
and of that from other members of the project particularly
Kees van Berkel of Philips Research and Ad Peeters of
Eindhoven University and to the ACID-WG. They are also
grateful for additional support and advice received from the
AMULET1 design team: Steve Furber, Nigel Paver, Paul
Day, Jim Garside and Viv Woods.

10: References

[Beni94]Benini L., Favalli M., Ricco B., Analysis of hazard con-
tributions to power dissipation in CMOS ICs. 1994 Interna-
tional Workshop on Low Power Design, NAPA Valley, April
1994.

[Chan92]Chandrakasan A.P., Sheng S., Brodersen R.W., Low
Power CMOS Digital Design. IEEE Journal of Solid-State
Circuits, Vol. 27-4,April 1992.

[Day94]Day P., Investigations into Micropipeline Latch Design
Styles, submitted to IEEE Transactions on VLSI Systems,
1994.

[Dobb92]Dobberpuhl D. et al,
A 200 MHz 64b Dual-Issue CMOS Microprocessor.
IEEE Journal of Solid-State Circuits, 27(11):155-1565,
November, 1992.

[Eshr93]Eshraghian K., Weste N. Principles of CMOS Design A
Systems Perspective. Second Edition. Addison-Wesley,
Wokingham, England, 1993.

[Farn93]Farnsworth C., Micropipeline approach to design exam-
ples. ACID-WG workshop on Digital Signal Processing,
Barcelona, 1993.

[Farn94]Farnsworth C., Low power Implementations of an I2C I/
O Expander. M.Sc. Thesis, May 1994, University of Man-
chester.

[Furb93]Furber S.B., Day P., Garside J.D., Paver N.C., Woods
J.V., “A Micropipelined ARM.” Proceedings of VLSI ‘93,
Grenoble, France, September 1993, best paper award.

[Gars91]Garside J.D. An Asynchronous Adder Design. Internal
Amulet Group document, Manchester, June, 1991.

[Gars93]Garside J.D. CMOS VLSI Implementaion of an Asyn-
chronous ALU. Proceedings of the IFIP working conference
on Asynchronous Design Methodologies, Manchester, Eng-
land, 1993.

[Gonc83]N. F. Goncalves, H. J. De Man, “NORA: A Racefree
Dynamic CMOS Technique for Pipelined Logic Structures”.

[Kram82]R. H. Krambeck, C. M. Lee, H. S. Law. “High-Speed
Compact Circuits with CMOS”,IEEE J. Solid-State Circuits,
vol SC-17, pp. 614-619, June 1982.

[Liu93]Liu D., Svensson C., Trading Speed for Low Power by
Choice of Supply and Threshold Voltages. IEEE Journal of
Solid-State Circuits. Vol 28-1, Jan. 1993.

[Lyon93]Lyon R.F., Cost, Power, and Parallelism in Speech Sig-
nal Processing, IEEE 1993 Custom Integrated Circuits Con-
ference. May 1993.

[Meng91]Meng T.H., Synchronization Design for Digital Sys-
tems, Kluwer International series in engineering and compu-
ter science, Kluwer Academic Publishers. 1991.

[Pave92]Paver N.C., Day P., Furber S.B., Garside J.D., and
Woods J.V.,Register Locking in an Asynchronous Micro-
processor.Proceedings of ICCD ‘92, pp 351-355, October

1992.
[Pave94]Paver N.C., The Design and Implementation of an

Asynchronous Microprocessor. PHd thesis, May 1994, Uni-
versity of Manchester.

[Suth89]Sutherland I.E., Micropipelines. Communications of the
ACM. 32(6):720-738, January, 1989.

[vBer88]van Berkel C.H., Rem M., Saeijs R.W.J.J., Compilation
of Communicating Processes into Delay-Insensitive Cir-
cuits. Proceedings of ICCD, IEEE, pp. 157-162, 1988.

The dynamic version of the adder cell in contrast relies
on dual rail propagation of the carry signal. The addition
begins when precharge is released allowing the sum and
carry values to be evaluated. The sum generator, shown in
figure12(a), applies both the XOR and XNOR functions to
A andB then conditionally raises Sum when the dual rail
carry signal (C1i andC0i) arrives. The dual rail carry out
signals are then generated dynamically (figure12(b)) by
either propagating the carry in, orA, subject to whetherA
andB are equal. TheCvalid signal, (generated from the log-
ical OR of the carry out signals), for each stage of the adder
is fed into a 32 bit AND gate composed of 4 NORA 8-input
AND gates fed into a 4 input domino AND gate, so as to
signal completion.

7: Results

All measurements are based on SPICE (Hspice) simula-
tions of physical layout using ES2 1 micron, double layer
metal, n-well CMOS fabrication process, for the slowest
process corner (slow-slow) at 3.0V supply-voltage. The
same set of random set of test vectors were applied to both
designs and the energy consumed over the complete period

pre

pre

pre

pre

pre

xor xnor

A

B

B

A A A

B B

C0i C1i

S

FIGURE 12 Dynamic adder
(a) sum generation (b) carry generation

pre
Cvalid

C0o

C1o

pre

pre

C0i

xnor

A

xor

C1i

xnor

A

xor

(a)

(b)

was totalled, the results from which are shown in Table 1
below. The energy measurements include the output stage
of a buffer driving the adder so the difference in input
capacitance is also considered. The static and dynamic ver-
sions of the adder expend almost identical energy when
performing an addition on varying inputs. The dynamic
adder stage incurs a 27% penalty when the data inputs are
fixed because nodes are precharged and discharged redun-
dant to the operation requirements. However, when data
inputs change and the addition operation is not required
(the input data is broadcast to a number of destinations) the
dynamic adder has 25% of the energy expenditure of the
static adder. Furthermore, the cycle time of the 32 bit adder
composed of the dynamic adder cells operates in approxi-
mately half of the time of its static counterpart (Table2).
This increase in operation speed occurs as a result of the
lower logic threshold of the dynamic gates and hence
reduced propagation of the carry signal.

8: Conclusions

A scheme has been presented enabling dynamic design
to be utilised in asynchronous circuits in a pseudo static
manner. The use of dynamic logic enforces the blocking of
data flow down forks or through combinational logic
stages without having to introduce another register to filter
such unnecessary transitions. This is achieved by exploit-
ing the non-transparency of the precharge phase. In addi-
tion, the load presented to data flow is reduced and
spurious transitions are removed on the datapath.

9: Acknowledgements

The work here has been carried out as part of ESPIRIT
project OMI-EXACT (the Open Microprocessor systems
Initiative - Exploitation of Asynchronous Circuit Technol-
ogies) and the authors gratefully acknowledge this support

a. random data inputs applied
b. addition operation performed with data inputs constant
c. random data inputs; addition operation not performed

Table 1: Energy

adder cell dynamic static Units

random data energya 67 68 pJ

static energyb 22 30 pJ

broadcast energyc 7.3 28 pJ

Table 2: Cycle Time

32 bit adder dynamic static Units

worse case cycle time 79 161 nsec

best case cycle time 13 23 nsec

6: Design Examples

To examine the potential of this scheme, consider some
of the alternative implementations of a logical function
(figure10). The variable which drives the logical function
drives several others which may not be required for all
new data written into the variable. The arbitrary logical
function implemented by the gates shown in figure10 is
a.b + c.d + e.f. When data is written into the variable stor-
ing a to f, all logical functions such as that shown in
figure10(a) will be computed whether or not the function
is required, even if normally opaque latches are used. Fur-
thermore, spurious transitions may occur as a result and
the load is large since the logical function is implemented
twice. This circuit can be adapted by placing pass transis-
tors or transmission gates between the variable being read
and the logical function. Unfortunately, short circuit cur-
rent will flow if the circuit is not initiated regularly (which
cannot be guaranteed) since the output of the pass transis-
tors or transmission gates will discharge due to leakage
current. To stop this discharge occurring, a storage ele-
ment, i.e. a data latch, must be added to all data inputs. In
cascaded stages of combinational logic normal static logic
can be used since the logical function is blocked from the
input changes. Alternatively an extra input on the first
gates can be used which can be implemented in complex
logic. Finally the dynamic version is shown in
figure10(b), here the input capacitance is of course much
lower since the p-stack has been removed. Consequently,
the output drive strength of the variable can be lower. If
further stages are cascaded no spurious transitions will fil-
ter through. If desired subsequent stages can also be static,
for instance where XOR gates and hence inversions are
required between stages.

DELAY

x
y

rReq1sReq1
sAck1 rAck1

C

D
E

L
A

Y

Vn DELAY

x
y

rReq2sReq2
sAck2 rAck2

C

D
E

L
A

Y

Vn DELAY

x
y

rReq3sReq3
sAck3 rAck3

C

D
E

L
A

Y

Vn

FIGURE 9 Shared variable output on 3 channels

va
ria

bl
e

A comparison has been made between a static and a
dynamic self-timed adder cell for use in a 32 bit adder.
Both designs detect whether the carry signal should be
propagated or generated. The static adder cell’s operation
[Gars91], (figure11), is initiated by an upgoing transition
on Start. If the carry can be generated the start signal is
propagated onCvalid and A is output onCout, otherwise
Cinvalid is propagated toCvalid when the previous stage has
evaluated. A 32-bit AND gate, constructed from a NAND/
NOR tree, collects theCvalid signals to determine when the
addition is complete. The return to zero phase ofStart
returns allCvalid to zero. This is subject to the same carry
propagation length as the addition, unless an additional
AND gate is placed betweenStart andCinvalid to ensure
Cvalid returns to zero within a few gate propagation delays
when a downgoing edge onStart is received.

precharge
a

b

c

d

e

f

op

(a)

(b)

<a,b,c,d,e,f>

op

FIGURE 10 a.b + c.d + e.f
 (a) static standard cell (b) dynamic

1010

Cvalid

S

Cout

A
B

Cin

Start
Cinvalid

FIGURE 11 Static Adder Cell

complete, is generated by the CSP based general purpose
programming language, Tangram [vBer88]. In this case
Tangram ensures that a variable (storage component) can-
not be read and written concurrently; the variable is first
written and then read sequentially, possibly many times
before another write. Furthermore, the communication
action cannot be interrupted; the reading process and the
process containing the variable being read, synchronise
along a communication channel. If a logical function is
placed between the reading process and the variable it can
be applied during the communication. Again the use of 2-
phase latch control can be avoided since the control sig-
nals return to zero.

 Moreover, since the synchronisation of processes
ensure uninterrupted communication, the logical function
being applied to the read variable can be naturally imple-
mented using dynamic logic. Figure7 illustrates the
scheme used. However, the variables are composed of a
register of transparent latches and a buffer capable of driv-
ing the register enable signal with the desired edge speed.
The transparent latches are normally opaque so a small
speed penalty is incurred opening them. A simple domino
logic gate represents the dynamic logic in figure7 and
forms part of the communication channel between the two
variables. The communication protocol employed in this
system is a 4-phase bundled-data protocol which is initi-
ated, from a passive state with all control signals at zero
volts, when asReq↑ (write data stable request) and a
rReq↑ (read request) have both been received. At this
point, the latches inside the right hand variable are driven
transparent. Adelay x later, the dynamic logic enters its
evaluation stage (the data stored in the left hand variable
has been signalled as stable). Adelay y later, acknowl-
edgements are returned to the reading process byrAck↑
and to the process supplying the source data bysAck↑.
Upon return of the down going edges on bothrReq and
sReq, the data is stored in the right hand variable and a
delay x, later the dynamic logic is returned to precharge.
Finally, the communication is complete by returning
acknowledgessAck↓ and rAck↓ to both processes.Delay x
is required to ensure that the evaluated data is stored
before the dynamic logic returns to its precharge phase
(after the latch hold time has elapsed) anddelay y ensures
that incorrect data cannot be stored by the early return of
rReq↓ and sReq↓ by delaying the transmission ofsAck↓
and rAck↓ until the evaluation phase has completed.

To summarise the sequence of events is as follows:
sReq↑|| rReq↑; right variable transparent ; release pre-

charge ; delay y ; sAck↑ || rAck↑ ; sReq↓ || rReq↓ ; store
data in right variable ;delay x ; return logic to precharge ;
sAck↓ || rAck↓.

Delay x can be implemented by the load presented by
the right hand variable and a small buffer. Delay y can

either be implemented by a matched path or a completion
signal if the logical function is data dependent. If comple-
tion signals cannot be naturally included in the combina-
tional function, a DCVSL gate with the outputs logically
OR’ed can be used to provide completion for each stage of
logic [Meng91]. However, DCVSL gates require the com-
plementary logic function to be evaluated as well, which
represents an overhead in silicon area and presents a larger
load to the previous stage. Since delay y is also imple-
mented by dynamic logic the return to zero phase occurs
concurrently with the logical function’s return to pre-
charge and hence the propagation delay of the logical
function is not incurred as a penalty.

As a result of the above sequence of events the data
supplied by the left variable must therefore be valid when
sReq↑ is sent because precharge is released before the
channel acknowledges receipt of the request. This data
must remain valid for the complete handshake (until
sAck↓) to ensure the dynamic logic evaluates correctly.

The evaluating function must therefore be valid when
rAck↓ is sent(since this indicates when the data can be
read) until the data is latched by rReq↓.

Of course, any function can be placed between two
such stages with many stages of logic where required. The
potential throughput of such systems is higher than their
micropipeline equivalent since the latch control signal can
be driven directly without any protocol conversion (this is
a result of using 4-phase control rather than the use of
dynamic logic).

The power saving merits of using dynamic logic in
such a manner are realised when the variable on the left is
read on more than one channel containing a logical func-
tion (figure9), a common occurrence in Tangram gener-
ated programs as the language supports the sharing of
hardware. In this situation each logical operation commu-
nicates along a different channel and the only shared item
is the data output from the left variable. A communication
on a channel will only activate the logical function which
is required since the other logical functions will remain in
precharge. In this situation, holding a combinational cir-
cuit in precharge is the ideal solution for minimising
power consumption because the combinational logic
behaves like an opaque latch. This fact and the low input
capacitance, makes dynamic logic very appealing.

sReq↑ sAck↑ sAck↓sReq↓

rAck↑ rReq↓

FIGURE 8 Data validity of (a) input data
(b) function output

(a)

(b)

the logic remains in precharge until the function is
required at which point the precharge is released and the
function is evaluated. After evaluation is complete, the
result is stored before the dynamic logic is precharged.

In micropipeline circuits, the scheme used involves
holding the dynamic logic in precharge and the storage
elements opaque. On arrival of a request the latch stage is
driven transparent and the dynamic logic is permitted to
evaluate, as the request indicates data validity at the pre-
ceding stage. Upon completion of the logical function
evaluation (indicated by a matched path or a logical func-
tion completion signal), the storage components are driven
opaque to store the result. Following result storage the
dynamic logic can return to precharge. The stage will
return to its initial state when precharge has completed and
an acknowledge has been returned from the following
stage indicating that the data can be released. The latch
control circuit in figure5 requires a simple modification to
provide the desired control functionality, shown in
figure6. Theen signal is delayed and used to drive the
dynamic logic precharge signal allowing the logic to eval-
uate. The completion signal for the logic function is then
used to drive the Toggle element. In this situation dynamic
CMOS circuits offer a reduction in silicon area with a
potential reduction in power consumption as the input
capacitance of each stage has been reduced. In addition,
spurious transitions have been removed. However, all out-
puts have to be precharged on each operation causing
unnecessary transitions and hence power consumption.

Since the evaluation phase of the dynamic logic is only
the length of the propagation delay through the logic and
associated control circuits, the output values have very lit-
tle time to leak away so power supply voltages can be
reduced with similar affect to equivalent static combina-
tional circuits. Furthermore, the short circuit current attrib-
uted to leakage current will not occur since the output
node voltage level will not degrade sufficiently over such a

Ain

Rout

enA

Rout-ff

T
O

G
G

L
E

DELAY pre

complete

logic
function

FIGURE 6 Micropipeline control with dynamic logic

short period. In addition the opaque latching scheme of
figure5 is enforced, ensuring that the rippling of unneces-
sary transitions will be localised between stages. Unfortu-
nately, performance (particularly latency) is lost since the
latches and dynamic logic are not transparent.

5: 4-Phase Control and Dynamic Logic

4-phase bundled-data control can be used to improve
the performance of micropipeline circuits whilst retaining
a compact silicon area by using level sensitive latches
[Day94]. In the scheme suggested, the latch control circuit
of a micropipeline stage is not required since the commu-
nication signals return to zero and can therefore be used to
drive the latch control signals directly. A significant
improvement in performance is expected since the XOR
gate, Toggle element and 2 Muller C-elements required at
each stage for latch control (figure4 and figure5), are
replaced by two asymmetric Muller C-elements. Again,
the latches are transparent on initialisation.

If dynamic logic is used between latch stages of a 4-
phase micropipeline, the precharge signal can be driven by
theRout signal of the preceding stage. However, the extra
transistor (the shaded transistor in figure1a) is required to
ensure that the dynamic output node does not lose its logi-
cal value since there is no way of determining whether the
following stage will complete its handshake and therefore
allow Rout to return the dynamic logic to precharge. If
dynamic logic is used in these micropipelines, the block-
ing action whilst in precharge will guarantee that transi-
tions on the datapath will not filter down forks which have
not been requested.

A scheme which guarantees that the handshake will

FIGURE 7 4-phase control of dynamic logic.

n-stack

DELAY

D
E

L
A

Y

x

y

rReqsReq

sAck rAck

precharge

C

va
ria

bl
e

va
ria

bl
e

is driven byen which are driven by a power buffer (A).
The register is initially transparent (en = ‘1’). When a
request event is received onRin, the register loads the data
on its inputs. An event onAin is sent acknowledging the
receipt of data from the previous stage.Rout is also sent to
the next stage indicating that data is available. When an
event is returned from the next stage onAout indicating
that the following stage has finished with the data, the reg-
ister is returned to transparent and the stage becomes
receptive to another request onRin. Since the register is
normally transparentRout can be sent forward earlier on
Rout-ff.

Since the register is normally transparent, data tran-
sients filter down the datapath through empty pipeline
stages causing unnecessary power loss. If the datapath
forks into two paths for speculative evaluation later, dra-
matic increases in power consumption can occur [Farn94]
since data in one of the paths will be discarded.

A further latch control circuit has been developed
(figure5), which compromises the latency of the micropi-
peline, but filters out the static and dynamic hazards aris-
ing in the combinational circuit between adjacent stages.
Operation of the circuit starts with an event onRin which
momentarily makes the data latches transparent, subse-
quently causing the toggle dot output to fireRout-ff. An
event onRout-ff loads the register and releases the previ-
ous stage. An event onAout allows the nextRin event to
be accepted. Unfortunately, the release ofAin and hence
the previous stage is delayed, althoughRout (Rout-ff) may
be sent early when the register becomes transparent. The

FIGURE 3 Micropipeline latches.

dataout
en

datain

w

C

Rin Ain

RoutAout

FIGURE 4 Transparent latch micropipeline control

en

Rout-ff

T
O

G
G

L
E

A

latency of a micropipeline using this type of latch control
circuit is therefore greater and the throughput less than that
of a micropipeline using the normally open latch control
circuit of figure4.

It should be noted that latching schemes used in syn-
chronous design filter out computation transitions thereby
localising redundant transitions. For instance, D-Type
edge-triggered flip-flops ensure that data hazards never
pass through more than one latching stage. The same situ-
ation applies in a system employing a two phase non-over-
lapping clock or a single phase clock: the latches are never
open together, preventing data transitions racing through
consecutive latch stages. This implies that by using nor-
mally transparent latches, some of the potential advan-
tages of micropipeline design as a low power strategy are
lost since the power consumption incurred due to data
movement may not be request driven. The power con-
sumption will of course be specific to the application and
its state.

As mentioned earlier, combinational logic can be intro-
duced into the micropipeline FIFO by adding the required
logic between the latch stages. These combinational cir-
cuits can be designed in a similar way to those used in syn-
chronous circuits since they both conform to the bounded-
delay model. Delays, matched paths and/or completion
signals are used to provide sufficient set-up and hold time.
Like all other asynchronous design techniques, micropipe-
lines can exploit average case rather than worse case oper-
ation in data dependent computations such as addition. As
a consequence, greater composability (even technology
migration) can be supported and the additional redundancy
employed to reduce the worst case propagation delay in
synchronous circuits (e.g carry look-ahead) is not
required.

If the static combinational logic is replaced by dynamic
logic, the combinational logic can be considered as part of
the input latch stage. Unlike a synchronous design, there is
no clock which can be guaranteed to arrive to return the
dynamic logic to precharge. There is therefore a danger
that leakage current will degrade the voltage on the
dynamic output nodes. This problem may be solved if
dynamic logic is used in a pseudo static manner, whereby

FIGURE 5 Opaque latch micropipeline control

C

Rin

Ain

Rout

Aout

en

A

Rout-ff

T
O

G
G

L
E

stage of latches or combinational logic and there-
fore extra power is consumed. If the dynamic
logic function is implemented in the n-stack, a
reduction of over 60% can be expected during
evaluation.

(4) Precharge: The major disadvantage of dynamic
circuits is the cost of the precharge phase, partic-
ularly since the clock must drive the precharge
signal. All nodes that were discharged during the
previous evaluation are precharged, and may only
be discharged again on the following evaluation
phase. The unnecessary transitions of course rep-
resent a significant overhead, particularly for
logic functions with a high probability of dis-
charging and for sets of data which cause a large
number of discharges. When the output node
does not discharge the load presented by the pre-
charge transistor represents redundant power-
burning. In synchronous systems if clock gating
is not employed, this expensive precharge cycle,
will occur in all dynamic circuits every clock
cycle.

(5) Clock gating and clock frequency management:
Clock gating and frequency management are
techniques that are used to reduce the power con-
sumption in synchronous circuits [Lyon93] by
disabling idle circuits and reducing performance
when work loads are low. In static circuits, the
effect of extended clock periods or periods with-
out clock signals has no effect since the logic out-
put is always a function of its inputs. However,
dynamic circuits rely on the clock to maintain the
integrity of their output nodes during the evalua-
tion phase. If the clock frequency is not suffi-
ciently high, the output nodes will gradually
discharge because of leakage current, causing the
logical output to be lost. To combat this problem,
additional transistors (1 per gate, the shaded tran-
sistor shown in figure1a) are required [Eshr93].

4: Micropipelines and Dynamic Logic

In the design of the AMULET1 asynchronous micro-
processor [Furb93, Pave94] based on Sutherland’s micro-
pipelines, dynamic logic was exploited in three key areas –
the ALU [Gars93], some of the finite state machines used
to control the device and the register bank [Pave92]. To
understand this use of dynamic logic, a brief introduction
to micropipeline design techniques is required with partic-
ular emphasis on the datapath.

Micropipelines are event driven, elastic pipeline struc-
tures devised by Ivan Sutherland. The throughput of a
pipeline is the rate at which results emerge from the pipe-

line and the latency is the time it takes for an individual
result to emerge. The communication protocol employed
is the 2-phase bundled-data convention.

The elegance of a micropipeline can be demonstrated
when considering the design of a FIFO (figure2). In the
synchronous framework if different clocks are used at
each end, arbitration or synchronisation is required as the
phase relationship between clocks is unknown. In contrast,
the local communication protocol inside a micropipeline,
ensures that a stage captures data when the next stage has
accepted the previous data and the previous stage has
offered new data. This removes the need for arbitration or
synchronisation since timing is not taken directly from
input or output. The FIFO can be adapted into a pipeline
simply by adding combinational logic between the latch
stages. With this approach the local communication can be
considered a way of generating local clocks where syn-
chronisation of the clocks is controlled by the micropipe-
line structure [Farn93].

Dif ferent latch implementations and control circuits
may be used to optimise parameters such as silicon area,
power consumption and cycle time between stages. In
[Suth89], two alternative capture-pass latch structures
were introduced, which capture data when an event (tran-
sition) is received. Both are normally transparent and store
data upon reception of a request event. Unfortunately
these latches are large compared to latches used in syn-
chronous design since two storage elements are required to
respond to events. Consequently, the single phase,
dynamic latches [Yuan89] used in the DEC Alpha micro-
processor [Dobb92] have been adapted for static operation
(figure3) [Day94] and are used in the design examples
presented later in this paper. These latches only contain
one storage element and are transparent when en = 1.All
future references to data latches are to these transparent
latches.

Since the latch in figure3 has level sensitive control,
the latch control signal requires conversion from a two-
phase protocol to a four-phase protocol. Several such
schemes have been developed with different merits. The
first, shown in figure4, is an adaptation of the latch control
suggested in [Suth89]. A register consisting of data latches

Req

Ack Req

Ack

FIGURE 2 A micropipeline FIFO.
C

La
tc

h

C

La
tc

h

C

La
tc

h

The success of any technique that claims to
reduce power consumption will be judged on its
ability to accommodate the scaling of the power
supply voltage to the same extent as its competi-
tors.

(3) Architectural refinements: The total energy
expended may be reduced by eliminating unnec-
essary transitions in those parts of the circuit
which are not active. In an asynchronous design,
this functionality is inherent; distributed control
activates a subcircuit only when its functionality
is required. Furthermore, the nature of distributed
control promotes the use of localised communi-
cation which reduces the load presented during
communication. In a synchronous system, the
clock frequency can be reduced where appropri-
ate or the clock can be blocked to inactive func-
tional units by means of clock gating. Clock
gating thus achieves a similar effect to the tech-
niques employed in asynchronous design. How-
ever, the relative timing of the clocks are
different within each functional unit, hence clock
skew problems are emphasised. The non-overlap-
ping section of a two-phase clock can be used to
compensate for the propagation delay of the
clock gating circuit.

Both synchronous and asynchronous design are well
suited to the reduction in power supply voltages as many
of the cells are common to both design paradigms.

In synchronous systems, power consumption can be
split into two categories, i.e. data movement and clock dis-
tribution. For the asynchronous case, power consumption
is split between data movement and control. The rest of
this paper will concentrate on power consumption minimi-
sation during data movement.

3: Dynamic Logic

In static CMOS design, the logical function is imple-
mented twice, once in the n transistor stack and once in the
p transistor stack. In contrast, dynamic logic reduces cir-
cuit area by implementing compact “NMOS style” gates
without the overhead of static power dissipation.

Despite this obvious attraction, dynamic logic can be
difficult to use with some low power techniques in the syn-
chronous framework, such as frequency management and/
or clock gating, since data may be lost or corrupted if the
logic is not clocked and thereby refreshed regularly.

The most commonly used dynamic logic styles are
Domino (figure1a) [Kram82], NORA[Gonc83] or a com-
bination of the two (figure1b), since cascading of stages is
accommodated using one clock edge to drive the pre-
charge signal. In Domino logic this is allowed since the

output of the inverter is driven low during precharge. In
further cascaded stages the n-channel precharge transistor
may therefore be omitted. However, care must be taken to
ensure that precharge occurs in time to remove positive
inputs between stages and hence avoid short circuit current
dissipation. In NORA logic the function is implemented
alternately in n and p stacks to allow inverted outputs
which cannot be accommodated in Domino logic.

Chandrakasan et al. [Chan92] highlighted five areas for
consideration when comparing the low power properties
of dynamic and static logic:

(1) Spurious transitions: In static logic, spurious
transitions (static and dynamic hazards) occur
when a logic function is evaluated since the prop-
agation delay of different gates is unequal. As a
consequence, the gate may assume more than one
logical value during the evaluation of the func-
tion. According to Benini et al. [Beni94], hazards
contribute to between 9% and 38% of the power
consumption in their set of static circuits and
therefore cannot be ignored. In contrast, dynamic
circuit output nodes either remain at the value to
which they were precharged (ignoring charge
leakage) or are discharged. Consequently,
dynamic circuits may potentially save power dur-
ing logic evaluation since their output nodes
make at most one transition during evaluation.

(2) Short-circuit current: In static CMOS combina-
tional circuits, a short circuit current will always
flow when the supply voltage is greater than Vtn
+ |Vtp|, since the logic function of the gate is
effectively implemented twice, once in the n
stack and its complement in the p stack. (During
a change in output, both stacks simultaneously
conduct.) In dynamic circuits, the short circuit
current will only flow if the node was discharged
during the evaluation phase

(3) Input capacitance: The duplication of the logic
function in both the n-stack and p-stack in static
logic presents an additional load to the previous

n’s n’s
p’s

ck ck

to n-stacks to p-stacks

to n-stacks

to p-stacks to n-stacks

to n-stacks

(a) (b)

FIGURE 1 Dynamic logic (a) Domino (b) NORA

ck

Utilising Dynamic Logic for Low Power Consumption in Asynchronous Circuits

C. Farnsworth, D.A. Edwards and S.S. Sikand

Department of Computer Science, The University,
Oxford Road, Manchester, M13 9PL, U.K.

Abstract

Dynamic logic offers compact, fast solutions for syn-
chronous design. Asynchronous design methodologies
which conform to the bounded-delay model can also uti-
lise dynamic logic for combinational circuits obtaining
similar benefits to the synchronous case. To achieve these
benefits, the logic is held in precharge until it is required
and the evaluation phase is completed during a handshake
communication action. The resultant power consumption
is low since the input capacitance is far smaller than
equivalent static CMOS circuits and spurious transitions
in the computation are removed.

1: Introduction

Power consumption is becoming an increasingly
important criterion in digital design, particularly as more
portable products (e.g. laptop and pen based computers)
are realised which require compact, low power implemen-
tations with relatively high processing abilities. As a con-
sequence, low power techniques are emerging to increase
the battery life. In addition, the manufacturing cost and
size of a product are reduced since the power supply and
cooling requirements may be diminished.

In CMOS circuits, the majority of the power consump-
tion is due to switching activity. In synchronous systems
the switching action occurs on the active clock edge
regardless of whether the circuit operation is required,
whereas asynchronous digital design techniques can
reduce the number of unnecessary switching actions
because operation is requested only when it is required.

Dynamic logic can also offer potential power consump-
tion savings since the gates are smaller than their static
counterparts. However, in spite of this, static gates are
often adopted when low power consumption is one of the
primary design goals, since the clock has to be distributed
to all dynamic logic gates. Furthermore, if clock frequency

management or clock gating techniques are adopted,
measures must be taken to avoid dynamic nodes discharg-
ing.

This paper outlines how asynchronous circuits can
exploit the advantages as well as minimise the disadvan-
tages of dynamic logic for low power consumption.
Indeed, the precharging of dynamic nodes which is gener-
ally considered as a disadvantage may in fact be an advan-
tage in asynchronous circuits.

2: Low Power

Generally, power consumption can be reduced by three
main techniques [Lyon93]:

(1) Reducing nodal capacitance: The majority of
power consumed in CMOS circuits is caused by
dynamic charging and discharging of circuit
nodes. The energy expended at each node is:

where:
represents the change in voltage,
generally Vdd,

C represents the nodal capacitance.

The total power consumed is the energy
expended at all nodes over a specific time period.
If nodal capacitance is reduced, an associated
reduction in power consumption occurs. The
other major source of power consumption in
CMOS circuits is the switching current resulting
from simultaneous conduction of both the n and p
type transistors.

(2) Reducing power supply voltage: The energy
expended at each node is proportional to V2,
hence the reduction in power supply voltage can
be applied twice to the power consumption.
Without major alterations to current processes,
3.3V has emerged as the new industry standard.

energy
1
2
-- C ∆V

2××=

∆V

and of that from other members of the project particularly
Kees van Berkel of Philips Research and Ad Peeters of
Eindhoven University and to the ACID-WG. They are also
grateful for additional support and advice received from the
AMULET1 design team: Steve Furber, Nigel Paver, Paul
Day, Jim Garside and Viv Woods.

10: References

[Beni94]Benini L., Favalli M., Ricco B., Analysis of hazard con-
tributions to power dissipation in CMOS ICs. 1994 Interna-
tional Workshop on Low Power Design, NAPA Valley, April
1994.

[Chan92]Chandrakasan A.P., Sheng S., Brodersen R.W., Low
Power CMOS Digital Design. IEEE Journal of Solid-State
Circuits, Vol. 27-4,April 1992.

[Day94]Day P., Investigations into Micropipeline Latch Design
Styles, submitted to IEEE Transactions on VLSI Systems,
1994.

[Dobb92]Dobberpuhl D. et al,
A 200 MHz 64b Dual-Issue CMOS Microprocessor.
IEEE Journal of Solid-State Circuits, 27(11):155-1565,
November, 1992.

[Eshr93]Eshraghian K., Weste N. Principles of CMOS Design A
Systems Perspective. Second Edition. Addison-Wesley,
Wokingham, England, 1993.

[Farn93]Farnsworth C., Micropipeline approach to design exam-
ples. ACID-WG workshop on Digital Signal Processing,
Barcelona, 1993.

[Farn94]Farnsworth C., Low power Implementations of an I2C I/
O Expander. M.Sc. Thesis, May 1994, University of Man-
chester.

[Furb93]Furber S.B., Day P., Garside J.D., Paver N.C., Woods
J.V., “A Micropipelined ARM.” Proceedings of VLSI ‘93,
Grenoble, France, September 1993, best paper award.

[Gars91]Garside J.D. An Asynchronous Adder Design. Internal
Amulet Group document, Manchester, June, 1991.

[Gars93]Garside J.D. CMOS VLSI Implementaion of an Asyn-
chronous ALU. Proceedings of the IFIP working conference
on Asynchronous Design Methodologies, Manchester, Eng-
land, 1993.

[Gonc83]N. F. Goncalves, H. J. De Man, “NORA: A Racefree
Dynamic CMOS Technique for Pipelined Logic Structures”.

[Kram82]R. H. Krambeck, C. M. Lee, H. S. Law. “High-Speed
Compact Circuits with CMOS”,IEEE J. Solid-State Circuits,
vol SC-17, pp. 614-619, June 1982.

[Liu93]Liu D., Svensson C., Trading Speed for Low Power by
Choice of Supply and Threshold Voltages. IEEE Journal of
Solid-State Circuits. Vol 28-1, Jan. 1993.

[Lyon93]Lyon R.F., Cost, Power, and Parallelism in Speech Sig-
nal Processing, IEEE 1993 Custom Integrated Circuits Con-
ference. May 1993.

[Meng91]Meng T.H., Synchronization Design for Digital Sys-
tems, Kluwer International series in engineering and compu-
ter science, Kluwer Academic Publishers. 1991.

[Pave92]Paver N.C., Day P., Furber S.B., Garside J.D., and
Woods J.V.,Register Locking in an Asynchronous Micro-
processor.Proceedings of ICCD ‘92, pp 351-355, October

1992.
[Pave94]Paver N.C., The Design and Implementation of an

Asynchronous Microprocessor. PHd thesis, May 1994, Uni-
versity of Manchester.

[Suth89]Sutherland I.E., Micropipelines. Communications of the
ACM. 32(6):720-738, January, 1989.

[vBer88]van Berkel C.H., Rem M., Saeijs R.W.J.J., Compilation
of Communicating Processes into Delay-Insensitive Cir-
cuits. Proceedings of ICCD, IEEE, pp. 157-162, 1988.

The dynamic version of the adder cell in contrast relies
on dual rail propagation of the carry signal. The addition
begins when precharge is released allowing the sum and
carry values to be evaluated. The sum generator, shown in
figure12(a), applies both the XOR and XNOR functions to
A andB then conditionally raises Sum when the dual rail
carry signal (C1i andC0i) arrives. The dual rail carry out
signals are then generated dynamically (figure12(b)) by
either propagating the carry in, orA, subject to whetherA
andB are equal. TheCvalid signal, (generated from the log-
ical OR of the carry out signals), for each stage of the adder
is fed into a 32 bit AND gate composed of 4 NORA 8-input
AND gates fed into a 4 input domino AND gate, so as to
signal completion.

7: Results

All measurements are based on SPICE (Hspice) simula-
tions of physical layout using ES2 1 micron, double layer
metal, n-well CMOS fabrication process, for the slowest
process corner (slow-slow) at 3.0V supply-voltage. The
same set of random set of test vectors were applied to both
designs and the energy consumed over the complete period

pre

pre

pre

pre

pre

xor xnor

A

B

B

A A A

B B

C0i C1i

S

FIGURE 12 Dynamic adder
(a) sum generation (b) carry generation

pre
Cvalid

C0o

C1o

pre

pre

C0i

xnor

A

xor

C1i

xnor

A

xor

(a)

(b)

was totalled, the results from which are shown in Table 1
below. The energy measurements include the output stage
of a buffer driving the adder so the difference in input
capacitance is also considered. The static and dynamic ver-
sions of the adder expend almost identical energy when
performing an addition on varying inputs. The dynamic
adder stage incurs a 27% penalty when the data inputs are
fixed because nodes are precharged and discharged redun-
dant to the operation requirements. However, when data
inputs change and the addition operation is not required
(the input data is broadcast to a number of destinations) the
dynamic adder has 25% of the energy expenditure of the
static adder. Furthermore, the cycle time of the 32 bit adder
composed of the dynamic adder cells operates in approxi-
mately half of the time of its static counterpart (Table2).
This increase in operation speed occurs as a result of the
lower logic threshold of the dynamic gates and hence
reduced propagation of the carry signal.

8: Conclusions

A scheme has been presented enabling dynamic design
to be utilised in asynchronous circuits in a pseudo static
manner. The use of dynamic logic enforces the blocking of
data flow down forks or through combinational logic
stages without having to introduce another register to filter
such unnecessary transitions. This is achieved by exploit-
ing the non-transparency of the precharge phase. In addi-
tion, the load presented to data flow is reduced and
spurious transitions are removed on the datapath.

9: Acknowledgements

The work here has been carried out as part of ESPIRIT
project OMI-EXACT (the Open Microprocessor systems
Initiative - Exploitation of Asynchronous Circuit Technol-
ogies) and the authors gratefully acknowledge this support

a. random data inputs applied
b. addition operation performed with data inputs constant
c. random data inputs; addition operation not performed

Table 1: Energy

adder cell dynamic static Units

random data energya 67 68 pJ

static energyb 22 30 pJ

broadcast energyc 7.3 28 pJ

Table 2: Cycle Time

32 bit adder dynamic static Units

worse case cycle time 79 161 nsec

best case cycle time 13 23 nsec

6: Design Examples

To examine the potential of this scheme, consider some
of the alternative implementations of a logical function
(figure10). The variable which drives the logical function
drives several others which may not be required for all
new data written into the variable. The arbitrary logical
function implemented by the gates shown in figure10 is
a.b + c.d + e.f. When data is written into the variable stor-
ing a to f, all logical functions such as that shown in
figure10(a) will be computed whether or not the function
is required, even if normally opaque latches are used. Fur-
thermore, spurious transitions may occur as a result and
the load is large since the logical function is implemented
twice. This circuit can be adapted by placing pass transis-
tors or transmission gates between the variable being read
and the logical function. Unfortunately, short circuit cur-
rent will flow if the circuit is not initiated regularly (which
cannot be guaranteed) since the output of the pass transis-
tors or transmission gates will discharge due to leakage
current. To stop this discharge occurring, a storage ele-
ment, i.e. a data latch, must be added to all data inputs. In
cascaded stages of combinational logic normal static logic
can be used since the logical function is blocked from the
input changes. Alternatively an extra input on the first
gates can be used which can be implemented in complex
logic. Finally the dynamic version is shown in
figure10(b), here the input capacitance is of course much
lower since the p-stack has been removed. Consequently,
the output drive strength of the variable can be lower. If
further stages are cascaded no spurious transitions will fil-
ter through. If desired subsequent stages can also be static,
for instance where XOR gates and hence inversions are
required between stages.

DELAY

x
y

rReq1sReq1
sAck1 rAck1

C

D
E

L
A

Y

Vn DELAY

x
y

rReq2sReq2
sAck2 rAck2

C

D
E

L
A

Y

Vn DELAY

x
y

rReq3sReq3
sAck3 rAck3

C

D
E

L
A

Y

Vn

FIGURE 9 Shared variable output on 3 channels

va
ria

bl
e

A comparison has been made between a static and a
dynamic self-timed adder cell for use in a 32 bit adder.
Both designs detect whether the carry signal should be
propagated or generated. The static adder cell’s operation
[Gars91], (figure11), is initiated by an upgoing transition
on Start. If the carry can be generated the start signal is
propagated onCvalid and A is output onCout, otherwise
Cinvalid is propagated toCvalid when the previous stage has
evaluated. A 32-bit AND gate, constructed from a NAND/
NOR tree, collects theCvalid signals to determine when the
addition is complete. The return to zero phase ofStart
returns allCvalid to zero. This is subject to the same carry
propagation length as the addition, unless an additional
AND gate is placed betweenStart andCinvalid to ensure
Cvalid returns to zero within a few gate propagation delays
when a downgoing edge onStart is received.

precharge
a

b

c

d

e

f

op

(a)

(b)

<a,b,c,d,e,f>

op

FIGURE 10 a.b + c.d + e.f
 (a) static standard cell (b) dynamic

1010

Cvalid

S

Cout

A
B

Cin

Start
Cinvalid

FIGURE 11 Static Adder Cell

complete, is generated by the CSP based general purpose
programming language, Tangram [vBer88]. In this case
Tangram ensures that a variable (storage component) can-
not be read and written concurrently; the variable is first
written and then read sequentially, possibly many times
before another write. Furthermore, the communication
action cannot be interrupted; the reading process and the
process containing the variable being read, synchronise
along a communication channel. If a logical function is
placed between the reading process and the variable it can
be applied during the communication. Again the use of 2-
phase latch control can be avoided since the control sig-
nals return to zero.

 Moreover, since the synchronisation of processes
ensure uninterrupted communication, the logical function
being applied to the read variable can be naturally imple-
mented using dynamic logic. Figure7 illustrates the
scheme used. However, the variables are composed of a
register of transparent latches and a buffer capable of driv-
ing the register enable signal with the desired edge speed.
The transparent latches are normally opaque so a small
speed penalty is incurred opening them. A simple domino
logic gate represents the dynamic logic in figure7 and
forms part of the communication channel between the two
variables. The communication protocol employed in this
system is a 4-phase bundled-data protocol which is initi-
ated, from a passive state with all control signals at zero
volts, when asReq↑ (write data stable request) and a
rReq↑ (read request) have both been received. At this
point, the latches inside the right hand variable are driven
transparent. Adelay x later, the dynamic logic enters its
evaluation stage (the data stored in the left hand variable
has been signalled as stable). Adelay y later, acknowl-
edgements are returned to the reading process byrAck↑
and to the process supplying the source data bysAck↑.
Upon return of the down going edges on bothrReq and
sReq, the data is stored in the right hand variable and a
delay x, later the dynamic logic is returned to precharge.
Finally, the communication is complete by returning
acknowledgessAck↓ and rAck↓ to both processes.Delay x
is required to ensure that the evaluated data is stored
before the dynamic logic returns to its precharge phase
(after the latch hold time has elapsed) anddelay y ensures
that incorrect data cannot be stored by the early return of
rReq↓ and sReq↓ by delaying the transmission ofsAck↓
and rAck↓ until the evaluation phase has completed.

To summarise the sequence of events is as follows:
sReq↑|| rReq↑; right variable transparent ; release pre-

charge ; delay y ; sAck↑ || rAck↑ ; sReq↓ || rReq↓ ; store
data in right variable ;delay x ; return logic to precharge ;
sAck↓ || rAck↓.

Delay x can be implemented by the load presented by
the right hand variable and a small buffer. Delay y can

either be implemented by a matched path or a completion
signal if the logical function is data dependent. If comple-
tion signals cannot be naturally included in the combina-
tional function, a DCVSL gate with the outputs logically
OR’ed can be used to provide completion for each stage of
logic [Meng91]. However, DCVSL gates require the com-
plementary logic function to be evaluated as well, which
represents an overhead in silicon area and presents a larger
load to the previous stage. Since delay y is also imple-
mented by dynamic logic the return to zero phase occurs
concurrently with the logical function’s return to pre-
charge and hence the propagation delay of the logical
function is not incurred as a penalty.

As a result of the above sequence of events the data
supplied by the left variable must therefore be valid when
sReq↑ is sent because precharge is released before the
channel acknowledges receipt of the request. This data
must remain valid for the complete handshake (until
sAck↓) to ensure the dynamic logic evaluates correctly.

The evaluating function must therefore be valid when
rAck↓ is sent(since this indicates when the data can be
read) until the data is latched by rReq↓.

Of course, any function can be placed between two
such stages with many stages of logic where required. The
potential throughput of such systems is higher than their
micropipeline equivalent since the latch control signal can
be driven directly without any protocol conversion (this is
a result of using 4-phase control rather than the use of
dynamic logic).

The power saving merits of using dynamic logic in
such a manner are realised when the variable on the left is
read on more than one channel containing a logical func-
tion (figure9), a common occurrence in Tangram gener-
ated programs as the language supports the sharing of
hardware. In this situation each logical operation commu-
nicates along a different channel and the only shared item
is the data output from the left variable. A communication
on a channel will only activate the logical function which
is required since the other logical functions will remain in
precharge. In this situation, holding a combinational cir-
cuit in precharge is the ideal solution for minimising
power consumption because the combinational logic
behaves like an opaque latch. This fact and the low input
capacitance, makes dynamic logic very appealing.

sReq↑ sAck↑ sAck↓sReq↓

rAck↑ rReq↓

FIGURE 8 Data validity of (a) input data
(b) function output

(a)

(b)

the logic remains in precharge until the function is
required at which point the precharge is released and the
function is evaluated. After evaluation is complete, the
result is stored before the dynamic logic is precharged.

In micropipeline circuits, the scheme used involves
holding the dynamic logic in precharge and the storage
elements opaque. On arrival of a request the latch stage is
driven transparent and the dynamic logic is permitted to
evaluate, as the request indicates data validity at the pre-
ceding stage. Upon completion of the logical function
evaluation (indicated by a matched path or a logical func-
tion completion signal), the storage components are driven
opaque to store the result. Following result storage the
dynamic logic can return to precharge. The stage will
return to its initial state when precharge has completed and
an acknowledge has been returned from the following
stage indicating that the data can be released. The latch
control circuit in figure5 requires a simple modification to
provide the desired control functionality, shown in
figure6. Theen signal is delayed and used to drive the
dynamic logic precharge signal allowing the logic to eval-
uate. The completion signal for the logic function is then
used to drive the Toggle element. In this situation dynamic
CMOS circuits offer a reduction in silicon area with a
potential reduction in power consumption as the input
capacitance of each stage has been reduced. In addition,
spurious transitions have been removed. However, all out-
puts have to be precharged on each operation causing
unnecessary transitions and hence power consumption.

Since the evaluation phase of the dynamic logic is only
the length of the propagation delay through the logic and
associated control circuits, the output values have very lit-
tle time to leak away so power supply voltages can be
reduced with similar affect to equivalent static combina-
tional circuits. Furthermore, the short circuit current attrib-
uted to leakage current will not occur since the output
node voltage level will not degrade sufficiently over such a

Ain

Rout

enA

Rout-ff

T
O

G
G

L
E

DELAY pre

complete

logic
function

FIGURE 6 Micropipeline control with dynamic logic

short period. In addition the opaque latching scheme of
figure5 is enforced, ensuring that the rippling of unneces-
sary transitions will be localised between stages. Unfortu-
nately, performance (particularly latency) is lost since the
latches and dynamic logic are not transparent.

5: 4-Phase Control and Dynamic Logic

4-phase bundled-data control can be used to improve
the performance of micropipeline circuits whilst retaining
a compact silicon area by using level sensitive latches
[Day94]. In the scheme suggested, the latch control circuit
of a micropipeline stage is not required since the commu-
nication signals return to zero and can therefore be used to
drive the latch control signals directly. A significant
improvement in performance is expected since the XOR
gate, Toggle element and 2 Muller C-elements required at
each stage for latch control (figure4 and figure5), are
replaced by two asymmetric Muller C-elements. Again,
the latches are transparent on initialisation.

If dynamic logic is used between latch stages of a 4-
phase micropipeline, the precharge signal can be driven by
theRout signal of the preceding stage. However, the extra
transistor (the shaded transistor in figure1a) is required to
ensure that the dynamic output node does not lose its logi-
cal value since there is no way of determining whether the
following stage will complete its handshake and therefore
allow Rout to return the dynamic logic to precharge. If
dynamic logic is used in these micropipelines, the block-
ing action whilst in precharge will guarantee that transi-
tions on the datapath will not filter down forks which have
not been requested.

A scheme which guarantees that the handshake will

FIGURE 7 4-phase control of dynamic logic.

n-stack

DELAY

D
E

L
A

Y

x

y

rReqsReq

sAck rAck

precharge

C

va
ria

bl
e

va
ria

bl
e

is driven byen which are driven by a power buffer (A).
The register is initially transparent (en = ‘1’). When a
request event is received onRin, the register loads the data
on its inputs. An event onAin is sent acknowledging the
receipt of data from the previous stage.Rout is also sent to
the next stage indicating that data is available. When an
event is returned from the next stage onAout indicating
that the following stage has finished with the data, the reg-
ister is returned to transparent and the stage becomes
receptive to another request onRin. Since the register is
normally transparentRout can be sent forward earlier on
Rout-ff.

Since the register is normally transparent, data tran-
sients filter down the datapath through empty pipeline
stages causing unnecessary power loss. If the datapath
forks into two paths for speculative evaluation later, dra-
matic increases in power consumption can occur [Farn94]
since data in one of the paths will be discarded.

A further latch control circuit has been developed
(figure5), which compromises the latency of the micropi-
peline, but filters out the static and dynamic hazards aris-
ing in the combinational circuit between adjacent stages.
Operation of the circuit starts with an event onRin which
momentarily makes the data latches transparent, subse-
quently causing the toggle dot output to fireRout-ff. An
event onRout-ff loads the register and releases the previ-
ous stage. An event onAout allows the nextRin event to
be accepted. Unfortunately, the release ofAin and hence
the previous stage is delayed, althoughRout (Rout-ff) may
be sent early when the register becomes transparent. The

FIGURE 3 Micropipeline latches.

dataout
en

datain

w

C

Rin Ain

RoutAout

FIGURE 4 Transparent latch micropipeline control

en

Rout-ff

T
O

G
G

L
E

A

latency of a micropipeline using this type of latch control
circuit is therefore greater and the throughput less than that
of a micropipeline using the normally open latch control
circuit of figure4.

It should be noted that latching schemes used in syn-
chronous design filter out computation transitions thereby
localising redundant transitions. For instance, D-Type
edge-triggered flip-flops ensure that data hazards never
pass through more than one latching stage. The same situ-
ation applies in a system employing a two phase non-over-
lapping clock or a single phase clock: the latches are never
open together, preventing data transitions racing through
consecutive latch stages. This implies that by using nor-
mally transparent latches, some of the potential advan-
tages of micropipeline design as a low power strategy are
lost since the power consumption incurred due to data
movement may not be request driven. The power con-
sumption will of course be specific to the application and
its state.

As mentioned earlier, combinational logic can be intro-
duced into the micropipeline FIFO by adding the required
logic between the latch stages. These combinational cir-
cuits can be designed in a similar way to those used in syn-
chronous circuits since they both conform to the bounded-
delay model. Delays, matched paths and/or completion
signals are used to provide sufficient set-up and hold time.
Like all other asynchronous design techniques, micropipe-
lines can exploit average case rather than worse case oper-
ation in data dependent computations such as addition. As
a consequence, greater composability (even technology
migration) can be supported and the additional redundancy
employed to reduce the worst case propagation delay in
synchronous circuits (e.g carry look-ahead) is not
required.

If the static combinational logic is replaced by dynamic
logic, the combinational logic can be considered as part of
the input latch stage. Unlike a synchronous design, there is
no clock which can be guaranteed to arrive to return the
dynamic logic to precharge. There is therefore a danger
that leakage current will degrade the voltage on the
dynamic output nodes. This problem may be solved if
dynamic logic is used in a pseudo static manner, whereby

FIGURE 5 Opaque latch micropipeline control

C

Rin

Ain

Rout

Aout

en

A

Rout-ff

T
O

G
G

L
E

stage of latches or combinational logic and there-
fore extra power is consumed. If the dynamic
logic function is implemented in the n-stack, a
reduction of over 60% can be expected during
evaluation.

(4) Precharge: The major disadvantage of dynamic
circuits is the cost of the precharge phase, partic-
ularly since the clock must drive the precharge
signal. All nodes that were discharged during the
previous evaluation are precharged, and may only
be discharged again on the following evaluation
phase. The unnecessary transitions of course rep-
resent a significant overhead, particularly for
logic functions with a high probability of dis-
charging and for sets of data which cause a large
number of discharges. When the output node
does not discharge the load presented by the pre-
charge transistor represents redundant power-
burning. In synchronous systems if clock gating
is not employed, this expensive precharge cycle,
will occur in all dynamic circuits every clock
cycle.

(5) Clock gating and clock frequency management:
Clock gating and frequency management are
techniques that are used to reduce the power con-
sumption in synchronous circuits [Lyon93] by
disabling idle circuits and reducing performance
when work loads are low. In static circuits, the
effect of extended clock periods or periods with-
out clock signals has no effect since the logic out-
put is always a function of its inputs. However,
dynamic circuits rely on the clock to maintain the
integrity of their output nodes during the evalua-
tion phase. If the clock frequency is not suffi-
ciently high, the output nodes will gradually
discharge because of leakage current, causing the
logical output to be lost. To combat this problem,
additional transistors (1 per gate, the shaded tran-
sistor shown in figure1a) are required [Eshr93].

4: Micropipelines and Dynamic Logic

In the design of the AMULET1 asynchronous micro-
processor [Furb93, Pave94] based on Sutherland’s micro-
pipelines, dynamic logic was exploited in three key areas –
the ALU [Gars93], some of the finite state machines used
to control the device and the register bank [Pave92]. To
understand this use of dynamic logic, a brief introduction
to micropipeline design techniques is required with partic-
ular emphasis on the datapath.

Micropipelines are event driven, elastic pipeline struc-
tures devised by Ivan Sutherland. The throughput of a
pipeline is the rate at which results emerge from the pipe-

line and the latency is the time it takes for an individual
result to emerge. The communication protocol employed
is the 2-phase bundled-data convention.

The elegance of a micropipeline can be demonstrated
when considering the design of a FIFO (figure2). In the
synchronous framework if different clocks are used at
each end, arbitration or synchronisation is required as the
phase relationship between clocks is unknown. In contrast,
the local communication protocol inside a micropipeline,
ensures that a stage captures data when the next stage has
accepted the previous data and the previous stage has
offered new data. This removes the need for arbitration or
synchronisation since timing is not taken directly from
input or output. The FIFO can be adapted into a pipeline
simply by adding combinational logic between the latch
stages. With this approach the local communication can be
considered a way of generating local clocks where syn-
chronisation of the clocks is controlled by the micropipe-
line structure [Farn93].

Dif ferent latch implementations and control circuits
may be used to optimise parameters such as silicon area,
power consumption and cycle time between stages. In
[Suth89], two alternative capture-pass latch structures
were introduced, which capture data when an event (tran-
sition) is received. Both are normally transparent and store
data upon reception of a request event. Unfortunately
these latches are large compared to latches used in syn-
chronous design since two storage elements are required to
respond to events. Consequently, the single phase,
dynamic latches [Yuan89] used in the DEC Alpha micro-
processor [Dobb92] have been adapted for static operation
(figure3) [Day94] and are used in the design examples
presented later in this paper. These latches only contain
one storage element and are transparent when en = 1.All
future references to data latches are to these transparent
latches.

Since the latch in figure3 has level sensitive control,
the latch control signal requires conversion from a two-
phase protocol to a four-phase protocol. Several such
schemes have been developed with different merits. The
first, shown in figure4, is an adaptation of the latch control
suggested in [Suth89]. A register consisting of data latches

Req

Ack Req

Ack

FIGURE 2 A micropipeline FIFO.
C

La
tc

h

C

La
tc

h

C

La
tc

h

The success of any technique that claims to
reduce power consumption will be judged on its
ability to accommodate the scaling of the power
supply voltage to the same extent as its competi-
tors.

(3) Architectural refinements: The total energy
expended may be reduced by eliminating unnec-
essary transitions in those parts of the circuit
which are not active. In an asynchronous design,
this functionality is inherent; distributed control
activates a subcircuit only when its functionality
is required. Furthermore, the nature of distributed
control promotes the use of localised communi-
cation which reduces the load presented during
communication. In a synchronous system, the
clock frequency can be reduced where appropri-
ate or the clock can be blocked to inactive func-
tional units by means of clock gating. Clock
gating thus achieves a similar effect to the tech-
niques employed in asynchronous design. How-
ever, the relative timing of the clocks are
different within each functional unit, hence clock
skew problems are emphasised. The non-overlap-
ping section of a two-phase clock can be used to
compensate for the propagation delay of the
clock gating circuit.

Both synchronous and asynchronous design are well
suited to the reduction in power supply voltages as many
of the cells are common to both design paradigms.

In synchronous systems, power consumption can be
split into two categories, i.e. data movement and clock dis-
tribution. For the asynchronous case, power consumption
is split between data movement and control. The rest of
this paper will concentrate on power consumption minimi-
sation during data movement.

3: Dynamic Logic

In static CMOS design, the logical function is imple-
mented twice, once in the n transistor stack and once in the
p transistor stack. In contrast, dynamic logic reduces cir-
cuit area by implementing compact “NMOS style” gates
without the overhead of static power dissipation.

Despite this obvious attraction, dynamic logic can be
difficult to use with some low power techniques in the syn-
chronous framework, such as frequency management and/
or clock gating, since data may be lost or corrupted if the
logic is not clocked and thereby refreshed regularly.

The most commonly used dynamic logic styles are
Domino (figure1a) [Kram82], NORA[Gonc83] or a com-
bination of the two (figure1b), since cascading of stages is
accommodated using one clock edge to drive the pre-
charge signal. In Domino logic this is allowed since the

output of the inverter is driven low during precharge. In
further cascaded stages the n-channel precharge transistor
may therefore be omitted. However, care must be taken to
ensure that precharge occurs in time to remove positive
inputs between stages and hence avoid short circuit current
dissipation. In NORA logic the function is implemented
alternately in n and p stacks to allow inverted outputs
which cannot be accommodated in Domino logic.

Chandrakasan et al. [Chan92] highlighted five areas for
consideration when comparing the low power properties
of dynamic and static logic:

(1) Spurious transitions: In static logic, spurious
transitions (static and dynamic hazards) occur
when a logic function is evaluated since the prop-
agation delay of different gates is unequal. As a
consequence, the gate may assume more than one
logical value during the evaluation of the func-
tion. According to Benini et al. [Beni94], hazards
contribute to between 9% and 38% of the power
consumption in their set of static circuits and
therefore cannot be ignored. In contrast, dynamic
circuit output nodes either remain at the value to
which they were precharged (ignoring charge
leakage) or are discharged. Consequently,
dynamic circuits may potentially save power dur-
ing logic evaluation since their output nodes
make at most one transition during evaluation.

(2) Short-circuit current: In static CMOS combina-
tional circuits, a short circuit current will always
flow when the supply voltage is greater than Vtn
+ |Vtp|, since the logic function of the gate is
effectively implemented twice, once in the n
stack and its complement in the p stack. (During
a change in output, both stacks simultaneously
conduct.) In dynamic circuits, the short circuit
current will only flow if the node was discharged
during the evaluation phase

(3) Input capacitance: The duplication of the logic
function in both the n-stack and p-stack in static
logic presents an additional load to the previous

n’s n’s
p’s

ck ck

to n-stacks to p-stacks

to n-stacks

to p-stacks to n-stacks

to n-stacks

(a) (b)

FIGURE 1 Dynamic logic (a) Domino (b) NORA

ck

Utilising Dynamic Logic for Low Power Consumption in Asynchronous Circuits

C. Farnsworth, D.A. Edwards and S.S. Sikand

Department of Computer Science, The University,
Oxford Road, Manchester, M13 9PL, U.K.

Abstract

Dynamic logic offers compact, fast solutions for syn-
chronous design. Asynchronous design methodologies
which conform to the bounded-delay model can also uti-
lise dynamic logic for combinational circuits obtaining
similar benefits to the synchronous case. To achieve these
benefits, the logic is held in precharge until it is required
and the evaluation phase is completed during a handshake
communication action. The resultant power consumption
is low since the input capacitance is far smaller than
equivalent static CMOS circuits and spurious transitions
in the computation are removed.

1: Introduction

Power consumption is becoming an increasingly
important criterion in digital design, particularly as more
portable products (e.g. laptop and pen based computers)
are realised which require compact, low power implemen-
tations with relatively high processing abilities. As a con-
sequence, low power techniques are emerging to increase
the battery life. In addition, the manufacturing cost and
size of a product are reduced since the power supply and
cooling requirements may be diminished.

In CMOS circuits, the majority of the power consump-
tion is due to switching activity. In synchronous systems
the switching action occurs on the active clock edge
regardless of whether the circuit operation is required,
whereas asynchronous digital design techniques can
reduce the number of unnecessary switching actions
because operation is requested only when it is required.

Dynamic logic can also offer potential power consump-
tion savings since the gates are smaller than their static
counterparts. However, in spite of this, static gates are
often adopted when low power consumption is one of the
primary design goals, since the clock has to be distributed
to all dynamic logic gates. Furthermore, if clock frequency

management or clock gating techniques are adopted,
measures must be taken to avoid dynamic nodes discharg-
ing.

This paper outlines how asynchronous circuits can
exploit the advantages as well as minimise the disadvan-
tages of dynamic logic for low power consumption.
Indeed, the precharging of dynamic nodes which is gener-
ally considered as a disadvantage may in fact be an advan-
tage in asynchronous circuits.

2: Low Power

Generally, power consumption can be reduced by three
main techniques [Lyon93]:

(1) Reducing nodal capacitance: The majority of
power consumed in CMOS circuits is caused by
dynamic charging and discharging of circuit
nodes. The energy expended at each node is:

where:
represents the change in voltage,
generally Vdd,

C represents the nodal capacitance.

The total power consumed is the energy
expended at all nodes over a specific time period.
If nodal capacitance is reduced, an associated
reduction in power consumption occurs. The
other major source of power consumption in
CMOS circuits is the switching current resulting
from simultaneous conduction of both the n and p
type transistors.

(2) Reducing power supply voltage: The energy
expended at each node is proportional to V2,
hence the reduction in power supply voltage can
be applied twice to the power consumption.
Without major alterations to current processes,
3.3V has emerged as the new industry standard.

energy
1
2
-- C ∆V

2××=

∆V

