
Scientific GPU Programming with Data-Flow Languages

Daniel Goodman Mikel Lujan
The University of Manchester

Daniel.Goodman@Manchester.ac.uk

1. INTRODUCTION
Graphical Processing Units or GPUs are processors used
primarily to render images from computer models for do-
mains ranging from gaming to design engineering. As the
generation of very accurate images often in real time is ex-
tremely computationally intensive, they have developed into
extremely powerful processors. To achieve this they have
relied on being able to specialise to this particular set of
problems, specifically taking advantage of the fact that each
pixel can be calculated independently. This has resulted in
a processor with a high level of parallelism, and on which
large numbers of threads run in small groups to compute in-
dependent results. These groups of threads take inputs and
produce outputs, but there is no communication between
groups. This lack of communication means that computa-
tions on GPUs are fundamentally controlled by the flow of
data through pipelines as transferring control information
between threads is not possible.

The level of performance offered by GPUs has for a long
time been of interest to other areas of computation, and the
development of the CUDA [8] programming language and
later OpenCL [6] has provided a new means of programming
GPUs to perform general purpose programming. While
it had previously been possible to program GPUs to per-
form non graphics related computations, this was achieved
through the use of domain specific shader languages [9] that
required considerable skill to use for non graphics computa-
tions. The provision of a low level non-domain specific lan-
guage greatly simplified the problem of programming GPUs.
However, CUDA’s low level nature, while saving the pro-
grammer from re-purposing a domain specific language to
another unrelated purpose, does load the programmer with
a lot of low level details that add time and complexity to the
construction of these codes, and leaves them beyond many
users. The effect of this can be seen in the number of domain
specific languages that are now being produced for different
areas of science that interface with GPU’s [4, 5]. These are
then augmented by more general purpose languages with
differing levels of abstraction provided by companies such
as the Portland Group [2] and MathWorks [10]. All of these
languages though are derived from an imperative program-
ming model where the user specifically describes the order
that instructions are to be executed, instead of just describ-
ing the dependencies between instructions. This model was
developed originally for single threaded applications, and
then extended for multiple CPUs where coherency can be
maintained between threads through communication. As a
result of this extended evolution it is lacking in an intuitive
way of handling the large levels of concurrency when com-
munication between groups of threads is not possible. We
argue that the restrictions on GPU’s mean that they are

better served by an alternative programming style known as
data-flow programming [3, 7].

In this abstract we demonstrate that while CUDA is based
on an imperative programming language, correctly constructed
programs using CUDA’s execution model map onto a coarse
grained data-flow model. From this perspective we argue
that the use of CUDA to simplify the programming of GPU’s
is a specific reoccurrence of the more general data-flow model.
We then consider how languages for GPUs could develop
into more fully featured data-flow language, and how this
could further simplify the programming of these and other
many-core devices.

2. CUDA PROGRAM DESIGN
Early CUDA-enabled GPUs could only execute one kernel
at a time. While this restricted the class of algorithms that
could be simply or efficiently executed on these cards, it also
simplified the design constraints for programmers. With the
early cards you simply needed to decompose your problem
into a set of very large pieces of computation that could oc-
cupy the entire card, and ensured that any inefficiency due
to the load balancing at the end of the kernel were minimal
relative to the entire kernel execution time. This effectively
turned the programs into a simple workflow where only one
thing was happening at a time and if any branching in the
control flow could be predicted the entire computation could
be replaced by a pipeline without loss of performance. Cou-
pled with the block structure of the kernels and the vector
processing structure of the blocks, this model made an ef-
fective way of reasoning about problems from this restricted
set.

The Fermi architecture made it possible to run multiple sep-
arately launched kernels at the same time, a pattern that has
now been replicated by AMD with their Cayman architec-
ture. This allows the time due to imbalances in the work
load at the end of a kernel to be used on the next kernel to
be executed, and for multiple small kernels to fully occupy
the card. This removes the requirement for kernels to be
large enough to occupy the entire card in order to get good
performance. The relaxation of the requirements of the older
cards does not prevent the construction of the more tradi-
tional styles of program, but it does raise the question of how
best to take advantage of this new freedom to both reduce
the complexity of kernels through an increased number of
smaller kernels and to solve problems that previously were
inefficient on GPU’s. It is clear that in order for ordinary
users to construct maintainable programs that truly take ad-
vantage of the ability to run multiple kernels, programming
languages for GPUs, like languages for multi-core CPUs, are
going to need to develop beyond their current relatively low



level.

3. CUDA PROGRAM EXECUTION
In this section we will look at how CUDA programs exe-
cute [8], identifying the different abstract memory types and
how these interact with the computation. We will then go
on to look at the data-flow programming model and how the
interactions with these abstract types of memory map onto
it.

A CUDA program consists of one or more kernels that are
invoked on the GPU by the CPU. These kernels consist
of one or more blocks of threads and in any real program
there will be a large number of these blocks. Within each
block there are a large number of threads that are able
to communicate in order to achieve the overall aim of the
block. The threads within the blocks are split into inde-
pendent groups of threads called warps that execute in a
SIMD model. As warps may execute at different speeds,
communication within the block is achievable through the
use of shared memory at synchronization points that provide
a guarantee that every thread has executed this far. Away
from these points, communication is only possible between
threads in the same warp.

Blocks within a kernel are independent of each other and
have no guarantees about when they will execute, which or-
der that they will execute in, or even that two blocks will
be executing at the same time. To handle this concurrency,
normally blocks will maintain separation on outputs and will
only share inputs. However, atomic statements can be used
to ensure that interleaved of instructions do not affect the
result written to areas of memory used by multiple blocks.
But, because there is no guarantee that two blocks are exe-
cuting at the same time, no form of complex interaction is
possible. For example it is not possible to use the atomic
statements for one block to communicate with another send-
ing back and forth information about each other’s compu-
tations. Instead, when it is necessary for a pair of blocks
to communicate to successfully complete the computation,
these blocks must be split into two separate kernels consist-
ing of the computation before the communication and the
computation after the communication. These are then in-
voked using two separate kernel calls from the CPU, and the
information that the blocks wish to communicate is written
out into separate memory locations by the first invocation
and then read back in by the receiving block in the sec-
ond kernel invocation. Semantically this splitting into two
kernels is the same as the synchronization points within a
block.

These restrictions mean that while GPU’s have several types
of physical memory such as shared, constant, main and tex-
ture memory used for different tasks, abstractly the memory
used in a program can be grouped as follows:

Read only memory memory which can be read by one or
more blocks in order to get their input. This memory
will never change during the kernel invocation

Owner writable memory memory that can only be writ-
ten to by a specific thread within a block, and will
not be read or written to by other blocks during this

kernel invocation or any other thread before the next
synchronization point.

Atomic memory memory that is protected by atomic sec-
tions, so allowing writes from multiple threads at a
performance cost.

Block local memory memory used to store temporary val-
ues used by a single block or thread within the block

It should be noted that owner writable memory and block
local memory residing in the main memory can be allocated
as a single call, and then divided algorithmically between
many blocks. For example the first n bytes are used by block
0, the second n bytes by block 1 and so on. A table showing
how and where these different abstract types of memory map
onto the physical memories can be seen below.

Memory Type Memory Usage
Main Owner Writeable, Read only

Atomic, Block Local
Shared Block Local

Constant Read only
Texture Read only

The CPU is used to turn these kernel invocations into a
workflow, keeping track of dependencies and deciding which
kernel to execute next. This allows the scenario where the
CPU will wait for several kernels to complete before start-
ing another kernel, so providing the potential for complex
synchronisation restrictions. Fermi provides further flexibil-
ity to this model by the ability to execute several smaller
kernels at the same time. This allows for the creation of
separate of groups of blocks within a computation based on
parts of the computation that need to communicate, with-
out concern about each kernel invocation containing enough
computation to occupy the entire card. A dependency graph
constructed from multiple kernels can be seen below, show-
ing how different kernels can run concurrently and depend
on each other’s results



4. DATA-FLOW LANGUAGES
Originally developed in the late 1970’s and early 1980’s,
data-flow languages [3, 7] were a moderately successful means
of programming parallel computers. Their mainstream use
was ultimately curtailed by the continuing development of
faster single threaded processors making the need to write
parallel code for the majority of applications superfluous.
Now that physical limits have started to be reached forcing
the move onto parallel computing, these languages are being
looked at once more in order to program future multi and
many core devices. Examples include the work on libraries
such as LAPACK [1].

Unlike control flow programs or imperative programs that
view a program as a sequential list instructions that must
be followed, a data-flow program consists of either dynam-
ically or statically generated graph, where the nodes are a
fragments of sequential code that can be run in parallel by
separate threads and edges are data dependencies. Each of
these fragments has a set of inputs that are required before it
can begin executing and a set of outputs that it generates.
Once all the required inputs for a fragment of code have
been generated its associated thread can be passed to the
scheduler for execution. So the organisation is controlled by
the flow of data through the program, not the flow of con-
trol. Aside from the data dependencies there is no guarantee
of the order that the threads will execute in and multiple
threads may make use of a single output from an earlier
thread. This means that it is necessary for these threads
to be functional in their construction. That is, that for a
given set of inputs the output of the thread is always the
same, and there are no side effects. Collectively this means
that once a piece of data has been written to it will remain
the same for the entire execution of the program. This func-
tional purity prevents race conditions and so allows the code
to execute in parallel without the programmer providing fur-
ther details about the algorithm. However, the removal of
mutable memory restricts the class of programs that can
be described, and the way programs can be described. For
example while loops have to demonstrate the same seman-
tics as recursion, and systems such as a booking service for
an airline that allows multiple concurrent bookings are not
possible. The restriction to loops is trivially overcome by al-
lowing mutable thread local memory within a thread’s code,
and only making it read only if it is passed out of the thread
to be used by other threads. The construction of a parallel
booking system is more complex. This restriction is as a re-
sult of the need to have a single piece of data describing the
current state of all bookings. This single piece of data can
then only be modified by a single thread at a time. To over-
come this restriction it is necessary to add shared mutable
state. This addition breaks the model as now the ordering
of the execution of the segments of code can affect the re-
sult, however as long as all orderings still generate correct
although possibly different results, the program will still be
correct. Shared state also adds the potential for the state
to be changed by one thread while another thread is exe-
cuting, so protection for mutable areas of memory that are
shared between threads is required. This protection can be
provided by either the addition of locks, or the use of trans-

actions, but the overall effect is there are areas of memory
that are restricted such that only a single thread may access
them at a time when they are being modified. When these
areas are only being read from there is no need to apply
restrictions to the number of accessing threads.

This leaves us with the strikingly similar set of four types of
memory:

Read only memory memory which can be read by mul-
tiple threads in order to get their input.

Owner writable memory memory that can only be writ-
ten to by a specific thread, and will not be read by
other threads during this thread’s execution. Once
this thread has executed this memory can become read
only memory.

Atomic memory memory that is protected by atomic sec-
tions, allowing multiple threads to safely modify it, but
potentially at a performance cost.

Thread local memory memory used to store temporary
values used by a thread.

Once again the scheduling of the computation is based on the
data dependencies, not the control flow, although in data-
flow languages this is overt. Taking this view, the depen-
dency graph from the earlier CUDA program may convert
to the following data-flow graph.

5. LIFE BEYOND CUDA
The similarities illustrated raise an interesting possibility
using a data-flow model to develop future languages for pro-
gramming both single and multiple GPU’s, and in the not
too distant future hybrid CPU-GPU chips. The develop-
ment of such a language would be able to take advantage
of the historical and current work on data-flow languages.
Unlike the frequent observation about the similarity of pro-
gramming within a block to historic vector processing, this



will not only allow for the reuse of algorithms and algo-
rithm development techniques, but will provide insight into
and a starting position for the languages that might replace
CUDA and OpenCL as low level languages for many-core
machines or augment them as a high level language. Such
languages would simplify the invocation of kernels, the han-
dling of data, and creating the potential for better correct-
ness checking.

From this point of view let us now consider what a future
high level data-flow GPU programming language may look
like. Features that such a language may include are:

• Managed Memory

• Abstracted Kernel Invocations

• Complex Type System

A language supporting these could either be achieved by
building a new language from scratch, or it could be achieved
through the extension of an existing data-flow language.
While making a fresh start may in many ways be the bet-
ter option, it requires a large amount of work, where as the
second option can be incrementally added. Taking the in-
cremental approach, the first step would be to integrate the
ability to call kernels into an existing data-flow language,
with the scheduler automatically handling the data trans-
fers much like in other higher level GPU languages. This
would provide the ability to call kernels as and when their
data becomes available, without the user having to handle
scheduling, allowing a GPU execution to form parts of a
data-flow graph. The construction of the kernel code can be
achieved either through the direct use of CUDA, or through
an adaptation of the data-flow language and a compiler that
compiles down to CUDA code. Given the restrictions of ker-
nel code include the absence of recursion, constructing lan-
guages that map onto CUDA and provide all its functionality
should not be problematic and will provide the potential to
add additional support for types etc.

This integration can then be furthered by changing the de-
scription level to that of specific blocks instead of specific
kernels leaving the compiler or runtime to group these into
kernels for execution. This would require the system to de-
termine the appropriate parameters with which to call the
created kernels. However, as there is already a great need for
the addition of auto-tuners to simplify the selection of op-
timal parameters for kernel invocations, this could be more
of an opportunity than a drawback. Within the block, the
construction of the language extensions would need careful
consideration in order to protect the vector efficiency of the
warps, but the prize for this construction would be the auto-
matic detection of the required locations of synchronization
points.

The stronger semantics gained by the construction of a higher
level language can then provide the opportunity for the lan-
guage to be integrated with a more advanced the type sys-
tem. This coupled with the explicit passing of data between
data-flow threads mean that it is now possible to produce
a reference counting managed memory for the GPU. The
managed memory can be included in with the scheduler to

ensure that the variable amount of memory on across differ-
ent cards is automatically handled. This removes from the
user the challenges of ensuring that there are no memory
leaks, and the passing around of data is not restricted.

6. CONCLUSION
In this abstract we have observed that GPUs are data-flow
devices designed for the concurrent handling of the com-
putation of large numbers of pixels without the need for
coherency in the execution model. However, for scientific
computing they are programmed using CUDA which is an
imperative language developed from C. This results in many
natural actions in the language being illegal, and forces the
user to comprehend the difficult problem of how to write
data-flow code in an imperative language. Instead we argue
that it would be better to develop a data-flow language for
scientific computation on GPUs. Such a language would not
only make it easier for the user to program codes to run on
these devices, but it would also allow for the construction
of stronger semantics that could support type checking and
memory management in an efficient way. Collectively this
will make GPUs easier to program, more accessible and will
blur the line between the GPU and the CPU.

7. ACKNOWLEDGMENTS
Many thanks to Chris Kirkham, Ian Watson, Salman Khan
and Berham Khan for their thoughts. Dr. Lujan is sup-
ported by a Royal Society University Research Fellowship

8. REFERENCES
[1] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum,

A. McKenney, J. D. Croz, S. Hammerling, J. Demmel,
C. Bischof, and D. Sorensen. Lapack: a portable linear
algebra library for high-performance computers. In
Proceedings of the 1990 ACM/IEEE conference on
Supercomputing, Supercomputing ’90, pages 2–11, Los
Alamitos, CA, USA, 1990. IEEE Computer Society
Press.

[2] CUDA Fortran Programming Guide and Reference.
CUDA Fortran - Programming Guide and Reference,
1.3 edition, May 2010.

[3] J. T. Feo, D. C. Cann, and R. R. Oldehoeft. A report
on the sisal language project. J. Parallel Distrib.
Comput., 10:349–366, December 1990.

[4] M. Giles and G. Mudalige. Op2: an open-source
library for unstructured grid applications. In 2nd UK
GPU Computing Conference, December 2010.

[5] D. Grewe and A. Lokhmotov. Generating and
automatically tuning opencl code for sparse linear
algebra. In 2nd UK GPU Computing Conference,
December 2010.

[6] Khronos OpenCL Working Group. The OpenCL
Specification, August 2008.

[7] R. S. Nikhil. The parallel programming language id
and its compilation for parallel machines. International
Journal of High Speed Computing, 5(2):171–223, 1993.

[8] NVIDIA Corporation, 2701 San Tomas Expressway,
Santa Clara, CA 95050. NVIDIA CUDA Compute
Unified Device Architecture Programming Guide, 2.0
edition, June 2008.

[9] R. J. Rost, A. Central, B. Licea-Kane, D. Ginsburg,
J. M. Kessenich, B. Lichtenbelt, H. Malan, and
M. Weiblen. OpenGL Shading Language. Addison
Wesley, 3rd edition, 2009.

[10] G. Sharma and J. Martin. MATLAB: A Language for
Parallel Computing. International Journal of Parallel
Programming, 37(1):3–36, February 2009.


