PI-23

Efficient Synthesis of Speed-Independent Combinational Logic Circuits

W. B. Toms, D. A. Edwards

Dept. of Computcr Science,

The University of Manchester
Manchester, M13 9PL, UK
{wtoms, doug}@cs.man.ac.uk

Abstract - Speed-Independent synthesis of combinational logic
datapath circuits using tools such as Petrify is often inefficient or
infeasible because such circuits typically contain many eoncur-
rent inputs and independent outputs. This paper presents a prac-
tical method for generating arbitrary combinational logic
circuits, using a sub-class of speed-indepehdent circuits known as
Strongly-Indicating circuits, without the need to verify the specd-
independence of the implementation through construction of a
state-graph or other method.

1. Introduction

Speed-Independent circuits assume unbounded delays in
gate operators and zcro delays in wires. The elimination of glo-
bal-variables and most delay assumptions within SI circuits
makes them robust and amenable to reuse as their interfaces are
free from timing constraints.

Speed-Independent circuits compare badly with more con-
ventional circuits in both the transmission of data and in the
implementation of logic functions. The focus of this paper is a
technique for synthesising arbitrary speed-independent combi-
national-logic (CL) functions. Much research has been under-
taken in synthesising SI circuits, resulting in several excellent
synthesis tools, most notably Petrify [1]. The general-purpose
nature of the algorithms employed in these tools means that
implementing logic functions is difficult because of the large
size and concurrency inherent in CL designs.

We déscribe a simplified substitution technique, that allows
sets of signals to be inserted into CL circuits without compro-
mising the speed-independence of the result. We then describe
a synthesis method which preserves the validity of the substi-
tution methed, by partitioning the input set of CL circuits into
independent blocks. We present efficient algorithms for the
extraction of both single-cube and multi-cube divisor sets, and
the results of synthesising several circuits is presented. The
technique incorporates elements of both conventional multi-
level logic synthesis and speed-independent synthesis. It is
assumed the reader is familiar with the algebraié extraction
techniques of multi-level logic synthesis and in particular the
rectangle covering algorithms of Rudell [2]. The next section
describes existing speed-independent synthesis techmiques
developed by Cortadella et al. ['l'].b

11. Speed Independent Circuit Synthesis
A. State Graphs and Speed-Independence |

A state-graph (5G) is a labelled directed graph, where each
node represents a state of the circuit. The states are determined

0-7803-8736-8/05/$20.00 ©2005 IEEE.

1022

by the values of all the signals in the circuit and so, in a binary
circuit, may be encoded by a n-length binary vector, where each
digitin the vector corresponds to a signal in the circuit. The arcs
between states in the graph arc labelled with transitions of sig-
nals: either rising (x+) or falling (x-). A transition in either
dircetion is represented by the notation x*. A state-graph is con-
sistent if, for each signal, rising and falling transitions alterndte.
In any state a signal is excited, denoted x’if in that state a tran-
sition on x may occur. The maximal set of connected states in -
which signal x is cxcited is called an excitation region and is
denoted by ER(x*).The maximal set of connected states in
which x is stable (i.c. not excited) is called a quiescent region,
OR(x*). A continuous function region of x (CFR(x*)) is the
maximum set of connected slates where x has the same value
(i.e. ER(x*}N QR(x*)). :

The speed independence of a circuit is determined by the
properties of the SG that describes the behaviour of the circuit;
the SG of an SI circuit must

* be deterministic: for cach state there must be at most one
outward bound transition for ¢ach signal

* be commutative: for cach state, concurrent transitions —
transitions that may take place in any order — must lead to
the same slate.

» satisfy persistency: once a signal a is excited, it must not be
possible to cnter a state in which the signal is stable except
through the firing of a. In circuit synthesis, the persistency
constraint is only enforced on the output and internal signals
of the circuit; this constraint is known as output persistency

+ satisfy Complete State Coding (CSC). Each pair of states in
the state graph must have a unique binary code, unless the
set of output transitions of the pair are the same.

B. Monotonous Cover

Monotonous Cover Conditions allow speed-independent
circuits 1o be implemented in a canonical architecture using
unbounded input AND gates, bounded input OR gates and C-
elements. Their standard architecture is shown in figure 1. Each
AND gate represents a single Monotonous Cover (MC) cube
C;, which covers a CFR and upholds the following conditions:
* Cover Condition - C(aj*) covers all states of ER(aj*) (i.e.

evaluates to | in all states of ER(aj*)).

* One-hot Condition - Cfa;*) covers no states outside

ER {a+) U QR (a*).

ASP-DAC 2005

Figure |: Standard Architccture for SI Circuits

» Monotonicity Condition - C(aj*) changes at most once
along any state sequence of QR(aj*).

C. Event-Insertion

The process of Inserting events into SGs is important as it
allows CSC conflicts to be resolved, MC requirements to be
fulfilled and circuit-implementations to be mapped into physi-
cal library cells.

Inserting an event, x, into a state graph results in cach state
in the excitation region of x being split into two states: one
where x is excited and one where x has fired. The set of states
that form the excilation region of x are called a Speed-Inde-
pendence Preserving (S1P) setif the persistency and commuta-
“ tivity of the original state-graph is maintained. An excitation

region of an inserted signal can be made into an SIP-set by
including extra states in the region of any state diamond where
a violation occurs. Adding states to an excitation region,
changes the value of the function implementing the region, and
s0 only slates where the vaiue of initial function is maintained
may be added.

If a state graph ts to be implemented as a binary-circuit, each
event corresponds to a binary signal and hence complementary
pairs of cvents relating to the rising and falling transitions of a
signal must be inserted. These complementary cvents are
inserted by means of an [-partition. .

An I-partition consists of 4 sets of states, {SQS’.S*.S’},
which relate to the transitions of the inserted signal. The states
57 and 57 are equivalent to the quiescent regions of signal x

-(QR{x-) and QR(x+) respectively), ST and S are equivalent to
the excitation regions of x (ER{x+ } and ER(x-) respectively). In
order for the inserted signal to retain the consistency of the
state-graph, the constructed I-partition must be well-formed.
An I-partition is well-formed if there is no direct path from $*
to $% and trom S~ 1o S", hence the only permitted transitions
are $°—» 5" —>5' =5,

D. Technology Mapping

Synthesised designs maybe technology-mapped in to exist-
ing libraries using event-insertion techniques. Valid algebraic
decompositions of signals can be determined hy checking
whether the SI properties of the implementation are maintained
by their insertion. The algorithm proceeds by selecting a divi-
sor from the most complex cover in the network. An I-partition
is constructed for the divisor and checked Tor well-formed SIP
closure. Even if the divisor can be inserted into the network
without violating the speed-independent properties of the cir-

cuit, progress conditions must be checked to ensure that the
insertion reduces the cost of the implementation.

i} Speed-Independent Combinational Logic Circuits
~

A. Indication and Combinational-Logic

Varshavsky [3] defines a set of conditions Self-Timed logic
blocks must uphold to be implemented and composed:

» Transitions must be regular, no nodes must change state
more than once in a transition.

+ Funciions must be isotonous (or antitonous) i.c flx=1} >
fa=0) (fx;=0) > flx;=1))
» Function inputs and outputs must be undrdered.

* Each allowed input transition must be fransiated onlto the
outputs of a function by an output transition.

In order to eliminate the assumptions necessary in determin-
ing data-validity, both inputs and outputs in self-timed CL cir-
cuits are encoded in DI-codes |6]. Dl-codes are wnordered
codes: no code word is contained within any other allowing for
the unambiguous detection of valid data.

The most general class of codes are M-of-N codes, where
M transitions on N wires represents the arrival of data. To
increase the efficiency of such codes, large datapaths are
formed by concatenating many small M-of-N code groups
together.

Seitz [3] defined the operation of self-timed circuits in four-
phases: inpuis become valid; outputs become valid; inputs
become invalid; outputs become invalid. This four-phase oper-
ation, aiso known as Return-To-Zero Signalling, is commonly
implemented in asynchronous systems where all wires return
to a quiescent state in between communication known as a
spacer.)

Seilz defined two possible modes of operation for self-timed
CL. circuits based on the order and overlapping of the four
phases. In this paper we consider only Seitz’s Strong Condi-
tions, where the four phases are strictly sequential and no over-
lapping is permitted between any phase. Circuits adhering to
the strong conditions are called Strongly-Indicating Combina-
tional Logic (SI-CL) circuits. The other mode of operation
defined by Seitz, Weak Conditions, allows restricted overlap-
ping belween phascs and may lead tc implementations with
lower latency. Synthesis of Weakly-Indicating circuits is com-
plex and is not considered in this paper. '

B. Speed-Independent Combinational-Logic Circuits

Combinational logic circuits which deal with data arriving
in some delay-insensitive code form an interesting sub-set of Si
circuits. They are characterised by: n

« many concurrent inputs
+ many independent outputs which are often concurrent

* excitation and quiescent regions of the outputs that are often
overlapped, although none is a proper subset of another.

* SGs that are distributive and have CSC.

1023

Because of these characteristics, CL circuits can easily be
implemented speed-independently using the SI standard archi-
tecture. However, because of the large numbers of inputs, these
designs often need to be decomposcd so -that they may . be
mapped into gate-libraries. Robust techniques, such as thosc
described in the previous section for decomposing general-pur-
pose speed-independent circuits, have problems due to the
large numbers of common inputs between signals. Divisors are
selected by looking at signals individually and calculating the
cost on the rest of the network of inserting a suitable signal in
its current state. However progress conditions give no indica-
tion of how complicated the inserted signal will make decom-
posing other signals in the network. For this reason it is
preferable to use simpler techniques, targeted specifically at SI-
CL circuits, that select divisors by looking at all the network as
a whole so that the full cost of the divisor can be evaluated. We
present a method for synthesising SI1-CL circuits based on tra-
ditional multi-level logic synthesis techniques.

C. inserting Signals in SI-cL State-Graph

We will show that, because of the nature of strongly-indicat-
ing CL. circuits, inserting a signal x with function f where:

‘ £ = flsup(x))
} = neg('t) = ASE.mp(x)S

preserves the speed-independence of the implementation,
providing that the signal x is inserted in the cover of every sin-
gle function in which it is resident. sup(x) is the support of x
and represents the set of input-literals of £ If f is a multi-cube
function, each of the ¢libes of f must have exactly the same quo-
tients in every function they are resident, to preserve the func-
tional cquivalence of the resulting circuit. For single cube
functions this is automatically true and therefore any single-
cube function can be inserted in this manner.

In a strongly-indicating CL function, each input transition is
_ translated to an output transition. Therefore, if the function of
x is substituted in every function in which it is resident, for each
input set of the whole network that fuifils the cover of x (C(x)),
at least one of the functions, a, into which x is substituted, must
transition and the circuit enters QR(x+). The strict grdering of
phases within strongly-indicating systems means each phase
must complete before the next phase can begin and the inputs
in sup{x), cannot become invalid until the output @ has transi-
tioned. It is not possible for the I-partition constructing x to
transition from §* — $°. The same is also true of the transition
from § — 5! as all outputs must become invalid, before an
input may become valid. Therefore the I-partiton constructed
to insert signal x is wellformed. .

An SIP set can always be generdted from the input-border
of a signal inserted in a SI-CL using the method described. As
it is guaranteed that at least one signal, @, will transition as a
result of x, all other input transitions where f = f, are independ-
ent of x, i.e. they are inputs not in sup(x), because all the inputs
of x will have transitioned and may not do so again until all out-
puts of the function are valid. Therefore any states connected

to ER(x+) by an input-transition or an unrelated output transi-
tion may be added to ER(x+),asf= 7, until neg(x) = 1, which
is after @ has transitioned and the circuit is in QR{x+).

It can be shown |4} that both the cover functions that signal
x is inserted into and the cover of x itself maintain the MC con-
ditions necessary for speed-independent implementation, and
hence can be implemented in the SI standard architecture.

Before being decomposed, a SI-CL circuit contains no inter-
nal signals, all the outputs signais are independent of each
other. Therefore the cover function of each output signal can be
described purely in terms of the input-signals of the network,
and combinaticnal logic techniques, such as the matrices of |2|
can be used to determine suitable divisors. Substituting signals
into function covers obscures the dependence of the functions
on the original inputs. This means that matrices cannot be guar-
anteed to detect all instances of a cube within the functions of
the network.

Simultaneously substituting a set of divisors (D) that com-
pletely cover a set of inputs (f) removes the input set com-
pletely from all other functions in the network and ensures that
no dependencies can occur between the remaining functions of
the network involving the input set [. The signals of D are aiso
independent and hence CL synthesis methods can be used to
select further sets of divisors. This means SI-CL circuits can be
synthesised without the need to construct complex state-graphs
for circuits, allowing a much larger range of SI-CL circuits to
be synthesised.

IV. SI Combinational Logic Synthesis

In order to simplify the substitution process and prevent the
need for state-graph analysis of the dependencies between sig-
nals, we would like (o generate a set of divisors, D, where:

sup(D) = dgb(é'ilp(di))

which encapsulates the set of signals, sup(D), in such a way
that they are either removed from the cover functions of other
signals of network, A, entirely, or remain only in terms with no
common cubes containing literals of sup{D}. The selection of
divisors is based on selecting common-cubes from functions.
Therefore no divisor can be selected across the two sets of
inputs caused by the partition. This is possible because S1-CL
functions ‘gencrally consist of several different code-groups,
the terms of which are mutually exclusive and can be used for
factoring logic in the same way as are binary variables in con-
ventional logic synthesis.

Co-kernel-cube-matrices are the perfect tools for partition-
ing the inputs of A into two parts. The two-dimensional struc-
tures naturally represent a pariition between common cubes
and their remainders.

Property 1 in a strongly-indicating CL network a complete
sets of divisors can be generated from an intersecting rectan-
gle of a Co-kernel-cube Matrix.

To generate a complete set of divisors, all commonality in
the input set must be explored. The entrants of a row (or col-
umn) of a matrix represent terms with common cubes. We only

1024

Co- | b3 b2 |b3[b2]ul |b5|bd | b5|hd]uS|ad|a5]ad]|as
Kerneld bl | b1 | b0 | b0 | a2 | bl | b1 [B0 | b0 | a3 | a3 | a2 |22 | a4
azal] 16 31 I4TT53 72030

a3al 16 31 121132728

adal | 7| 9 [22]2s 3 20

ajsal ¢ 6 | 8 [21 23 5 20

b1t0 16 1211314 |15 11
b2b0 31 271282913026
b2bl 10 6|7 | 8195

Figure 2: Intersecting Rectangles

consider Co-kernel-cube matrices with algebraic entries (all
entries have disjoint co-kernel and kemel-cubes) and so two

rows (columns) that share a common column (row) represent”

cubes of the same input set. If the input set of the rows and that
of the columns is mutuaily-exclusive then the intersecting rec-
tangle will form a perfect cube, where each row {column) con-
tains the same set of column (row) entries. However it is useful,
particularly for code groups where each code word cannot be
represented by a single implementable cube, to use partitions
where the row and column sets are not disjoint, such partitions
form dispersed rectangles. In such rectangles, the input sets
represent terms that overlap and several cubes must be inserted
simultancously into function terms to provide complete cover
of the input set. Figure 2 shows the two different types of inter-
secting rectangle. A simple algorithm is shown in figure 3 for
detecting intersecting rectangles from a matrix, based on the
sparse matrix rectangle implementation of [2]. The process of
synthesising a SI-CL network is de$éribed in the next two sec-
tions.

gen_intersecting_rectangles(M, index, rect) {
new-rect = rect;
col = M->columns[index];
if col not in new-rect {add col to new _rect;}
for-each element p in celumn {
r = M->rows[p->rownum]
if r not in new-rect {add r to new rect;}
for-each element p in r {
i = p->colnum;
if i »index {
gen_intersecting_rectangles(M,i,new-rect);}

b}

return new-rect; }

Figure 3: Algorithm for Detecting Intersecting rectangles

A. 81 Single-Cube Extraction

Single-Cube extraction is the simpler of the two stages. Sin-
gle-cube extraction is concerned with extracting common
cubes from the function terms of the whole network.

A Co-kernel-cube matrix is created from the set of unique
cubes in the whole network, The algorithm of figure 3 is used
to determine the sets of common-cube divisors and the co-ker-
nel groups of the intersecting rectangles. Rectangles with dis-
joint support can be substituted independently of each other. To
select between rectangles with overlapping support, a cost
function is used which determines the cost, in literals, of adding

dispersed rectangles to the network. The cost function reflects
the fact that in dispersed rectangles, several co-kernels will be
inserted into the same term. Therefore when dispersed rectan-
gles are selected, the cost of implementing the network may
increase. This is necessary as, in order to implement SI-CL
functions independently, all common terms must be extracted
from the network: this allows any large cubes to be decom-
posed into technology-specific gates arbitrarily.

Once the set of intersecting rectangles is selected, they are
substituted simultanecusly into all cover functions of the net-.
work. The process is then repeated, by constructing a new co-
kermel-cube matrix for the new function terms of the network,
until there are no multi-literal common cubes shared between

.any terms of the network. If no intersecting rectangles exist in

the matrix but there are still shared cubes between terms, the
network cannot be further partitioned and all remaining multi-
literal co-kernels must be inserted simultaneously. .

B. SI Multi-Cube Extraction

Multi-Cube extraction is more complex than single-cube
extraction for two reasons. Firstly, the set of multi-cube divi-
sors is constrained by the substitution process and so unsuitable
divisors must be filtered. Secondly, unlike single-cube extrac-
tion, the co-kernel-cube-literal matrix for multi-cube extrac-
tion is generated with the kemels and co-kemels of each
function; therefore, function terms that only appear once in a
function may not be represented in the matrix, and hence the
matrix cannot be used as a definitive guide to selecting correct
divisors.

Initially candidate sets of divisors are generated from the
matrix using the intersecting rectangle algerithm of figure 3.
From these intersecting rectangles only a small proportion con-
tain suitable kernel-intersections. The substitution process of
C. only permits the use of multi-cube divisors that have the
same quotient for each position they appear in the network.
These divisors can be determined from the matrix as maximal
kernel-intersections, columns with identical row entries. Inter-
secting rectangles that do not céntain any maximum intersec-
tions cannot be substituted and are therefore discarded.

Any kernel-cubes in an intersecting rectangle that do not
form maximum intersections can not be substituted and form
the co-rectangle of the candidate divisors. In order to guarantee
that removing a set of multi-cube divisors partitions the net-
work correctly, we ensure that all intersecting column-terms of
the co-rectangle are disjoint. If intersecting celumn-terms are
not disjoint then there exists, for each co-kemel, @, of the inter-
secting rows, a common quotient, g, of the terms containing a
and any common literals shared by the terms. This invalidates
the principle of disjoint input sets as g is a common cube con-
taining shared literals from both sets.

In order to ensure that only divisor sets that will maintain_
speed-independence are inserted, the position of the divisors in
the whole network must be determined. As each entry of the
kernel-cube matrix is labelled with the index of the network
term it forms, the set of terms covered by an intersecting rec-
tangle is easily determined. If an intersecting rectangle does

1025

not cover all of the terms of the network, it is possible that the
rules of substitution maybe violated and so the relationship of
the divisors to the uncovered terms must be evaluated. As the
cubes of multi-cube divisors must share the same quotient for
all network terms, any missing terms must form part of the co-
rectangle of candidate divisors. If no term of the co-rectangle
is contained in a missing term, the term forms a new column of
the co-rectangle and hence must be disjoint with the other co-
rectangle column terms.

Once the valid rectangles have been determined all non-
overlapping, i.e. disjoint or contained, rectangles can be
inserted into the network. This is done sequentially starting

gen_multicube_divisors(R, function-terms) {
divisors = {}; co-divisors = {};
co-kernels = R->rows; Ri = R;
divisers = column terms with identical rows
co-divisors = column terms with non-identical rows
if empty divisors return false;
else {
covered-terms =-0;
for~each element p in R {
add p->term to covered-terms }
remaining-terms =
differ(functicn-terms,covered-terms);
for-each t in remaining-terms {
if (t contained in divisors) return false;
else if (t not contained in co-divisors}
for-each co-kernel ¢ contained in t
for-each co-diviseor d {
if not-disjoint(d,(t / ¢)) return false; }
return R; }

Figure 4: Algorithm for determining multi-cube divisors

with the largest value rectangle. The process is then repeated
until no multi-cube divisors remain. The algorithm for determ-
ing whether a intersecting rectangle forms a valid divisor group
is shown in figure 4. - .

» The method described is an efficient synthesis procedure for
a large range of SI-CL circuits up to several thousand mint-
erms. The methed is vastly more efficient compared to general-
purpose speed-independent synthesis and decomposition tech-
niques. A large class of practical speed-independent circuits
that were previously unsynthesisable can now be synthesised.

V. Results

Table 1 shows the results of the synthesis procedure on a
small selection of SI-CL circuits. The two categories of circuits
are representative of circuits used in combinational logic
speed-independent designs. Each adder circuit is a full-adder
constructed from two single groups of the code, with a dual-rail
(1-of-2) carry. The completion detection functions are used to
detect the arrival of valid code words within a single code
group and are used.extensively in speed-independent imple-
mentations.

The table details the number of minterms of the functions,
and the cost in transistors of the implementation. Each circuit
is implemented in twe input gates, any large cubes being

- decomposed. 2-input OR and AND gates have 6 transistors and
a 2-input C-element 10 transistors. We also show the cost of

Circuit Type | Circuit Code | Minterms iicslizgt::g: Te:i‘ler:n\;vque
Full Adder |Dual-Rail 8 376 154
1-of-4 32 1364 450
2-of-4 72 4i16 1370
3-of-6 800 128112 9094
4-of-7 2450 529326 26486
Completion |2-of-4 6 110]
Detection |5 1.7 21 |. 350 330
3-of-6 20 414 664
4-of-7 35 854 2164
5-of-7 21 602 4320

Table 1: Comparison of Synthesis Results

implementing the circuits in the SI standard architecture using
unlimited fan-in gates. In this case, the costs were deduced
from size of each cube in the design. We assume that each extra
input to a gate results in two extra transistors, one on each tran-
sistor stack. , '

Completion detection circuits are particularly difficult to
synthesise using this method. Completion Detection functions
consist of a single code-group, and so, in general, the input sets
can not be partitioned further. Where the number of active
inputs is large, the size of implementations increases rapidly as
each rectangle is dispersed and the cost of the network
increases with each iteration. All strongly-indicating imple-
mentations will suffer the same problems and so it is necessary
to implement such circuits using weakly-indicating methods:
an area for further research.

V1. Conclusions

We have presented an efficient technique for the synthesis
of strongly-indicating combinational logic circuits. The tech-
nique, based on conventional circuit synthesis methods allows
arange of SI-CL circuits to be synthesised. Such circuits were

" previously unsynthesisable owing to the complexity of general

purpose speed-independent synthesis methods which require
the construction of infeasibly large state-graphs.

VII. References.

[11 J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno and
A. Yakovlev. “Logic Synthesis for Asynchronous Controllers
and Interfaces™, Springer-Verlag, 2002.

[2] R. L. Rudell. “Logic Synthesis for VLSI Design”, Pil) ihesis,
University of Califorma at Berkeley, 1989.

[3] C. Seitz. “Systern Timing”, C.A. Mead and L.A. Conway (eds),
Introduction 1o VLSI systems, Addison-Wesley, 1980.

[4] W B Toms “Synthesis of QDI Datapaths™, PhD thesis, Univer-
sity of Manchester, 2004.

[5] V.1 Varshavsky, ed. “Self-Timed Control of Concurrent Proc-
esses: The Design of Aperiodic Logical Circuits in Computers
and Discrete Systems”, Kluwer Academic Publishers. 1990.

" [6] . T. Verhoeff, “Delay Insensitive Codes - an Overview”, Distrib-

uted Computing Vol. 3. 1988.

1026

