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Abstract 
A functional unit (FU) that is well suited to high computational-intensive DSP systems, and combines several 
techniques to achieve high energy efficiency is presented. This FU consists of a datapath enabling parallel 
operations within it. A user configurable RAM memory specifies the operations required and gives the user and 
system programmer great flexibility in executing algorithms. Not only multiply accumulator operations can be 
performed by the FU, but other necessary instructions of a general DSP such as the hamming distance are also 
implemented. The operation flow is controlled using a self-timed circuit style to further reduce power and 
spread the circuit switching. Post-layout simulation of our full-custom FU implemented on 0.18�m operating at 
1.8 V with an area 0.36 mm2 shows a large energy improvement by a factor of 10 compared to the original 
design whilst performance results show that using four-way parallelism DSP yields a high throughout rate of 
equivalent to 800 MHz. 
 
1. Introduction 
As is well-known, the capabilities of computation in portable applications has been increasing exponentially. 
However, the intensive and continuous computing of hand-held computers and other portable devices are 
restricted by the source of power. There is no equivalent of Moore’s Law in the case of battery technology and 
only a 20% improvement in capacity of battery technology is expected over the next 10 years [1]. Reiner 
Hartenstein reported a technology trend graph as shown in Figure1[2]. It is clear that the energy density of 
existing battery technologies are far from what is needed. Hence, an energy efficient design becomes vital.  

 
Figure1 Technology trends 

 
Digital Signal Processors (DSPs) have been developed for wireless applications such as mobile handsets. 
Mostly, mobile phones are driven by cellular standards. In the first generation, many types of filter were 
expected to run on the DSPs. However, a modern mobile phone handles many more applications such as video 
decoding, data processing and speech recognition. Multiple standards are also needed in one device. Therefore, 
the trend for DSP architectures is parallelism; exploiting more than one processing unit gains high throughout. 
Whilst the area is increased by employing multiple computing units, the energy consumption is decreased by 
scaling down the supply voltage. However, there is a question as to whether large voltage scaling improves the 
energy efficiency since theoretically, the sub-threshold supply voltage leakage energy becomes dominant. For 
moderate voltage scaling, the logic depth, amount of switching and the workload factor of the circuit determine 



the energy efficiency. In [3], it is reported that the operating voltage should be scaled to approximately 30% of 
the maximum supply voltage under typical workload requirements.  
 
If the energy-delay product metric is used as the basis of comparison between designs, then the overall energy 
efficiency can be exponentially improved in a DSP with parallel FUs since each FU can be operated at lower 
throughput. This is because when the energy-delay product is taken into account, it means each component uses 
the smallest energy source per operation. When the speed has been slowed down, each component will dissipate 
less power. Meanwhile, the overall throughout of the system is still maintained because of the parallel 
architecture. Therefore, the system can gain an energy efficiency improvement merely by introducing 
parallelism.  
 
An alternative approach to make an energy efficient system is to structure algorithms to fit the available 
hardware resource in a DSP. This usually has restrictions with the existing hardware architecture. Therefore, at 
this level, system may not gain a big improvement. When several energy efficient design techniques are 
combined, the system will give a large energy improvement when running on a powerful architecture.   
 
Another requirement of a DSP is flexibility. In recent years, many research works [4-7] propose reconfigurable 
digital signal processors with designs implemented on Field Programmable Gate Array (FPGA) technology. 
However, the power dissipation is still relative high. New generation FPGA includes specific arithmetic units, 
accelerators, IP cores are these provides the speed and flexibility but still tend to be high power. The research 
challenge is to develop a design for both energy efficiency and flexibility. Portable systems need a processing 
unit that gives them the lowest energy consumption but at the same time must provide enough flexibility to the 
user and programmer. The functional unit presented here is an energy efficient and flexible component for an 
asynchronous parallel DSP performing computationally intense algorithms. A configuration memory has been 
attached to each energy efficient FU in our design for maximum. Internally, the design combines several energy 
efficient circuit/logic design techniques. The detail of our DSP architecture will be described briefly in the next 
section followed by the instruction set for our system and an example of a simple 2-D discrete cosine transform 
(DCT) to demonstrate the exploitation of parallelism in our DSP. Our FU architecture including arithmetic, 
logical unit and the configuration memory are described in section 3. The low power circuits used in the 
datapath are described in section 4. Simulation results from the full-custom layout are presented in section 5 
demonstrating the improvements to energy achieved and also contains some concluding remarks. 
 
2. Digital Signal Processor 
A. Architecture Overview 
Our FU has been designed and implemented for a parallel asynchronous DSP named CADRE [8]. CADRE was 
proposed to be a minimum power consumption DSP whilst meeting the performance requirements of next-
generation cellular phones. However, the simulation results show that the power dissipation is still on the high 
side. In [8], the power dissipation of CADRE was analyzed and approximately 50% of the overall power 
consumption was found to be dissipated in the FU. Therefore, the new FU in this research will replace on the 
original design. The original philosophy of the architecture is described to help the reader understand our FU 
easily.  
 
CADRE was implemented by exploiting four-way parallelism as this appears to be optimal for power reduction, 
Chandrakasan and Brodersen [9]. This is based on the premise that area can be traded for increased speed 
because silicon area is rapidly becoming less expensive. Most of the DSP activity can be characterized by 
frequent repetition of fixed instruction sequences. So, the instruction encoding which determines the selection 
and passage of data for each operation can be predetermined and stored in advance in a configurable memory 
which is located locally to each FU. These encodings can then be recalled with a compressed instruction. 
Because the configuration memories are RAMs, this allows reconfiguration at any point in execution. In 
addition, CADRE the encodings could be expanded within the FUs. This dramatically reduces the size and 
amount of information that needs to be fetched from main memory. CADRE used a dual Harvard architecture 
that has one program memory and two separate data memories. In addition, a large on-chip register file of 256 
16-bit words was included to avoid traffic and power dissipation in the main memories. In this way, the 
operands required by the FUs were provided directly from a register file. As with other DSPs, a 32-entry 



instruction buffer was also included to handle loop instructions and reduce traffic to or from the program 
memory. Finally, all standard hardware components in CADRE were operated using self-timed techniques. 
 
This top-level architecture has been adapted for the current research work because time is too limited to fully 
implement the CADRE design. However, we still keep the major advanced feature such as four-way parallelism 
to give high throughput. Meanwhile, a new FU has been designed with its configuration memory. The new 
system consists of four FUs connected together with a global bus and a pair of FUs are connected locally. The 
input data of each FU will be directly provided from on-chip RAM blocks with the output data being kept in 
another RAM block. The encoded top-level instruction is stored in a program memory. It contains controllable 
to enable the FU and accumulator writeback plus a 5-bit address which accesses the configuration memory 
associated with each FU; the functional unit instructions are stored in advance into each configuration memory 
of the FUs.  
 
B. Instruction Set 
The instruction set of the proposed FUs has two sets of instructions: computation and data movement and these 
can occur concurrently. 
1) Computational instructions:  These instructions contain arithmetic and logical operations; the arithmetic 

instructions include distance, normalization, shift, ADD, SUB, MPY and MAC (multiply and accumulate). 
The output destination of the operation can be 1 of 4 accumulator registers (AccA to AccD) inside the FU. 

2)  Data Movement Instructions: These instructions process the data movement in or out of the FU. These 
instructions include an accumulator register to accumulator register transfer within the FU itself, an 
accumulator register to an accumulator register in another FU, or a movement of data to the output RAM. 

 
C. Example Assembly Codes 
The two-dimensional discrete cosine transform (DCT) is a member of the family of sinusoidal transforms and is 
often used in image compression. An 8x8 2-D DCT has been implemented for compression algorithms such as 
JPEG. An algorithm for computing the 2-D DCT on a single 8x8 block in high-level C code is given below:  
 
 for (k = 0; k < 8; k++) 
  for (l = 0; l < 8; l++) 
  { 
   sum = 0; 
   for (i = 0; i < 8; i++) 
    for (j = 0; j < 8; j++) 
     sum += x[i][j] * c[i][k] * c[j][l];  // x[i][j] is 16 bits, c[i][k] and c[j][l] are 
             // 12 bits, and sum is 32 bits 
   y[k][l] = (sum + 2^15) >> 16;   // y[k][l] is 16 bits  
  } 
 
An example of the single 8x8 block of 2-D DCT forming the output y[0][0] optimally mapped to the four-way 
parallelism of the FU architecture is shown in Table1. The sampling data, coefficients, the input and output 
occupy 16 bits whilst the sum occupies 32-bits.  The primary datapath for this FU is a 40-bit datapath. In the 
first two cycles, only multiplication is performed. Thereafter, the accumulators hold the valid data so a 
multiply-accumulate (MAC) operation is performed. When all MAC operations are complete, the four products 
of the 8 sums reside in accumulator registers A and B of each FU. The sum of loop j can be produced by 
combining them. Finally, all 8 products for loop i are then combined to produce y[0][0]. However, the final 
result needs to be rounded before writing the result back to RAM. This is repeated to apply the loops for k and l 
generating the output y(k,l). The way that operations are mapped to the hardware dramatically reduces the 
amount of switching activity within the multiplier because the value on the data bus within each FU is held 
constant for two successive instructions. In addition, the frequency of coefficient reading from memory is 
reduced by factor of two. 
 
3. Energy Efficient Functional Unit Architecture 
The challenge here is to meet the requirements of future portable applications, such as mobile phones. These 
devices have a very small power budget but need high performance with a complexity approaching that of a 



desktop computer. The throughput has been achieved by adopting a parallel architecture allowing up to 4 
instructions to be processed in parallel. In addition, parallel arithmetic logic is also used within a FU. The next 
challenge is therefore to scale the supply voltage downwards whilst maintaining the performance with the use of 
parallelism at different levels. Therefore, our FU can support supply voltage scaling without sacrificing the 
overall performance.  
 
Table 1: Mapping 2-D DCT (8x8) onto 4-FUs to find y[0][0]  
 

FU0 FU1 FU2 FU3 
AccA= x[0][1]*C[1][0] AccA= x[1][0]*C[0][0] AccA= x[2][0]*C[0][0] AccA= x[3][0]*C[0][0] 

AccB= x[4][1]*C[1][0] AccB= x[5][0]*C[0][0] AccB= x[6][0]*C[0][0] AccB= x[7][0]*C[0][0] 

AccA= x[0][2]*C[2][0]+AccA AccA= x[1][2]*C[2][0]+AccA AccA= x[2][1]*C[1][0]+AccA AccA= x[3][1]*C[1][0]+AccA 

AccB= x[4][2]*C[2][0]+AccB AccB= x[5][2]*C[2][0]+AccB AccB= x[6][1]*C[1][0]+AccB AccB= x[7][1]*C[1][0]+AccB 

AccA= x[0][3]*C[3][0]+AccA AccA= x[1][3]*C[3][0]+AccA AccA= x[2][3]*C[3][0]+AccA AccA= x[3][2]*C[2][0]+AccA 

AccB= x[4][3]*C[3][0]+AccB AccB= x[5][3]*C[3][0]+AccB AccB= x[6][3]*C[3][0]+AccB AccB= x[7][2]*C[2][0]+AccB 

AccA= x[0][4]*C[4][0]+AccA AccA= x[1][4]*C[4][0]+AccA AccA= x[2][4]*C[4][0]+AccA AccA= x[3][4]*C[4][0]+AccA 

AccB= x[4][4]*C[4][0]+AccB AccB= x[5][4]*C[4][0]+AccB AccB= x[6][4]*C[4][0]+AccB AccB= x[7][4]*C[4][0]+AccB 

AccA= x[0][5]*C[5][0]+AccA AccA= x[1][5]*C[5][0]+AccA AccA= x[2][5]*C[5][0]+AccA AccA= x[3][5]*C[5][0]+AccA 

AccB= x[4][5]*C[5][0]+AccB AccB= x[5][5]*C[5][0]+AccB AccB= x[6][5]*C[5][0]+AccB AccB= x[7][5]*C[5][0]+AccB 

AccA= x[0][6]*C[6][0]+AccA AccA= x[1][6]*C[6][0]+AccA AccA= x[2][6]*C[6][0]+AccA AccA= x[3][6]*C[6][0]+AccA 

AccB= x[4][6]*C[6][0]+AccB AccB= x[5][6]*C[6][0]+AccB AccB= x[6][6]*C[6][0]+AccB AccB= x[7][6]*C[6][0]+AccB 

AccA= x[0][7]*C[7][0]+AccA AccA= x[1][7]*C[7][0]+AccA AccA= x[2][7]*C[7][0]+AccA AccA= x[3][7]*C[7][0]+AccA 

AccB= x[4][7]*C[7][0]+AccB AccB= x[5][7]*C[7][0]+AccB AccB= x[6][7]*C[7][0]+AccB AccB= x[7][7]*C[7][0]+AccB 

AccA= x[0][0]*C[0][0]+AccA AccA= x[1][1]*C[1][0]+AccA AccA= x[2][2]*C[2][0]+AccA AccA= x[3][3]*C[3][0]+AccA 

AccB= x[4][0]*C[0][0]+AccB AccB= x[5][1]*C[1][0]+AccB AccB= x[6][2]*C[2][0]+AccB AccB= x[7][3]*C[3][0]+AccB 

AccA= AccA*C[0][0] AccA= AccA*C[1][0] AccA= AccA*C[2][0] AccA= AccA*C[3][0] 

AccB= AccB*C[4][0] AccB= AccB*C[5][0] AccB= AccB*C[6][0] AccB= AccB*C[7][0] 

AccB= AccB+AccA AccB=AccB+AccA AccB= AccB+AccA AccB=AccB+AccA 

AccB=AccB+AccB(FU1) NOP AccB=AccB+AccB(FU3) NOP 

AccB=AccB+AccB(FU2) NOP NOP NOP 

Y[0][0]=AccBh NOP NOP NOP 

 
 
3.1 Configuration Memory 
The regularity of typical DSP code allows multiple FUs to be employed without the power and area expense of 
dynamic scheduling hardware. For example, most modern DSPs, such as the TMS320C55x from Texas 
Instruments, use very long instruction words (VLIWs). In this case, program memory is fetched at the full rate 
demanded by the FUs and a lot of power is dissipated. Although cache would be a possible method to 
ameliorate this, there is an energy overhead in searching for a hit in cache memory. In our proposed FU 
architecture, the VLIW encoded instructions are stored in advance of executing each algorithm in a 
configuration memory located to each FU. This is different from others commercial DSPs such as the Phillips 
REAL DSP [10] or the Infineon CARMEL DSP [11] which have a single global configurable memory which is 
only used for special instructions. 
 
In our design, the VLIW instructions for a particular algorithm are ‘cached’ by software and looked up using a 
short-form instruction. Up to 64 instructions are produced in a configuration memory this is more than 
sufficient for an anticipated algorithm; for example the DCT algorithm in table 1 requires only 6 encoded 
instructions in a configuration memory. Furthermore, the configuration memory instructions are completely 
user definable. The simple look-up avoids any tag overhead associated with a cache. The configuration memory 
makes the configuration of the FU flexible, enabling optimization by users. This flexibility has led to additional 



hardware costs, particularly in the implementation of the configuration memory. These costs can be justified by 
the flexibility and performance gained by users. In particular, the use of configurable memory embedded into  
the design is unique compared with the other DSPs mentioned above. This feature also allows each FU to 
operate on an independent instruction stream if required. 

 
Figure 2 Functional unit datapath 

 
3.2 Energy Efficient Arithmetic-Logical Unit 
The FU datapath is shown in Figure 2. The number of available paths and input sources at different points mean 
that within the FU, many concurrent operations can occur within a single timeslot. For example, multiplication 
and addition with shifting can be performed in parallel with moving the contents of an accumulator result back 
to memory. Operations within the FU are termed major and minor. A major operation is usually performed in 
each timeslot and encompasses the arithmetic and logic operations. Data supplied to or from the FU is usually 
16-bits. However written the FU the data is 40-bits wide as is usual in a DSP. Multiplication is 16x16 bits and 
produces a 40-bit partial sum (PS) and partial carry (PC) which are then forwarded to the adder in the ALU 
block for completion. Here, up to four operands may need to be added i.e. PS (or Lin) and PC (or Rin) together 
with an accumulator value (SHACC) which comes via the Shifter and a rounding constant (not shown). The 
ALU output is written to one of four accumulators AccA to AccD in the ACC.  
 
Minor operations operate concurrently with a major operation. Here, in parallel with a major operation of 
addition and/or the multiplication, another Accumulator register can be written to either from another (shifted or 
unshifted) Accumulator register, or from the memory (OpB) or from the global bus GIFU. An Accumulator can 
also be written back to memory via the WB bus. To prevent unnecessary switching on the buses, transparent 
latches are inserted in front of multiplier, ALU and the second write port (2W) of the ACC.  
 
The addition of the multiplier outputs PS and PC is performed by the adder in the ALU. This adder is therefore 
shared between the add/subtract and multiply/multiply-accumulate operations. This architecture is unusual in 
that most designs have a dedicated adder for the MAC operation and a separate adder provided for the addition. 
Having just one adder in the FU significantly reduces the amount of logic required in the datapath which in turn 
reduces power. 

 
A. Asynchronous Circuit Design  
The FU unit forms part of an asynchronous pipelined design. Asynchronous timing provides further power 
improvement as it eliminates clock generation, buffering and distribution. This asynchronous approach also 
gives a reduction of electromagnetic interference (EMI) as the switching of the logic is spread instead of being 
concentrated around the clock edge. The FUs are therefore based on the principle of micro-pipelines [12] where 
the data transfer between blocks uses local handshake signals rather than clocks. The principle is shown in 
Figure 3. The done signal allowing an output to propagate to the next micro-pipeline stage is generated either 
from the combinational logic for a data dependent operation or from a matched delay.  Where the operation 
time is data dependent, as in the adder, the operation can be self-timed by using a completion-detection (CD) 
circuit. Many CD techniques are proposed [13-15]. The circuit in the FU has the additional requirement of 



being low power. Therefore dual-rail coding having two wires per signal which always return to a ‘00’ state, or 
duplicate logic producing the done signal which has the same delay as the combinational circuit is not suitable 
for such a low power application. Current-sensing CDs are also not suitable because they require an additional 
supply voltage and have higher quiescent current than synchronous circuits negating their advantage. Activity-
Monitoring CD (AMCD) has an even higher energy-delay when there is a maximum ripple path. This is 
disadvantageous in a DSP since a maximum ripple path occurs in mamy arithmetic operations. Many designs 
use the bounded delay approach as it is the easiest CD method to implement. However, this is not a proper 
completion-detection method since the delay is fixed and needs to be longer than the maximum delay path. In 
[15], it is claimed that for combinational circuit having a critical path of less than ten gate-delays then a 
bounded delay approach works satisfactorily.  
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Figure 3 Asynchronous pipeline 
Using different delay options for the same logic block has been proposed. For example, Nowick et al. proposed 
a method called ‘speculative completion’ for use in a single rail asynchronous datapath [16]. This uses several 
different matched delays that allow each component to operate at a different speed. However, it involves extra 
circuit complexity, area and power dissipation. In our research work, we use our novel method to vary timing in 
an asynchronous control circuit by varying its supply voltage. It offers many advantages, such as allowing 
several different matched delays without incurring extra area on power overheads. Tuning the control delay to 
the datapath also improves performance and offers a flexibility not apparent in other asynchronous timing 
approaches. It therefore improves the likelihood of obtaining working asynchronous circuits at the first attempt 
and should lead to greater acceptability of asynchronous design techniques by easing the problem of designing 
timing and control. 
 
B. Multiplier Implementation 
The arithmetic unit has been implemented using two’s complement rather than the sign and magnitude 
arithmetic in the initial design; this reduces design complexity, lowers dissipation and gives a better 
performance. The algorithms for GSM operations indicate a high proportion of multiplication operations. 
Generally, the multiplier consists of two main components: a partial product generation (PPG) and the addition 
of those partial products (PPs). The current 16x16 low-power multiplier is shown in Figure 4, has employed a 
modified Booth’s algorithm [17] to reduce the number of PPs by dividing the multiplier bits into groups and 
selecting multiples of the multiplicand. Although larger groups of multiplier bits can give more PP reduction, a 
more complex selection table is required, so (as is usual) three bit groups are chosen to maintain speed while 
remaining low power.  
 
The addition of the eight PPs requires a carry propagate adder (CPA) which has a long latency. To avoid this, a 
Wallace Tree [18] structure of 4-2 compressors is used which not only improves performance by reducing the 
latency but also reduces power by significantly reducing the amount of overall logic required. As a result of 
using tree structure topologies, the number of stages traversed by each input is approximately the same for all 
inputs. This leads to a balanced delay tree and results in less switching activity due to input skew. In addition, 
the eight PPs have been divided into two groups, PP1-4 and PP5-8 to produce partial carry and partial sum in 
parallel. Therefore, this multiply structure can achieve both performance and balance the delay in the tree 
structure. As the multiplier generates 40-bit outputs, all PPs have to be sign-extended. In order to minimize the 
logic within the tree structure, a pre-calculated sign-extension is applied.  Furthermore, eight signed bits from 
the modified Booth’s logic are forwarded to the adder; this reduces the depth of the Wallace tree logic required 
by one stage.  
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Figure 4 Multiplier Structure 
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Figure 5 Structure of 4 input 40 bit adder and carry-look-ahead tree. 

 
C. Adder & Associated Implementations 
Operation analysis reveals that addition is the most frequent function performed in speech code. Thus, whilst 
the power dissipation of addition is approximately 1/5 that of multiplication; the very high proportion of 
additions means that it is essential to minimise the power required for this operation. In the FU, addition 
involves adding up to four variables as shown in Figure 5. The four inputs are first compressed to two by using 
4-2 compressors. The two compressor outputs are then added in a carry-look-ahead tree. The carry-look-ahead 
equation, given in [19], has been modified when used in our design to enable an easy efficient mapping onto 
pass-transistor circuits. The carry is generated across blocks of four bits because this offers the best speed-
power product. The adder in [19] was implemented using VHDL whilst a synthesis tool then used to generate 
the circuit and layout; therefore, its energy efficiency was relatively poor. In our design, the logic has been 
optimised and organised to map efficiently onto low energy pass transistor circuits and the circuits have then 
been laid out by hand to give an area efficient implementation. Thus the design achieved here is power efficient.  
 
The normalized and Hamming distance instruction are normally included in the instruction set since they are 
useful for most DSP algorithms. In our design, we combine these functions into only one logic circuit. This not 
only reduces the number of logic gates but gives lower power dissipation than other designs. This novel logic 
also gives a performance improvement when compared with the conventional logic of normalized and distance 
designs. This is because carry-save techniques have been used in preference to the more usual carry ripple in the 
adder. 



4. Energy Efficient Circuits and Layout Implementation 
It is important to understand how energy is consumed in a circuit. An energy efficient design can be realised by 
either minimizing the energy consumption subject to a throughput constrain, or by maximizing the amount of 
computation for a given amount of energy. The optimal design can be made if the trade-off between the energy 
and delay can be met since it is possible to determine the lowest energy for a given level of performance. One 
approach in the system is to incorporate parallelism or pipelining. In addition, use of energy efficient circuits to 
implement the sub-components in the system result in good energy efficiency. Therefore, this section will 
discuss and show the energy-delay related to the output loads and transistor sizing. The multiplexer cell as 
shown in Figure6 implemented by pass-transmission gate is the main cell applied everywhere within the FU 
datapath. If S is low, the top CMOS pass gate is on passing B to the output, whilst if S is high, the bottom 
CMOS pass gate is on and A passes to the output. 
 
Gate sizing can be used to trade-off energy and delay. The minimal energy delay point of a circuit is not only 
affected by its basic design but also by its output load capacitance. The logic gate capacitance and load 
capacitance including wiring both increase linearly with transistor size. Gate delay can be calculated as td =  �d, 
where � is a process-dependent constant, and d is a unitless delay of the gate.  The unitless delay is determined 
as d = heff + �, where heff is the product of logical effort of the driving gate and electrical fan-out; a logical effort 
of 1 results from a minimum size inverter driving a similar inverter. The electrical fan out is the equivalent 
number of minimum size inputs being driven. The self-loading delay � is the product of logical effort (g) and 
the ratio of the equivalent driven gate width to the equivalent driving gate width, �=gWpar/Win. Because there 
are no publications relating to the logic effort of a pass-transistor logic as yet, we regard the multiplexer as a 
logic gate. In our work to find the minimal point of energy delay of multiplexer, the transistor size and loading 
capacitance for the gate in figure 6 are varied as shown in Table3. The circuits were simulated on SPICE 
assuming a geometry of 0.18�m and an operating voltage of 1.8V.  

nQS

A

B

Inv_S

Inv_nQ

 
Figure 6 A pass-transmission gate multiplexer 

 
Table 2: Energy delay product simulation results of pass-transmission gate multiplexer using transistor sizing 
with various load capacitances. 

Load Capacitance = 10 ff 
(equal to 4 Inverters) 

Load Capacitance = 20 ff 
(equal to 8 Inverters) 

Load Capacitance = 30 ff 
(equal to 12 Inverters) 

*0.18um 
geometry 
operating at 
1.8V. 

CASE 

Et (pJ) 
(worse 
case) 

Et (pJ) 
(average case) 

Et (pJ) 
(worse case) 

Et (pJ) 
(average 
case) 

Et (pJ) 
(worse case) 

Et (pJ) 
(average 
case) 

1 6.049 5.691 18.298 14.220 33.778 23.542 
2 6.909 6.831 19.989 16.112 37.726 26.848 
3 8.302 8.118 22.879 18.265 41.784 29.696 
4 8.422 6.258 14.409 11.119 21.769 17.390 
5 8.802 6.563 14.895 11.530 22.160 17.795 
6 7.791 5.669 14.029 10.585 21.698 16.924 
7 6.054 6.054 17.680 11.676 29.061 19.178 
8 9.719 6.638 18.110 12.256 29.280 19.703 
9 8.460 6.421 16.467 12.282 27.310 20.079 

10 7.319 5.159 16.624 11.267 28.157 18.946 
 



 
Pass Gates (-e06 m) Inv_S (-e06 m) Inv_nQ (-e06 m) CASE 

NMOS PMOS NMOS PMOS NMOS PMOS 
1 0.28 0.28 0.28 0.28 0.28 0.28 
2 0.28 0.28 0.70 1.24 0.28 0.28 
3 0.80 0.80 0.70 1.24 0.28 0.28 
4 0.80 0.80 0.70 1.24 0.70 1.24 
5 1.00 1.00 0.70 1.24 0.70 1.24 
6 0.28 0.28 0.70 1.24 0.70 1.24 
7 0.28 0.28 0.70 1.24 0.36 1.46 
8 0.80 0.80 0.70 1.24 0.36 1.46 
9 0.80 0.80 0.28 0.28 0.36 1.46 

10 0.28 0.28 0.28 0.28 0.36 1.46 
 
Table 2 shows the energy delay product resulting from the use of different transistor sizes in the multiplexer and 
different load capacitances. We have analyzed the energy delay product of the circuit with both average rise and 
fall times and worse case edge times. Clearly, transistor sizing can help the circuits to have a low energy delay 
product when load capacitance is increased. In practical, load capacitance is very important and has a large 
effect both the performance and power of the system, especially in a large design. In addition, using the 
minimal transistor size cannot achieve optimum energy efficiency. It can be concluded from these results, that 
the CMOS pass gate transistors that for minimum energy-delay should be minimum size, the inv_S should be a 
drive 1 gate (PMOS/NMOS width = 1.24e-06m/0.70e-06m) and be capable of driving the select signals on 2 or 
3 multipliexer gates, and that the inv_nQ should be matched to the driven load (PMOS/NMOS width = 1.24e-
06m/0.70e-06m). These figures do not include leakage power which is small for this process and provided the 
transistor sizing above is adopted. 
 
Finally, a full custom layout is required to build an energy efficient system. This is especially important when 
the pass-transistor circuit topology is used since we can achieve less area and a non-predictable load 
capacitance. In addition, the physical capacitance and the length of wires can be minimised. Therefore, full 
custom design combined with transistor sizing will give a big energy saving compared to the automatic place 
and route tools which have developed to reduce the energy consumption and which yield only an 18% 
reduction[20]. 
 
5. Discussion and Conclusions 
The results from remaining simulations on the full custom layout for the datapath shown in Figure2 indicate that 
our FU dissipates about 13.68mW@200MHz. Projecting this to four-way parallelism yields 800MHz with a 
power consumption of only 54.72mW. This indicates a factor of 10 improvement in the dissipation on the 
original FU design assuming a similar geometry and operating voltage. 
  
Energy efficiency is a significant design constraint for battery powered DSPs requiring a coherent low energy 
technique applied at all levels and particularly at logic and circuit levels. The proposed FU architecture has been 
designed to be flexible, have low power and high throughput particularly in performing arithmetic operations 
involving the multiplier and adder. In addition, asynchronous data dependent operation and a tunable delay 
mechanism are incorporated to gain even better energy efficiency. At the circuit level, pass transistor logic is 
used which is low power without sacrificing performance. Transistor sizing has been applied to this pass 
transistor logic to identify the optimum trade-off between energy and delay.  
 
In the future, the need for energy efficiency design should result in a move from low-level energy-efficient 
techniques to higher levels as the automatic tools which currently do not support coherent lower energy 
strategies.   
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