
An Admission Control System for QoS Provision
on a Best-effort GALS Interconnect

Shufan Yang, Steve B. Furber, Yebin Shi, Luis A. Plana
School of Computer Science, The University of Manchester

Oxford Road, Manchester M13 9PL
Email: shufan.yang, sfurber, shiy, plana @cs.man.ac.uk

Abstract

A central admission control mechanism is introduced
in order to provide efficient Quality-of-Service (QoS) sup-
port for different types of application over a best-effort
Globally-Asynchronous Locally-Synchronous (GALS) inter-
connect fabric. The mechanism is applied at the ingress
edges of the fabric using tokens to allocate dynamic network
resources and prevent network saturation. Analysis and
simulation results are presented to show the effectiveness of
the method. The control provides service guarantees on the
network while using a modest physical area because of the
simplicity of the control logic. This is a cost-effective way
to provide QoS in packet-switched interconnect because of
its independence from other network components.

1. Introduction

A typical System-on-Chip (SoC) design requires a wide

variety of functional blocks and I/O interfaces. However, it

is difficult to manage growing numbers of on-chip blocks

using globally clocked interconnect [1]. The Globally-

Asynchronous Locally-Synchronous (GALS) methodology

provides a solution. It keeps the efficiency in gate count of

a synchronous implementation at the local level while re-

moving the need for global timing convergence for the full

SoC.

Currently proposed GALS techniques are attractive but

are, in general, best-effort interconnects. Best-effort inter-

connects are not designed to meet application performance

requirements all the time. Quality-of-Service (QoS) is a

form of quality assurance that can be used to tackle this

problem. In the context of GALS interconnect, QoS is a

communication service that makes guarantees regarding the

speed with which data will be transmitted to the target [2].

However, best effort interconnects are unlikely to meet QoS

policy objectives in terms of bandwidth and latency guaran-

tees without additional resources [3].

In this paper, we introduce a token-managed admission

control mechanism for QoS to satisfy the communication

demands of the applications in the SpiNNaker system [4].

The SpiNNaker system is a massively-parallel multiproces-

sor based on a high-performance, GALS on-chip intercon-

nect. SpiNNaker provides a complete, verified and practi-

cal platform for GALS experiments and will be fabricated

soon on a 130nm silicon process. The applicability of the

low-cost QoS support mechanism presented here is not lim-

ited to the SpiNNaker chip and will result in guidelines for

designers of industry-relevant multi-processor System-on-

chip (MPSoC).

Figure 1. SpiNNaker chip interconnect

2. Related Work

Well-known QoS support schemes for on-chip intercon-

nect are based on resource scheduling and reservation. For

example, a scheme with prioritised reservation of specific

978 -1-4244-1839-8/08/$25.00 © 2008 IEEE

Authorized licensed use limited to: The University of Manchester. Downloaded on April 13, 2009 at 13:53 from IEEE Xplore. Restrictions apply.

links [5] uses dedicated buffers in the network switches for

storing priority classification information. Unfortunately,

these buffers usually incur a large area penalty [5]. An-

other scheme uses reservations by virtual channels. The

Mango project [6] uses asynchronous latency guarantee

(ALG) scheduling on virtual channels to provide QoS hard

guarantees. However, it is a costly implementation. For

a case the capacity is reserved but then not used by one

client, then it is unavailable to other clients. Clearly, a

cost-effective way to provide QoS in GALS interconnect

is needed.

The mechanism of admission control for QoS support

has been addressed in a few papers [7, 8, 9, 5], where the

modules are evaluated by high level simulation using OP-

NET. Even though OPNET is a convenient tool for hierar-

chical network modelling, the accuracy of the results from

the high-level simulation is not very convincing in prac-

tice because software never performs tasks in parallel, as

does hardware. Nollet et al describe another more complex

admission control machanism [8, 9]. However, the value

of such theoretical work is usually not revealed until some

practical applications can be run on the real chip platform.

3. GALS Interconnect

3.1. SpiNNaker chip

The SpiNNaker chip is a scalable processor chip contain-

ing multiple ARM cores to implement a general-purpose

programmable neural device model [10]. The chip imple-

ments two distinct interconnects: one for communication

between processing nodes and the other for connecting sys-

tem components to the processing nodes [4]. The QoS

scheme presented in this paper is applied to the system in-

terconnect.

The system interconnect provides a GALS infrastruc-

ture for connecting processors to off-chip memory (e.g.

SDRAM) and other system components, as shown in fig-

ure 1. The fabric we propose is based on a crossbar topol-

ogy with two dedicated communication links: the command

link is used by the initiator devices that can initiate a com-

munication transaction (e.g. processor units and DMA) to

send requests to the targets and the response link is used

by the targets, such as SDRAM, to respond to transaction

requests. The two-physical-link fabric is based on CHAIN

technology [11]. A key feature of a crossbar is to enable

multiple initiator devices to access different target devices

simultaneously, although accesses to the same target would

become a bottleneck.

The interconnect fabric, a best-effort interconnect, was

implemented using the commercially-available CHAIN-

works tool suite [12, 13]. The interconnect fabric is imple-

mented in a self-timed fashion, based on a handshake mech-

anism without requiring a clock signal and without relying

on the notion of time [4]. When a sender puts data on a

link, it activates the associated VALID signal and it should

not send any more data until the receiver signals that it is

ready. When the receiver has consumed the validated data

it activates the corresponding ACKNOWLEDGE signal to

allow the sender to proceed.

3.2. Network interface

To maintain the parallel processing model within the

chip, we selected the AXI (AMBA Advanced eXtensible

Interface) protocol [14] for use in the high-speed, system

interconnect interfaces such as the processor and SDRAM

interfaces. Other system components use the AHB protocol,

as shown in Figure 1. AXI is targeted at high-performance,

high-frequency system design. According to the AMBA

AXI specification, the interconnect consists of five indepen-

dent channels: read address, read data, write address, write
data and write response. The use of five separate communi-

cation channels is intended to improve communication per-

formance dramatically [14]. In the SpiNNaker GALS in-

terconnect, the read address, write address and write data

channels are driven by the initiator devices and are imple-

mented using the command link in the fabric. The read data

and write response channels are driven by the target devices

and use the response link.

As mentioned earlier, the system interconnect is a best-

effort interconnect. Furthermore, the AXI interfaces to the

interconnect do not provide any means to control the ini-

tiators. These devices can issue new transaction requests

even if the fabric is very busy and experiencing congestion.

A sequence of burst-read requests to the same target may

not create congestion in the command link but, if the bursts

are long, could easily create problems in the response link.

Consequently, saturation in the response link can result in

back-pressure through the command links. In this case, the

fabric will rapidly become saturated. A mechanism to con-

trol the admission of new transactions into the interconnect

can avoid this fabric congestion.

3.3. Requirement for QoS support

QoS support can be classified into hard and soft guaran-

tee services. Hard guarantee services make sure that the

communication requirements are always met and are re-

quired only by critical, real-time applications. Soft guar-

antee services relax the guarantees. The soft requirements

can be established in terms of a desired delay bound and a

maximum percentage of packets arriving later than a given

threshold. Most of the proposed QoS support schemes are

hard guarantee services and incur large area costs. How-

ever, for many applications, it is not worth paying so high a

Authorized licensed use limited to: The University of Manchester. Downloaded on April 13, 2009 at 13:53 from IEEE Xplore. Restrictions apply.

price. A soft guarantee service is adequate.

Figure 2. Conceptual view of the QoS system

Soft and hard guarantees can both be quantified in terms

of performance parameters such as bandwidth, latency and

loss probability. There are three types of bounds for

QoS support: bandwidth bounds for specific links, latency

bounds for worst-case traffic patterns and loss bounds for

reliable transmission [15]. The latency bound is not a useful

metric if the bandwidth is too small. Moreover, in complex

systems it is difficult to measure latency accurately given

that latency includes device response time and transmission

latency. Another metric, the loss bound, is not meaning-

ful in the context of our GALS interconnect, given that the

handshake mechanism introduced earlier guarantees that no

transactions are lost. For these reasons, we focus on a soft

bandwidth and soft latency guarantee service to provide ad-

equate QoS support in the SpiNNaker chip.

4. Token-Managed Admission Control

We implement a token-managed admission control

(TMAC) mechanism to provide soft guarantees for QoS

traffic (traffic initiated by a high-demand initiator) over a

best-effort (BE) interconnect. Concurrently, BE traffic (traf-

fic that has no strict deadlines) still has an opportunity to

access the fabric without experiencing heavy traffic conges-

tion. Figure 2 illustrates the conceptual view of the sys-

tem. Each initiator has an individual interface to the to-

ken manager. When the interconnect fabric is operational,

all initiators with pending requests compete for bandwidth

allocation. TMAC takes responsibility for deciding which

initiator has priority to access the fabric.

TMAC manages access permission to the fabric. There

are two basic token transactions, which are controlled by

the token manager:

• token assignment: when one initiator requests access

to the fabric, TMAC grants the request if there are

available tokens. The initiator can then send a com-

munication transaction to the fabric.

• token return: once the initiator completes the transac-

tion, it returns the token to TMAC.

4.1. Principle of operation

The token-managed admission control (TMAC) is a sim-

ple, synchronous mechanism. A definition of each signal is

given in table 1.

Table 1. TMAC signals
Signal Function

request request from initiator

grant grant token to initiator

return initiator ends transaction

4.1.1 Read transactions

The timing diagram of a TMAC read operation, shown in

figure 3, illustrates both the token assignment and the token

release behaviour. The area labelled A in the figure shows

a successful transaction by initiator init0: the request signal

is set when the initiator issues a request. If there are free to-

kens, the grant signal goes high, the request signal is reset

accordingly and the read transaction (a 4-word burst) takes

place. The completion of the read transaction is indicated

by return going high and then grant goes down. The figure

also illustrates what can happen when tokens are not avail-

able. The area labelled B in the figure shows that, although

init1 request has been driven high to request a token, initia-

tor init1 must wait for an available token. When there is a

free token, the request is granted.

TMAC is a priority-based mechanism. Every initiator

is assigned a priority level and TMAC will grant tokens

to higher priority devices first. A round-robin algorithm

is used to decide between equal priority requests. Figure 3

shows that high-priority initiators init2 and init4 are granted

tokens before low-priority init1 and init3.

TMAC is a simple, low-overhead mechanism. The area

labelled C in Figure 3 shows TMAC can grant available to-

kens in a single clock cycle. Additionally, back-to-back re-

quests by the same initiator are allowed, i.e., an initiator

can release a token and request a new one in the same clock

cycle.

4.1.2 Write transactions

Figure 4 shows how write transactions operate. The area

labelled A in the figure shows the first transaction of ini-

tiator init0. Init0 issues a request and the first write data

Authorized licensed use limited to: The University of Manchester. Downloaded on April 13, 2009 at 13:53 from IEEE Xplore. Restrictions apply.

Figure 3. TMAC read transaction timing diagram

(labelled init0 axi wdata 0) is sent out at same time. The

token is granted and the (4-word burst) write transaction

can take place. The token is eventually released by init0,

thus completing the transaction. The areas labelled B show

all initiators starting (4-word burst) writes. Even though the

requests are issued at the same time, the write transactions

start only when a token is granted. As shown in the figure,

the tokens are granted in sequence.

Due to the sharing of the command-link bandwidth be-

tween write data and write addresses, write transactions are

different from read transactions. It is inevitable that the

command link is more easily saturated by write data. In

addition, initiators can experience very long round-trip la-

tencies since they have to wait for the transmission of the

write response from the target device. The area labelled C

in figure 4 shows that, even though a token has been granted

quickly, initiator init0 must wait a long time before starting

its second transaction due to the saturation of the command

link.

Although TMAC is able to influence the write band-

width allocation, the dynamics may well be different due to

the command link saturating. Fortunately, read transactions

dominate system performance in typical applications (they

are three times more frequent than write transactions [16]).

Thus, the design has been driven by read transactions and

the experimental results presented in this paper involve only

read transactions.

4.2. Design view

Figure 5 shows a block diagram of the TMAC imple-

mentation. The scheme is fully programmable to be able to

choose any initiator to have privilege for bandwidth reser-

vation. This schematic shows the parametrised arbiter that

implements two common schemes: round-robin arbitration

and priority arbitration. In the figure, the priority memory

stores priority settings and the scan memory registers the

state of the round-robin algorithm.

Figure 5. TMAC schematic view

With regard to the latency overhead of TMAC, we tried

to make TMAC more efficient by using a parallel token as-

signment design. After evaluation of the completed design,

we realised that supporting parallel assignment was not

cost-effective. If there is a one cycle overhead for assigning

one token, the performance of the QoS support decreases

very little by assigning a single token on every clock cy-

cle. Furthermore, time-critical applications normally have

predictable performance demands. Avoiding high levels of

congestion on the fabric is more crucial than slight latency

overheads in TMAC.

Authorized licensed use limited to: The University of Manchester. Downloaded on April 13, 2009 at 13:53 from IEEE Xplore. Restrictions apply.

Figure 4. TMAC write transaction timing diagram

4.3. TMAC bandwidth guarantees

TMAC provides QoS by controlling the priority of token

requests, but the possibility of bandwidth reservation de-

pends on how many tokens are preserved for each initiator.

For example, if there are 3 valid tokens in a five-initiator

to one target system, the initiator that has the QoS require-

ment will get a 1/3 bandwidth guarantee as a result of the

priority granting of a token; the other initiators will share

the remaining 2/3 bandwidth. If the fabric can accommo-

date more initiators without heavy congestion, TMAC can

be configured with one more token. In that case, it will

give a lower bandwidth guarantee than that of the previous

case, because the priority initiator would only own 1/4 of

the bandwidth allocation. Another scenario is that an ini-

tiator can be allowed to send 2 outstanding commands, by

granting 2 tokens in a 3 token system. In this case, the ini-

tiator will theoretically get a 2/3 bandwidth allocation.

To control the bandwidth reservation dynamically, our

system would require a small number of changes. Firstly,

the interface has to be modified to make it fully config-

urable. Secondly, the interface must be extended to support

configuration setting, which would probably involve some

control algorithms and support for application mapping.

4.4. Synthesis results

The whole system has been simulated using a back-

annotated netlist on a UMC 130nm process. The TMAC

implementation runs at 100 MHZ and the initiators run at

100 MHZ. The target (an SDRAM controller model) runs

at 133 MHZ, which is a standard frequency supported by

the ARM PL340 [17].

It is interesting to note the influence on the TMAC size of

the number of initiators. We have run several experiments

using CHAIN GALS interconnect with multiple initiators

and one target. The results are given in Table 2, where the

first column is the number of initiators connected to the one

target. The second column shows the TMAC cell size. The

TMAC cell size increases only slowly with the number of

initiators. Hence, it has good scalability.

Num. of initiator TMAC cell size

5 0.029mm2

10 0.032mm2

15 0.055mm2

20 0.068mm2

Table 2. TMAC area vs number of initiators

4.5. Scalability issues

TMAC is a scalable scheme for QoS provision. The cur-

rent design can easily be adapted to operate on complex sys-

tems (e.g. 20 processor nodes on a chip). This only requires

enough interfaces and the initialization of the priority state

according the QoS demands of the initiators.

Unfortunately, the mechanism has potential scalability

problems due to the latency of access to the centralized con-

trol TMAC. The latency for token assignment increases as

Authorized licensed use limited to: The University of Manchester. Downloaded on April 13, 2009 at 13:53 from IEEE Xplore. Restrictions apply.

the system scale up. Clearly, these problems need to be

addressed. However, for middle-scale systems, the TMAC

mechanisms provide benefits and improvements over other

QoS mechanisms, both in area and performance.

5. QoS support in action: an example

This section shows a simple example of how QoS sup-

port is provided and how congestion is prevented at the

ingress of fabric.

The TMAC mechanism is triggered when an initiator is-

sues a request. We consider QoS support on a GALS sys-

tem and evaluate the performance during peak traffic loads.

In this section, the performance of the proposed token-

managed admission control (TMAC) is examined by means

of back-annotated simulation using UMC 130nm process

technology on a 48-bit fabric (using 3-of-6 encoding).

The QoS criteria we employ in this paper are “band-

width reservation” and “bandwidth utilisation”. The band-

width reservation is the proportion of the total bandwidth

allocated to a given initiator over a defined period of time.

The period of time we use in the simulation is the simulated

time for a given number of read transactions to complete.

The bandwidth allocation can similarly be measured as the

number of read transactions completed by the given initiator

as a proportion of the total number of read transactions ser-

viced by the target (on the assumption that all transactions

carry the same volume of data).

Normally, bandwidth utilisation refers to the percent-

age link utilisation over a specified simulation time. How-

ever, the SpiNNaker chip employs an array of 20 ARM968

CPUs accessing a single off-chip SDRAM, thus the avail-

able bandwidth is determined by the SDRAM target inter-

face [18, 4, 19]. Therefore the bandwidth utilisation here is

simply the total percentage utilisation of the available target

bandwidth.

In the following graphs, we also use “mean end-to-end

latency”, which accounts for different cases of uniform traf-

fic. There are two possible waiting times within the latency

in addition to the GALS fabric delay: the first is waiting for

a token to become available, because there are only 3 tokens

for 5 initiators, and the second is the response time of the

target device. Section 5.2 elaborates on the experimental

analysis of read transactions.

5.1. Evaluation platform

There are currently no public simulation tools available

to aid SoC designers to generate extensive and varied reg-

ular traffic patterns and application-oriented traffic. Most

current performance evaluation on GALS-based intercon-

nect is based on packet generation from an infinite source

queue. This method includes the input timing of each

packet when it is generated, which is inaccurate [5]. In-

stead, we use a synthetic traffic pattern. These traffic pro-

files will be built manually using a fixed burst mode (e.g.

4-word burst or a 16-word burst).

To exemplify the efficiency of QoS support in a GALS

interconnect, we use an “all-to-one” uniform traffic pattern.

The memory in the SpiNNaker chip is currently an off-

chip SDRAM with 1Gb capacity [10]. It is easy to expand

available global memory simply by using a larger mem-

ory device. However, the competition among initiators for

SDRAM utilisation will not be relieved. This case study of

an “all-to-one” example is a useful indicator of the likely

performance on the real problem.

The experimental scenarios are five initiator devices us-

ing the AXI protocol connected to one target device also

using the AXI protocol (e.g. an SDRAM controller).

The following evaluation model is used:

• the 5-to-1 GALS interconnect netlist generated by

CHAINworks [12]

• five verilog models of AXI initiator devices

• one verilog model of an AXI target device. Assuming

the target buffer is infinite, the target produces one beat

of data (64 bits of data) in one clock cycle

• the stimuli files (uniform random 4-word-burst read

transactions)

• the System Verilog test bench

5.2. Evaluation of QoS support

A uniform workload model implements read transac-

tions between five initiators and one target. The simula-

tion shows that initiators with high priority get what they

request, and the remainder receive an equally balanced ser-

vice.

Figure 6 (A) shows a comparison of the mean latency of

QoS traffic from initiator0 with best effort (BE) traffic from

initiator1, initiator2, initiator3 and initiator4. As seen in

figure 6 (A), the best effort traffic is noticeably affected by

the traffic mode when bandwidth utilisation is above 50%.

When the maximum fabric utilisation is approached, the

mean latency of the BE traffic varies significantly compared

with the QoS traffic. This shows that the token-managed

admission control gives a boost to guarantee latency for the

one initiator that has a QoS requirement.

The significance of a latency guarantee is that we con-

strain the injection of data from sources with admission con-

trol. Although TMAC introduces an extra time overhead,

it is an efficient way to avoid fabric congestion thereby

providing a latency guarantee for the interconnect. How-

ever, the different burst modes affect the latency guaran-

tee slightly because of the bottleneck of the one target, as

Authorized licensed use limited to: The University of Manchester. Downloaded on April 13, 2009 at 13:53 from IEEE Xplore. Restrictions apply.

20 25 30 35 40 45 50 55 606570 80 909295100
0

500

1000

1500

m
ea

n
en

d−
to

−e
nd

 la
te

nc
y(

ns
)

(A) a comparison of mean latency
in QoS traffic and BE traffic

20 40 60 80 100

0.35
0.38

0.4

0.5

0.6

0.7

0.8

0.85

0.9

0.95

1

(B) a comparison of bandwidth reservation
in QoS traffic and BE traffic

Ba
nd

wi
dt

h
Re

se
rv

at
io

n

0 20 40 60 80 100
0

100

200

300

400

500

600

700

(C) a comparison of mean latency in BE traffic
and QoS traffic with 2 outstanding commands

m
ea

n
en

d−
to

−e
nd

 la
te

nc
y

(n
s)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

(D) a comparison of bandwidth reservation in BE traffic
and QoS traffic with 2outstanding command

Ba
nd

wi
dt

h
Re

se
rv

at
io

n

4−word−burst BE traffic

4−word−burst QoS traffic

16−word−burst BE traffic

16−word−burst QoS traffic

BE traffic (4−word−burst)
2outstanding commands QoS
(4−word−burst)

Average Bandwidth Utlisation(%)

Figure 6. Mean end-to-end latency and bandwidth reservation vs bandwidth utilisation

shown in figure 6 (A), where the latency of QoS traffic us-

ing 16-word bursts is more than that of traffic using 4-word

bursts. This is one of the reasons why the TMAC scheme

only provides a soft latency guarantee.

Figure 6 (C) illustrates the situation when initiator0 can

issue two outstanding commands, which means that before

a new transaction starts, two pending commands can be is-

sued by initiator0. As shown in figures 6(C&D), the results

are what we expect. Initiator0 can get a bandwidth alloca-

tion of approximately 50%. Note that the bandwidth utili-

sation of the BE traffic shown in the graphs is the total of

the other four initiators.

6. Conclusions

In this paper, we present a token-managed admission

control for QoS support on our SpiNNaker platform. The

TMAC is configurable to support specific QoS traffic re-

quirements, and QoS is guaranteed by preferentially reserv-

ing tokens. TMAC combines round robin arbitration and

priority schemes, and is fair and deterministic. Our exper-

iments evaluate the performance of this low-cost QoS sup-

port mechanism and demonstrate the effectiveness of this

novel strategy.

TMAC is a significant contribution to end-to-end QoS

support. One contribution is its low area overhead. Com-

pared with hard QoS support with buffers-in-switch or vir-

tual channels, the total cell size of our system is very small.

Another contribution is the flexibility of bandwidth alloca-

tion, which means that we can manage the percentage of

bandwidth reservation by allocating different numbers of

tokens.

This strategy is valid for all packet-switched intercon-

nects, where it is always possible to provide dedicated links

for specific connections that require hard performance guar-

antees.

A future extension to this analysis might involve a fair-

ness study on other SoC interconnects. We expect that the

investigation of non-buffered switches such as wormhole-

routing mechanisms will also be interesting.

Authorized licensed use limited to: The University of Manchester. Downloaded on April 13, 2009 at 13:53 from IEEE Xplore. Restrictions apply.

Acknowledgements

The authors would like to acknowledge the support

for this work of the Engineering and Physical Sciences

Research Council, partly through the Advanced Proces-

sor Technologies Portfolio Partnership at the University of

Manchester, and of ARM and Silistix. Steve Furber holds

a Royal Society-Wolfson Research Merit Award. Shufan

Yang would gratefully like to acknowledge the grants from

the China Scholarship Council and to thank the School of

Computer& Communication, Hunan University, China, for

ongoing support.

References

[1] D.M. Chapiro. Globally Asynchronous Locally Syn-
chronous Systems. PhD thesis, Stanford University,

1984.

[2] Tobias Bjerregaard and Shankar Mahadevan. A survey

of research and practices of network-on-chip. ACM
Computing Surveys, 38(1), 2006.

[3] E. Rijpkema, K. G. W. Goossens, A. Rădulescu,

J. Dielissen, J. van Meerbergen, P. Wielage, and

E. Waterlander. Trade offs in the design of a router

with both guaranteed and best-effort services for net-

works on chip. In Rudy Lauwereins and Jan Madsen,

editors, Design Automation, and Test in Europe. The
Most Influential Papers of 10 Years DATE, Circuits &

Systems, chapter 2 (Networks on Chip). Springer, Jan-

uary 2008.

[4] Luis A. Plana, Steve B. Furber, Steve Temple,

Mukaram Khan, Yebin Shi, Jian Wu, and Shufan

Yang. A GALS infrastructure for a massively paral-

lel multiprocessor. IEEE Design & Test of Computers,

24(5):454–463, Sept. 2007.

[5] Tomaz Felicijan. Quality-of-Service (QoS) for Asyn-
chronous On-Chip Networks. PhD thesis, University

of Manchester, School of Computer Science, 2004.

[6] Tobias Bjerregaard and Jens Sparsø. A scheduling

discipline for latency and bandwidth guarantees in

asynchronous network-on-chip. In ASYNC ’05: Pro-
ceedings of the 11th IEEE International Symposium
on Asynchronous Circuits and Systems, pages 34–43,

Washington, DC, USA, 2005. IEEE Computer Soci-

ety.

[7] Z. Guz, I. Walter, E. Bolotin, I. Cidon, R. Ginosar, and

A. Kolodny. Efficient link capacity and QoS design for

network-on-chip. In Proc. Design, Automation and
Test in Europe (DATE), pages 9–14, Mar 2006.

[8] V. Nollet, T. Marescaux, D. Verkest, J-Y. Migno-

let, and S. Vernalde. Operating system controlled

network-on-chip. In Proceedings of Design Automa-
tion Conference (DAC), pages 256–259, San Diego,

June 2004. ISBN 1-58113-916-0.

[9] Prabhat Avasare, Vincent Nollet, Jean-Yves Mignolet,

Diederik Verkest, and Henk Corporaal. Centralized

end-to-end flow control in a best-effort network-on-

chip. In EMSOFT, pages 17–20, 2005.

[10] Steve B. Furber and Steve Temple. Neural systems

engineering. Journal of The Royal Society Interface,

4(13):193–206, 2007.

[11] John Bainbridge and Steve B. Furber. CHAIN: A

delay-insensitive chip area interconnect. IEEE Micro,

22(5):16–23, 2002.

[12] Silistix Ltd. Technical report, http://www.silistix.com,

2006.

[13] Steve B. Furber. Future trends in SoC interconnect. In

Proc. IEEE International Symposium on Design, Au-
tomation and Test (VLSI-TSA-DAT), pages 290–293,

Hsinchu,TaiWan, 2005.

[14] ARM Ltd. AMBA specification. Technical report,

http://www.arm.com, 2006.

[15] Praveen Vellanki, Nilanjan Banerjee, and Karam S.

Chatha. Quality-of-service and error control tech-

niques for mesh-based network-on-chip architectures.

Integration, 38(3):353–382, 2005.

[16] Ashley Saulsbury, Fong Pong, and Andreas

Nowatzyk. Missing the memory wall: the case

for processor/memory integration. In ISCA ’96: Pro-
ceedings of the 23rd annual international symposium
on Computer architecture, pages 90–101, New York,

NY, USA, 1996. ACM.

[17] ARM Ltd. PL340 technical report. Technical report,

http://www.arm.com, 2007.

[18] Steve B. Furber, Steve Temple, and Andrew Brown.

On-chip and inter-chip networks for modelling large-

scale neural systems. In International Symposium on
Circuits and Systems, ISCAS-2006, Kos, Greece, 21-

24 May 2006.

[19] Alexander D. Rast, Shufan Yang, Mukaram Khan, and

Steve B. Furber. Virtual synaptic interconnect using

an asynchronous network-on-chip. In Proc. 2008 Int’l
Joint Conf. on Neural Networks (IJCNN2008), Jun

2008.

Authorized licensed use limited to: The University of Manchester. Downloaded on April 13, 2009 at 13:53 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

