pp 666-677.

[7] Hauck, S., “Asynchronous Design Methodologies: An
Overview”. Technical Report UW-CSE-93-05-07. Depart-
ment of Computer Science, University of Washington,

April 1993.

[8] Inmos Ltd, “Occam Programming Manual”, Prentice Hall,
1984.

[9] Inmos Ltd, “Networks Routers and Transputers”, 10S
Press, 1993.

[10] Martin, A. J., “Compiling Communicating Processes into
Delay-Insensitive VLSI Circuits” Distributed Computing,
1, 4, April 1986, pp 226-234.

[11] Murta, A., “Tools for the Automated Configuration of a
Transputer Network”, MSc Thesis, University of Manch-
ester, October 1987.

[12] Riek, M., Tourancheau, B., Vigouroux, X. F.; “Monitoring
of Distributed Memory Multicomputer Programs”, Techni-
cal Report UT-CS-93-204, University of Tenessee, October
1993.

[13] Mead, C. and Conway, L., “Introduction to VLSI Circuits”,
Addison Wesley, 1980, Chapter 7, pp 218-254.

[14] Sutherland, I., “Micropipelines”, Communications of the
ACM, Vol. 32, Number 6, June 1989, pp 720-738.

[15] Theodoropoulos, G., Woods J.V.; “Building Parallel Dis-
tributed Models for Asynchronous Computer Architec-

tures”, Proceedings of the World Transputer Congress
1994, Como, September 1994, pp 285-301.

[16] Theodoropoulos, G., Woods J.V., “Distributed Simulation
of Asynchronous Computer Architectures: The Program
Driven Conservative Approach”, Proceedings of the Euro-
pean Simulation Symposium 1994, Istanbul, October 1994,
pp 230-234.

[17] Theodoropoulos, G., Woods J.V., “Analysing the Timing
Error in Distributed Simulations of Asynchronous Com-
puter Architectures”, Eurosim Congress ‘95, Vienna, Aus-
tria, September 1995, to appear.

[18] Weicker, R. P., “Dhrystone, A Synthetic Systems Program-
ming Benchmark”, Communications of the ACM, 27, 10,
October 1984, pp. 1013-1030.

