Experiences with Distributed and Parallel MATLAB on a
Microsoft CCS cluster

Lo . Users
— - |*Medical Imaging Applications
= ' *Analysis of Electron Microscope Data

VA *‘Modelling residual stress in materials

= = = = ===

* Gigabit private network Distributed MATLAB

* 10 terabyte file store . |*Allows multiple instances of MATLAB to

*Installed libraries include | run as workers on clusters.

*MS-MPI, Intel Math Kernel * These workers can be used to run a range
Libraries, Numerical Algorithms | of different styles of job. (trivially parallel,
Group Windows libraries and ITK | message passing, global operations)

*32 Distributed MATLAB- licenses | |*Supports a set of distributed matrices that
can be used to abstract the parallelisation
from the system.

Independent Tasks

Below is the code we implemented to run a set of independent tasks on the cluster.
The existing code is first re-factored by hand into a single function
‘projective reconstruction core’. Then standard distributed toolbox
objects and tools developed by OeRC are used to create multiple tasks that execute
the function on the cluster. As the tasks are independent and potentially numerous,
the scheduling can be very efficient, however results have to be returned to the client
for marshalling and saving, potentially making a bottle neck, especially if the client is
on a slow network connection.

jm = findResource('scheduler', 'configuration’', 'CCS'")

job = createdJob(jm);

for z block start=1:30

createTask(job, @projective reconstruction core, 1,
{imodfile in, numtlts, xsize, ysize, plane coeffs2,
blocksize, z inc, homography 3D, z block start});

end
f = calculateFiles('projective reconstruction core.m’);
set(job, 'FileDependencies’', f£f)

submit (job)
waltForState(job, 'finished')
blocks = getAllOutputArguments(job);

Positive Negative

*All results returned to clients machine
*Fiddly control of returned results

*Potential to efficiently schedule
heterogeneous tasks
*Easy to create heterogeneous tasks

Experiences with CCS
*The MS CCS cluster is easy to use out of the box solution for mid-size computing
needs.

‘It provides a parallel computing system in a windows environment which is
becoming increasingly important for many research areas

*For the most part the submission of jobs, the job scheduler, and the system in
general is very accessible for the non-expert user.

*Managing licenses is tricky. License conditions are currently checked by Submission
and Activation filters. These filters are implemented by single executables, making
management on a cluster hosting heterogeneous applications hard. There is also no
mechanisms to allow the activation filter to feed back to the scheduler why the job
was rejected.

*|t can also be hard to determine which application is attempting to run, as the only
information is the command to be executed, and this executable can belong to CCS
taking the application executable as an argument.

*We had difficulties because of the need to copy large data files to nodes, where on
occasion due to a time out the file server ceases to appear as a network resource,
resulting in transfers failing.

*Debug tools were not available in the version of CCS we used. Often when a job
failed, no error message was provided to assist in debugging. Console output had to
be retrieved by hand from log files.

*Also on some client machines it is not possible to get the client to remember the
user’s password and automatically authenticate. This makes running scripts that pass
some tasks to the cluster difficult without the user being present.

Daniel Goodman, Stef Salvini & Anne Trefethen

Communicating Tasks

The main alternative to independent tasks is the communicating tasks implemented
below Here there is a single task that has multiple instances which run concurrently
and can communicate. Doing this they are able to pass a token round controlling
who is next to write to disk. This allows them to save directly to the file store. As
with the independent tasks, the code is first re-factored to a single function that the
task will execute. However, the code is also augmented with calls to LabSend and
LabReceive in order to pass the token, and code to determine which piece each
instance should address, based on its labindex. OeRC have produced a set of

constructs to encapsulate this to ease the programming of such functions. Once this

was done standard distributed toolbox objects and tools created at OeRC are once
again used to construct the task and execute it on a set of cluster nodes.

sched = findResource('scheduler', 'configuration', 'CCS');

pjob = createParallelJob(sched);

set(pjob, 'MaximumNumberOfWorkers', 30)
set(pjob, 'MinimumNumberOfWorkers', 15)

f = calculateFiles(' 'projective reconstruction');
set(pjob, 'FileDependencies', f)

task = createTask(pjob,
{basename});

@projective reconstruction, 0,

submit (pjob)

wailtForState(pjob)

Positive Negative

*Data can be easily written back to the
File Store

oL ack of multi-threading for tasks with
heterogeneous execution times
wastes resources.

Experiences with MATLAB
*MATLAB and the distributed toolbox are easy to install, configure and indeed use.

*The distributed toolbox brings a higher level interface to parallel computing and
makes parallel computing accessible to a broader group of users.

*Creating distributed and parallel applications can now be achieved in minutes.

* To provide a simpler interface we have developed a set of tools so that users don’t
need to explicitly declare configuration parameters such as which .m files need to
be transferred or which path is to be used to gain access to the function code.

It would be easier if there were tools to re-factor code into the desired single
function to be called by a task, at present this is done by hand.

*The integration of tools to enable automated setting of configuration parameters
would make using the system less messy and again easier to use.

*In our application it would have been useful to have the capability load a partial
piece of a data file. However, currently much of the data model is built around the
use of .MAT files to transmit data which leads to the whole of sometimes very large
files being sent to and loaded by each instance of MATLAB (possibly many per
node).

*The ability to have multiple threads sharing data or instances of MATLAB would
have made our application more efficient. At present the model has as many
MATLAB processes as there are cores, all sharing the same cache, but all requiring
that any data is separately transmitted to them over the network.

MATLAB® 4\

Distributed Computing
Toolbox

Other toolboxes MATLAB
Distributed |
Computing Engine |
Workers

Scheduler

© 1984-2008 The MathWorks Inc.

UNIVERSITY OF

OXFORD

